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ABSTRACT

Spiking Neural Networks (SNNs) offer a promising, biologically inspired ap-
proach for processing spatiotemporal data, particularly for time series forecast-
ing. However, conventional neuron models like the Leaky Integrate-and-Fire
(LIF) struggle to capture long-term dependencies and effectively process multi-
scale temporal dynamics. To overcome these limitations, we introduce the Tem-
poral Segment Leaky Integrate-and-Fire (TS-LIF) model, featuring a novel dual-
compartment architecture. The dendritic and somatic compartments specialize in
capturing distinct frequency components, providing functional heterogeneity that
enhances the neuron’s ability to process both low- and high-frequency informa-
tion. Furthermore, the newly introduced direct somatic current injection reduces
information loss during intra-neuronal transmission, while dendritic spike gen-
eration improves multi-scale information extraction. We provide a theoretical
stability analysis of the TS-LIF model and explain how each compartment con-
tributes to distinct frequency response characteristics. Experimental results show
that TS-LIF outperforms traditional SNNs in time series forecasting, demonstrat-
ing better accuracy and robustness, even with missing data. TS-LIF advances the
application of SNNs in time-series forecasting, providing a biologically inspired
approach that captures complex temporal dynamics and offers potential for practi-
cal implementation in diverse forecasting scenarios. The source code is available
at https://github.com/kkking-kk/TS-LIF.

1 INTRODUCTION

Spiking Neural Networks (SNNs) have garnered significant attention due to their biological plau-
sibility and unique capacity to process spatiotemporal information (Hu et al., 2024). Unlike tradi-
tional artificial neural networks (ANNs), which rely on continuous activations, SNNs utilize discrete
spikes as their primary communication mechanism (Wang et al., 2024). This event-driven nature al-
lows SNNs to operate efficiently, only processing information when necessary, making them highly
suited for tasks involving sparse, time-dependent data (Gast et al., 2024). By encoding information
through the precise timing of spikes, SNNs achieve fine temporal resolution, providing a significant
advantage in applications requiring both temporal and spatial accuracy (Zhu et al., 2024). Moreover,
the asynchronous processing of SNNs closely mimics biological neurons, enabling energy-efficient
computation (Ganguly et al., 2024; Bellec et al., 2020).

One domain that aligns naturally with SNNs is time series forecasting, which involves predicting
future values based on historical observations. It is critical in various domains, including finance,
weather prediction, healthcare, and energy monitoring (Lin et al., 2024; Ilbert et al., 2024a; An-
gelopoulos et al., 2024). The sequential nature of time series data, characterized by time depen-
dencies, aligns well with SNNs’ temporal processing abilities. Traditional deep learning models,
such as Temporal Convolutional Networks (TCNs), and Transformer, have been effective in captur-
ing long-term dependencies (Luo & Wang, 2024; Wu et al., 2021; Ilbert et al., 2024b). However,
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these models typically require significant computational resources to manage complex temporal re-
lationships (Liu et al., 2023; Feng et al., 2025). In contrast, SNNs, with their event-driven and
sparse computational architecture, can offer a more efficient solution, particularly for applications
that involve sparse temporal events and demand low energy consumption (Lv et al., 2024).

Despite the potential benefits, applying SNNs to time series forecasting has been limited. A notable
exception is the work by Lv et al. (2024), which demonstrated that SNNs could achieve competi-
tive results in this domain, particularly in terms of efficiency when implemented on neuromorphic
hardware. However, broader adoption remains constrained by the limitations of the widely used
Leaky Integrate-and-Fire (LIF) neuron model. While the LIF neuron is biologically plausible and
computationally efficient, its rapid membrane potential decay impairs its ability to capture long-term
dependencies (Wang & Yu, 2024). Furthermore, it struggles to process multi-timescale information,
which is crucial for understanding both short-term fluctuations and long-term trends (Zheng et al.,
2024). These challenges restrict the effectiveness of LIF-based SNNs in complex forecasting tasks,
where accurate predictions require capturing patterns across multiple temporal scales.

To address these limitations, we propose the Temporal Segment LIF (TS-LIF) Neuron Model, specif-
ically designed for time series forecasting. TS-LIF incorporates a dual-compartment mechanism to
process information across different timescales. This model extends the standard LIF neuron by
introducing dendritic and somatic compartments, each responsible for capturing distinct frequency
components of the input signal. Furthermore, the addition of direct somatic current injection miti-
gates information loss during intra-neuronal transmission, while dendritic spike generation improves
the neuron’s capacity for extracting information across multiple scales. We establish the stability
conditions for this dual-compartment model and derive the frequency-domain transfer functions for
both the dendritic and somatic compartments. The TS-LIF model was evaluated on four benchmark
datasets using CNN, RNN, and Transformer architectures, consistently outperforming previous LIF-
based models. Additionally, TS-LIF demonstrates a significant advantage in maintaining accuracy
under scenarios of missing inputs. Finally, through ablation studies, we show how TS-LIF achieves
superior performance by effectively decomposing input signals into different frequency components.
In summary, our contributions include:

• We propose the Temporal Segment LIF (TS-LIF) model, a dual-compartment neuron with
dendritic and somatic branches that effectively captures multi-scale temporal features, en-
hancing time series forecasting.

• We establish stability conditions for TS-LIF, ensuring robustness, and derive frequency-
domain transfer functions that illustrate the distinct contributions of dendritic and somatic
compartments to temporal processing.

• We validate TS-LIF on four benchmark datasets using CNN, RNN, and Transformer archi-
tectures, demonstrating consistent improvements over LIF-based SNNs, superior accuracy,
and robustness to missing inputs.

2 RELATED WORK

2.1 MODELING LONG-TERM DEPENDENCIES IN SNNS

Early SNN research using the LIF neuron model focused on simulating neuronal dynamics but strug-
gled with long-term dependencies, restricting its effectiveness in memory-intensive tasks.(Wang
et al., 2023). To address this challenge, several advanced neuron models have been proposed.

The Gated Leaky Integrate-and-Fire (GLIF) model introduced a gating mechanism to regulate tem-
poral information flow, improving long-term sequence modeling while maintaining energy effi-
ciency (Yao et al., 2022). Similarly, Wang & Yu (2024) explored autaptic connections to enhance
long-term dependency processing. Dual-compartment models have also shown promise in improv-
ing memory retention. The Two-Compartment LIF (TC-LIF) model divides memory between den-
dritic and somatic compartments, enhancing gradient propagation and improving long-sequence
retention (Zhang et al., 2024). Building on this, the Learnable Multi-hierarchical (LM-H) neuron
model introduced learnable parameters to dynamically balance historical and current information
(Hao et al., 2024). Additionally, Zheng et al. (2024) proposed a multi-compartment neuron model
with temporal dendritic heterogeneity, enabling neurons to process different time-scale inputs.
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Figure 1: Diagram of Neuronal Signal Processing and Integration: (a) Structural organization of
neuronal signal transmission, highlighting axosomatic and axodendritic synapses. (b) A generalized
two-compartment spiking neuron model, applicable to TC-LIF or LM-H models, with dendritic
(gray) and somatic (orange) compartments. (c) Proposed TS-LIF model with the newly introduced
direct somatic current injection and dendritic spike generation (highlighted in red). (d) Time series
decomposition and spike output generation in the TS-LIF model.

Despite these advances, current models still fall short in effectively decomposing and integrating
features from different time scales within a single input signal, leaving room for further exploration
in this area.

2.2 TIME SERIES FORECASTING

Time series refers to a sequence of data points recorded over time intervals, which is crucial for
understanding temporal dynamics in various fields (Wu et al., 2020; Feng et al., 2024; Woo et al.,
2024). While recent advancements in model architectures have improved forecasting accuracy, bal-
ancing performance with computational efficiency remains a challenge.

Traditional models like Recurrent Neural Networks (RNNs), including LSTMs and GRUs, are
widely used for sequential data but often struggle with long-term dependencies and inefficiencies
on large datasets (Ilhan et al., 2021; Dera et al., 2023). Temporal Convolutional Networks (TCNs)
offer a more scalable alternative by capturing long-range dependencies through dilated convolutions,
allowing for parallel processing of sequences (Lea et al., 2017; Luo & Wang, 2024). Transformers,
initially designed for natural language processing, have also been adapted for time series forecasting
and generation (Ilbert et al., 2024a; Zhang & Yan, 2023; Zhicheng et al., 2024). Their self-attention
mechanism models long-range dependencies effectively, while variants like Informer and Auto-
former use sparse attention and decomposition techniques to reduce computational demands (Zhou
et al., 2021; Wu et al., 2021).

However, the computational requirements of TCNs and Transformers, particularly regarding energy
consumption, remain substantial. Implementing these models in resource-constrained environments
is still challenging, even with optimizations such as sparse attention and hybrid approaches.

3 PRELIMINARIES

3.1 TIME SERIES PROBLEM SETTING

We consider the task of multivariate time series forecasting, where the observations are represented
as a sequence X = {x1,x2, . . . ,xT } ∈ RT×C . Here, T represents the number of time steps, and
C denotes the number of variables. The goal is to learn a predictive function f that generates future
values Y = {xT+1,xT+2, . . . ,xT+L} ∈ RL×C for the next L time steps.

To achieve this, time series decomposition can be utilized to reveal features across different tem-
poral scales, such as short-term variations and long-term trends. These features play a crucial role
in developing models that can handle both rapid fluctuations and slower patterns in the data. By
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modeling these components individually or jointly, the predictive function f can better capture the
underlying structure of the time series, thereby enhancing forecasting accuracy.

3.2 LIF NEURON MODEL

The Leaky Integrate-and-Fire (LIF) neuron is widely used in SNNs due to its computational simplic-
ity and biological relevance. The evolution of the membrane potential in the discrete-time domain
is expressed as:

v[t] = αv[t− 1] + c[t]− vths[t− 1], (1)
where α < 1 is the decay factor, v[t] represents the membrane potential at time step t, and c[t] is the
input current. The term vths[t− 1] accounts for resetting the membrane potential after a spike. The
spike output is determined by the Heaviside step function H(·), given by:

s[t] = H(v[t]− vth), (2)
where H(x) outputs 1 if x ≥ 0 and 0 otherwise. This function indicates whether the membrane
potential has exceeded the threshold vth, thereby triggering a spike.

Assuming the initial membrane potential v[0] = 0, the evolution of the membrane potential simpli-
fies to:

v[t+ 1] =

t+1∑
k=1

αt−k+1c[k]− vth

t∑
k=1

αt−ks[k]. (3)

This equation shows that v[t+1] is a weighted sum of past input currents c[k] and spike output s[k],
with older values decaying exponentially (Wang & Yu, 2024). The LIF neuron integrates inputs
over a short window, acting like a low-pass filter. Consequently, it primarily responds to recent
inputs, making it less effective in capturing long-term dependencies, which limits its use in tasks
that require extended memory and complex spatiotemporal processing.

3.3 DENDRITES AND SOMA

Biological neurons are often represented with a dual-compartment architecture, comprising den-
drites and soma, each handling specific signal processing functions, as illustrated in Figure 1(a).
Dendrites receive synaptic inputs and integrate them over time, while the soma acts as the central
decision-making unit, determining whether to generate a spike based on the accumulated inputs,
as shown in Figure 1(b) (Zhang et al., 2024; Hao et al., 2024). The dynamics of this system are
mathematically described as:

vd[t] = α1vd[t− 1] + β1vs[t− 1] + c[t],

vs[t] = α2vs[t− 1] + β2vd[t]− vthss[t− 1],

ss[t] = H(vs[t]− vth).

(4)

Here, vd[t] and vs[t] represent the membrane potentials at the dendrites and soma, respectively. α1

and α2 are decay factors that modulate the influence of previous membrane potentials, while β1

and β2 signify cross-compartmental interactions. The soma generates a spike when its membrane
potential vs[t] exceeds the threshold vth.

By making minor adjustments to Equation (4), the TC-LIF and LM-H neuron models can be derived.
These models can, to some extent, mitigate the problem of vanishing gradients by appropriately
tuning the decay factors α and cross-compartmental interactions β, enabling them to better model
long-term dynamic relationships. However, these models lack a clear distinction in processing capa-
bilities across different temporal scales, such as high and low frequencies, between the dendritic and
somatic compartments. Moreover, there is no theoretical validation of their robustness or temporal
processing capabilities, limiting their effectiveness in scenarios requiring explicit multi-timescale
feature extraction and reliable long-term memory retention.

4 METHODOLOGY

4.1 TEMPORAL SEGMENT LIF NEURON

In the dual-compartment model described by Equation (4), the input current c[t] flows through the
dendrites before reaching the soma, which can result in information loss during transmission. For

4



Published as a conference paper at ICLR 2025

example, if the dendritic compartment vd primarily captures the low-frequency features of c[t], it
becomes challenging for the somatic compartment vs to recover the original high-frequency com-
ponents without direct current input. This limitation highlights the model’s difficulty in effectively
handling multi-scale information simultaneously.

Biological neurons contain numerous synapses that function as independent pattern detectors (in-
cluding identity mapping), ensuring soma receive sufficient information (Hawkins & Ahmad, 2016).
However, describing the complete neural dynamics using simple formulas is impractical. To address
this, we propose the TS-LIF neuron model, which incorporates shortcut mechanisms. These mech-
anisms can be viewed as dendritic pathways performing identity mapping or as more direct connec-
tions, such as axosomatic synapses (Figure 1(a)) and electrical synapses (gap junctions) (Fréal et al.,
2023; Tewari et al., 2024; Farsang et al., 2024). The dynamics of this model are defined as:

vd[t] = α1vd[t− 1] + β1vs[t− 1] + (1− α1)c[t]− γ1sd[t− 1],

vs[t] = α2vs[t− 1] + β2vd[t] + (1− α2)c[t]− γ2ss[t− 1],

sd[t] = H(vd[t]− vth),

ss[t] = H(vs[t]− vth).

(5)

In this model, the shortcut is implemented through the term (1 − α2)c[t], allowing direct current
input to the soma as shown in Figure 1.

When α1 is close to 1, the dendritic membrane potential vd[t] acts like a moving average, capturing
long-term features by focusing on low-frequency components. Conversely, when α2 is close to 0,
the somatic potential vs[t] rapidly adapts to changes in c[t], making the neuron highly responsive to
rapid fluctuations. This dual-compartment model can therefore effectively handle both short-term
and long-term signals, providing a balanced approach to temporal processing.

Both dendritic (sd) and somatic (ss) compartments can generate spikes, similar to biological neu-
rons like hippocampal and cortical pyramidal neurons (Muller et al., 2023; Hayashi-Takagi, 2023;
Narayanan et al., 2024). The simultaneous firing of multiple types of spikes is also observed in multi-
compartment neurons and Hierarchical Temporal Memory (HTM) neurons (Payeur et al., 2021;
Capone et al., 2023; Hawkins & Ahmad, 2016). γ1 and γ2 represent adaptive reset mechanisms
rather than fixed voltage resets, providing greater flexibility in the neuron’s response. Furthermore,
the dendritic and somatic compartments can be modeled as two distinct LIF neurons with unique
characteristics, interacting and collaborating to process signals across different frequencies, such as
in the visual and auditory systems (Dallos et al., 1972; Wang & Kefalov, 2011). The intensity of their
interaction is modulated by the parameter β which governs the strength of their mutual influence.

To leverage multi-scale information, we combine dendritic and somatic spike outputs through a
weighted sum:

smix[t] = κsd[t] + (1− κ)ss[t], (6)
where κ controls the balance between dendritic and somatic contributions. This coefficient can
adapt across different feature channels, allowing flexible integration of both low- and high-frequency
components, thereby enabling the model to capture richer temporal features and produce more robust
representations of input signals. Here, all the coefficients (α, β, γ, κ) mentioned above are learnable.

4.2 STABILITY ANALYSIS

To ensure the robustness of the proposed TS-LIF model, we perform a stability analysis by focusing
on the homogeneous part of the system (Chen, 1984). The goal is to determine the conditions under
which the system remains stable, meaning all solutions remain bounded over time.
Theorem 1. The system governed by the following dynamics:{

vd[t] = α1vd[t− 1] + β1vs[t− 1],

vs[t] = α2vs[t− 1] + β2vd[t],
(7)

has eigenvalues:

λ =
α1 + α2 + β1β2 ±

√
(α1 + α2 + β1β2)2 − 4α1α2

2
. (8)

For the system to remain stable, it is necessary that |λ| < 1 for both eigenvalues.
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Proof. We start by representing the system dynamics in matrix form. The system can be expressed
as:

v[t] = Av[t− 1], (9)

where the state vector is v[t] =
[
vd[t]
vs[t]

]
, and the system matrix is:

A =

[
α1 β1

α1β2 α2 + β1β2

]
. (10)

To determine the eigenvalues of the system, we solve the characteristic equation:
det(A− λI) = 0, (11)

which results in the quadratic equation:
λ2 − (α1 + α2 + β1β2)λ+ α1α2 = 0. (12)

Solving this quadratic equation gives the eigenvalues:

λ =
α1 + α2 + β1β2 ±

√
(α1 + α2 + β1β2)2 − 4α1α2

2
. (13)

For stability, both eigenvalues must satisfy |λ| < 1, ensuring they lie within the unit circle, thereby
guaranteeing the boundedness of the system over time.

The stability of the system is governed by the eigenvalues of matrix A. Stability is achieved when
both eigenvalues lie within the unit circle, which occurs only if the sum α1 + α2 + β1β2 is less
than 2. This explains why the TC-LIF model, with α1 = α2 = 1, requires β1β2 ≤ 0 to ensure
stability (Zhang et al., 2024). Properly balancing the interactions between the dendritic and somatic
compartments is crucial to maintaining stability.

4.3 FREQUENCY RESPONSE ANALYSIS

To examine the frequency characteristics of TS-LIF, we derive the transfer functions by applying
the Z-transform to the system equations, while ignoring the effects of spike generation and reset
mechanisms for simplicity (Chen, 1984). The discrete-time system governing the dynamics of the
dendritic and somatic potentials is described by:{

vd[t] = α1vd[t− 1] + β1vs[t− 1] + (1− α1)c[t],

vs[t] = α2vs[t− 1] + β2vd[t] + (1− α2)c[t].
(14)

Applying the Z-transform under zero initial conditions yields:{
(1− α1z

−1)vd(z)− β1z
−1vs(z) = (1− α1)c(z),

−β2vd(z) + (1− α2z
−1)vs(z) = (1− α2)c(z).

(15)

The system can then be expressed as:
Mv(z) = c̃(z). (16)

where

M =

[
1− α1z

−1 −β1z
−1

−β2 1− α2z
−1

]
, v(z) =

[
vd(z)
vs(z)

]
, c̃(z) =

[
(1− α1)c(z)
(1− α2)c(z)

]
.

The transfer functions for vd[t] and vs[t] with respect to the input c[t] are:

Hd(z) =
vd(z)

c(z)
=

(1− α1)(1− α2z
−1) + β1z

−1(1− α2)

det(M)
,

Hs(z) =
vs(z)

c(z)
=

β2(1− α1) + (1− α1z
−1)(1− α2)

det(M)
,

(17)

where the determinant of M is:
det(M) = 1− (α1 + α2 + β1β2)z

−1 + α1α2z
−2. (18)

These transfer functions offer insights into how the dendritic and somatic compartments process
different frequency components of the input signal. The magnitudes of Hd(z) and Hs(z) represent
the system’s gain at specific frequencies, while their phases indicate the delay or shift introduced by
the system.
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4.4 EXAMPLE: FREQUENCY SEPARATION IN PRACTICE

To illustrate the system’s behavior, we use the following parameter settings: α1 = 0.95, which
enables low-pass filtering in vd[t], α2 = 0.05, providing high-pass filtering for vs[t], along with
β1 = 0 and β2 = −0.9. Under these conditions, the characteristic equation for the system is derived
as:

1− λ+ 0.0475λ2 = 0, (19)

Solving this, we find the eigenvalues λ1 = 0.95 and λ2 = 0.05, both of which lie within the unit
circle, ensuring system stability. The corresponding transfer functions for the dendritic and somatic
compartments are:

Hd(z) =
0.05− 0.0025z−1

1− z−1 + 0.0475z−2
, (20)

Hs(z) =
0.905− 0.9025z−1

1− z−1 + 0.0475z−2
. (21)

At low frequencies (ω = 0), Hd(e
jω) = 1, indicating that vd[t] effectively captures low-frequency

signals, while Hs(e
jω) ≈ 0.0526, showing minimal response. Conversely, at high frequencies (ω =

π), Hs(e
jω) ≈ 0.8829, demonstrating that vs[t] accurately reflects high-frequency components.

This example highlights the system’s frequency separation properties, where vd[t] captures slow-
changing signals, and vs[t] is sensitive to rapid changes.

5 EXPERIMENTS

In this section, we present the experimental evaluation of the TS-LIF model across multiple time-
series benchmarks. We analyze the model’s forecasting performance, its robustness against various
prediction settings, and its ability in temporal decomposition.

5.1 TEMPORAL ANALYSIS

Figure 2: (a) TC-LIF Model Response Figure 3: (b) TS-LIF Model Response

Figure 4: Comparison of dendritic and somatic voltage responses between TC-LIF and TS-LIF
models with mixed-frequency input current.

We performed a temporal analysis to assess the TS-LIF model’s ability to decompose input signals
into distinct frequency components. To validate this temporal decomposition capability, we fed a
mixed-frequency input current (blue line) into both TS-LIF and TC-LIF models, as depicted by the
blue line in Figure 4. Detailed experimental settings are provided in Appendix A.4.

By visualizing the voltage responses of the dendritic (green line) and somatic (red line) compart-
ments, we observed distinct behaviors between the models. The TS-LIF model effectively separated
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the input signal into its low- and high-frequency components, with the dendritic compartment retain-
ing primarily low-frequency information and the somatic compartment focusing on high-frequency
components. In contrast, the TC-LIF model did not demonstrate a clear separation, with both
compartments reflecting mixed-frequency components. These results emphasize the advantage of
the TS-LIF model in managing temporal information, effectively capturing and processing multi-
timescale dependencies in time series — an essential capability for handling complex temporal
patterns.

5.2 MAIN RESULTS

Table 1: Forecasting results on four benchmark datasets with different prediction horizons L.
Results for our TS-LIF model with TCN, GRU, and Transformer architectures are included, while
the remaining results are sourced from Lv et al. (2024). The top-performing and second-best scores
are shown in bold and underlined, respectively. Arrows ↑ (↓) denote whether higher or lower values
are preferred. The Avg. Rank column reflects the average rank of each model across the different
configurations.

Method Spike Metric Metr-la Pems-bay Solar Electricity Avg. Avg. Rank↓
6 24 48 96 6 24 48 96 6 24 48 96 6 24 48 96

ARIMA ✗
R2↑ .687 .441 .282 .265 .741 .723 .692 .670 .951 .847 .725 .682 .963 .960 .914 .863 .713 9.9

RSE↓ .575 .742 .889 .902 .532 .548 .562 .612 .202 .365 .588 .589 .522 .534 .564 .599 .583 9.8

GP ✗
R2↑ .685 .437 .265 .233 .732 .712 .689 .665 .944 .836 .711 .675 .962 .968 .912 .852 .705 11.1

RSE↓ .572 .738 .912 .925 .544 .532 .577 .592 .225 .388 .612 .575 .603 .612 .633 .642 .605 10.2

TCN ✗
R2↑ .820 .601 .455 .330 .881 .749 .695 .689 .958 .871 .737 .661 .975 .973 .968 .962 .770 5.8

RSE↓ .446 .665 .778 .851 .373 .541 .583 .587 .210 .359 .513 .583 .282 .287 .319 .345 .483 5.7

Spike-TCN ✓
R2↑ .783 .603 .468 .326 .811 .729 .662 .633 .937 .840 .708 .650 .970 .963 .958 .953 .750 7.0

RSE↓ .491 .665 .769 .865 .469 .541 .625 .635 .259 .401 .541 .596 .333 .342 .368 .389 .518 8.9

TS-TCN ✓
R2↑ .810 .605 .473 .328 .897 .759 .698 .652 .964 .884 .762 .720 .980 .971 .968 .962 .777 5.0

RSE↓ .459 .656 .757 .857 .354 .527 .590 .633 .189 .325 .484 .523 .264 .316 .318 .360 .475 4.6

GRU ✗
R2↑ .759 .429 .301 .194 .747 .703 .691 .665 .950 .875 .781 .737 .981 .972 .971 .964 .733 8.0

RSE↓ .517 .797 .882 .947 .529 .573 .584 .608 .219 .355 .476 .522 .506 .598 .537 .587 .573 9.5

Spike-GRU ✓
R2↑ .846 .615 .427 .275 .864 .741 .688 .657 .912 .822 .771 .668 .978 .964 .962 .959 .759 8.8

RSE↓ .414 .663 .827 .943 .398 .535 .601 .621 .299 .430 .485 .629 .280 .317 .338 .484 .517 8.8

Spike-RNN ✓
R2↑ .846 .622 .433 .283 .872 .745 .685 .654 .923 .820 .812 .714 .977 .972 .962 .960 .768 7.4

RSE↓ .412 .648 .794 .935 .387 .528 .588 .634 .278 .425 .435 .586 .267 .296 .346 .481 .503 7.1

TS-GRU ✓
R2↑ .848 .618 .430 .329 .874 .742 .684 .649 .938 .878 .815 .722 .991 .981 .983 .976 .778 4.8

RSE↓ .412 .651 .795 .853 .384 .530 .587 .637 .253 .349 .426 .527 .216 .240 .236 .271 .460 4.8

Autoformer ✗
R2↑ .762 .548 .411 .282 .782 .711 .689 .668 .960 .852 .791 .701 .980 .977 .975 .963 .753 7.2

RSE↓ .565 .692 .785 .872 .452 .543 .577 .565 .212 .432 .622 .685 .481 .506 .566 .548 .569 9.1

iTransformer ✗
R2↑ .829 .623 .439 .285 .887 .719 .685 .668 .964 .879 .799 .738 .979 .977 .975 .964 .776 4.4

RSE↓ .436 .648 .780 .878 .362 .547 .561 .584 .191 .348 .448 .563 .259 .305 .335 .427 .480 4.7

iSpikformer ✓
R2↑ .817 .618 .440 .279 .879 .744 .687 .674 .961 .876 .795 .738 .977 .974 .972 .963 .775 5.2

RSE↓ .475 .668 .752 .905 .376 .536 .569 .580 .204 .333 .465 .521 .263 .284 .338 .348 .476 4.6

TS-former ✓
R2↑ .847 .620 .445 .283 .874 .735 .683 .669 .961 .886 .828 .774 .987 .985 .981 .977 .783 3.5

RSE↓ .416 .655 .763 .874 .379 .539 .572 .583 .224 .331 .382 .435 .197 .215 .234 .261 .441 3.3

The proposed TS-LIF model (TS-TCN, TS-GRU, and TS-former) was evaluated on four benchmark
datasets (Metr-la, Pems-bay, Solar, and Electricity), following the setup in Lv et al. (2024), where
TS-former represents an iTransformer architecture based on TS-LIF (Liu et al., 2024). Hyperpa-
rameters were tuned via cross-validation, and performance was assessed using RSE and R2 metrics.
As shown in Table 1, Our TS-LIF consistently outperforms LIF-based SNN models (Spike-TCN,
Spike-GRU, and iSpikeformer) across different metrics, particularly excelling in tasks requiring
long-term forecasting. For example, in the Solar dataset, the TS-TCN and TS-former achieved an
average improvement of 8% in R2 and 16.8% in RSE. Similarly, in the Electricity dataset, TS-GRU
and TS-former showed significant improvements in RSE of 43.6% and 25.0%, respectively, for the
96-step prediction length. These results highlight the effectiveness of TS-LIF in capturing long-term
dependencies, unlike traditional LIF neurons.

For RNN-based models, our TS-LIF achieved superior performance in both R2 and RSE metrics
compared to LIF-based and original ANN models. Even for TCN and Transformer models, which
inherently possess cross-time-scale capabilities, TS-LIF aslo provided noticeable improvements,
resulting in higher average rankings across metrics. This suggests that the integration of dendritic
and somatic components in the TS-LIF framework enables the model to capture richer multi-scale
temporal features, leading to improved predictive accuracy.

5.3 MODEL ANALYSIS

This section assesses model robustness in the presence of missing values, evaluates the impact of
training timesteps, and examines the effectiveness of different types of LIF neurons.
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Table 2: Experimental performance of the TS-LIF model compared to the vanilla LIF on the Elec-
tricity dataset, evaluated under different ratios of missing values in the historical inputs. Model *
indicates a backbone model with a prediction length of *, and Transformer 6 represents the Trans-
former architecture with a prediction length of 6.

Missing Ratio 10% 20% 40% 60% 80%

Metric R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓

Transformer 6
iSpikformer 0.977 0.265 0.976 0.266 0.974 0.269 0.971 0.271 0.964 0.275
TS-former 0.987 0.199 0.987 0.200 0.987 0.206 0.986 0.207 0.983 0.211

Promotion 1.0% 24.9% 1.1% 24.8% 1.3% 23.4% 1.5% 23.6% 1.9% 23.2%

Transformer 96
iSpikformer 0.962 0.344 0.962 0.346 0.957 0.358 0.953 0.368 0.947 0.376
TS-former 0.977 0.263 0.976 0.262 0.974 0.270 0.971 0.274 0.971 0.279

Promotion 1.5% 23.5% 1.4% 24.2% 1.7% 24.5% 1.8% 25.5% 2.4% 25.7%

GRU 6
Spike-GRU 0.873 0.774 0.842 0.749 0.771 0.851 0.758 0.874 0.745 0.897
TS-GRU 0.986 0.235 0.983 0.242 0.979 0.256 0.965 0.328 0.939 0.438

Promotion 12.9% 69.6% 16.7% 67.6% 26.9% 69.9% 27.3% 62.4% 26.0% 51.1%

GRU 96
Spike-GRU 0.842 0.693 0.827 0.729 0.803 0.789 0.783 0.828 0.760 0.871
TS-GRU 0.975 0.268 0.973 0.324 0.970 0.303 0.956 0.367 0.922 0.489

Promotion 15.7% 61.3% 17.6% 55.6% 20.7% 61.5% 22.0% 55.6% 21.3% 43.8%

TCN 6
Spike-TCN 0.971 0.341 0.970 0.347 0.967 0.352 0.960 0.361 0.954 0.369
TS-TCN 0.980 0.263 0.979 0.266 0.976 0.272 0.973 0.280 0.967 0.291

Promotion 0.9% 22.8% 1.0% 23.3% 1.0% 22.7% 0.7% 22.4% 1.3% 21.1%

TCN 96
Spike-TCN 0.953 0.390 0.952 0.394 0.948 0.409 0.942 0.418 0.937 0.426
TS-TCN 0.962 0.361 0.961 0.364 0.958 0.370 0.956 0.375 0.952 0.389

Promotion 1.0% 7.4% 0.9% 7.6% 1.0% 9.5% 1.4% 10.2% 1.6% 8.6%

5.3.1 ROBUSTNESS EVALUATION

To verify the robustness of the proposed TS-LIF model, we evaluated its performance on the Elec-
tricity dataset under different ratios of missing values in the historical inputs, comparing it to the
vanilla LIF-based models. The models were assessed under missing data ratios of 10%, 20%, 40%,
60%, and 80%. The results are presented in Table 2.

The experimental results indicate that TS-LIF consistently outperforms the vanilla LIF models
across different missing value scenarios, as evidenced by higher R2 values and lower RSE scores.
Compared to the LIF-based models, TS-LIF shows a significantly smaller reduction in prediction
accuracy as the missing data ratio increases, particularly in GRU-based models. Since GRU inher-
ently has a weaker capability to capture long-term dynamics compared to TCN and Transformer, the
enhancements introduced by TS-LIF greatly improve its temporal feature extraction ability. Specifi-
cally, TS-LIF improves R2 by approximately 20% and reduces RSE by around 50% compared to the
baseline LIF-based models. These improvements highlight the effectiveness of TS-LIF in captur-
ing complex temporal dependencies and maintaining robustness under challenging conditions with
substantial data loss.

5.3.2 TRAINING TIMESTEPS

Figure 5 illustrates the forecasting performance of our TS-LIF model, evaluated using TCN, GRU,
and Transformer architectures over different training timesteps (24, 96, and 168) for the Solar and
Electricity datasets. For each architecture, the TS-LIF model consistently improves performance as
the training timesteps increase from 24 to 168. This trend is evident from the rising R2 values and
decreasing RSE scores, indicating enhanced accuracy with more extended training. Notably, the
most substantial improvements are observed in the transition from 24 to 96 timesteps, showcasing
the model’s capability to leverage longer training periods to capture complex temporal patterns more
effectively.
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Figure 5: Impact of Training Timesteps on Forecasting Performance of TS-LIF Model Across Dif-
ferent Architectures. Solar dataset with a prediction length of 24 and Electricity dataset with a
prediction length of 96. We plot mean and std for each experiment over 3 different random seeds.

5.3.3 LIF NEURONS
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Figure 6: Forecasting Accuracy Comparison of TS-LIF and TC-LIF Neurons on Solar and Electric-
ity datasets with a prediction length of 24.

In this section, we evaluate the accuracy of the proposed TS-LIF model compared to the dual-
compartment TC-LIF model. As shown in Figure 6, TS-LIF consistently outperforms TC-LIF across
all three architectures and both datasets. The R2 values for TS-LIF are significantly higher, partic-
ularly with GRU and TCN, demonstrating improved predictive accuracy. The corresponding RSE
scores also confirm this trend, with TS-LIF showing consistently lower errors, indicating better fit
and reduced prediction errors. These improvements highlight TS-LIF’s superior capability to cap-
ture underlying temporal patterns and effectively manage multi-scale information in the datasets.

6 CONCLUSION

In this work, we introduced the Temporal Segment Leaky Integrate-and-Fire (TS-LIF) model, a
novel spiking neural network (SNN) neuron architecture designed specifically for time series fore-
casting. The TS-LIF model features a dual-compartment structure, with dendritic and somatic
compartments processing different frequency components, allowing for effective multi-timescale
information integration. This compartmentalization enables TS-LIF to enhance both low- and high-
frequency signal processing, addressing key limitations of traditional Leaky Integrate-and-Fire (LIF)
neurons in capturing long-term dependencies and multi-scale dynamics.

We theoretically proved the stability conditions for the TS-LIF model, ensuring robustness across a
wide range of temporal inputs. Through frequency response analysis, we demonstrated how the den-
dritic and somatic compartments contribute to efficient temporal decomposition. Our empirical eval-
uation on four benchmark datasets showed that the TS-LIF model consistently outperformed con-
ventional LIF-based SNNs as well as artificial neural networks, particularly in long-term forecasting
scenarios. Moreover, the TS-LIF model showed resilience under missing input data, maintaining su-
perior accuracy compared to baseline models. The proposed model advances the state-of-the-art in
SNNs for time series forecasting by combining biologically inspired design with computational ef-
ficiency, providing a promising solution for applications requiring robust temporal processing in
resource-constrained environments.
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A APPENDIX

A.1 EXPERIMENT SETTINGS FOR MAIN RESULTS

In this section, we outline the experimental setup used to evaluate the performance of the proposed
TD-LIF model. We conducted experiments on several benchmark time series datasets, including
Metr-LA (Li et al., 2017), which records average traffic speed on highways in Los Angeles County;
Pems-Bay (Li et al., 2017), capturing traffic speed data in the Bay Area; Electricity (Lai et al.,
2018), which tracks hourly electricity consumption in kWh; and Solar (Lai et al., 2018), detailing
solar power production. Preprocessing steps were applied to ensure consistency across datasets,
standardizing input dimensions, sampling rates, and data normalization.

The TS-LIF model framework was implemented in line with the approach in Lv et al. (2024), in-
corporating CNN-based TCNs (Bai et al., 2018), RNN-based GRUs (Cho, 2014), and Transformer-
based models such as Autoformer (Wu et al., 2021) and iTransformer (Liu et al., 2024). As for the
SNN-based structure, we introduce the TCN, RNN, GRUs, and Transformer models of the SNN
format from Lv et al. (2024). Hyperparameters, including learning rate, timestep intervals, and
feature-mixing weights, were optimized through cross-validation. We employ two statistical met-
rics: the Root Relative Squared Error (RSE) and the coefficient of determination (R2) followed by
the Lv et al. (2024) settings. Detailed descriptions of the experimental settings and hyperparameter
configurations are provided in the appendix.

A.2 DATASET AND METRIC DETAILS

Datasets. The details of the datasets used in the main experiment are shown in Table 3. In the
experimental partitioning of datasets Metr-la and Pems-bay, we adopted a train-validation-test ratio
of 0.7, 0.2, and 0.1, respectively, while for datasets Solar and Electricity, we used ratios of 0.6, 0.2,
and 0.2. The settings for history and prediction lengths in the experiments followed those in the
paper by Lv et al. (2024), except that for the history length in datasets Metr-la and Pems-bay, we
added a setting of 168 to further improve experimental performance.

Table 3: Properties of the datasets in experiments
DATASET Dimension Domain Freq Samples Context Length Pred Length
Metr-la 207 R+ 30-min 34,272 {12, 168} {6, 24, 48, 96}
Pems-bay 325 R+ 30-min 52,116 {12, 168} {6, 24, 48, 96}
Solar 137 R+ Hourly 52,560 168 {6, 24, 48, 96}
Electricity 321 R+ Hourly 26,304 168 {6, 24, 48, 96}

Metrics.To comprehensively evaluate our model’s performance, we employ two statistical metrics:
the Root Relative Squared Error (RSE) and the coefficient of determination (R2). The RSE mea-
sures the relative discrepancy between the predicted and actual values, while the R2 indicates the
proportion of variance in the dependent variable that is predictable from the independent variables.
These metrics are calculated as follows:

RSE =

√√√√∑M
m=1 ||Ym − Ŷm||2∑M
m=1 ||Ym − Ȳ||2

,

R2 =
1

MCL

M∑
m=1

C∑
c=1

L∑
l=1

[
1−

(Y m
c,l − Ŷ m

c,l )
2

(Y m
c,l − Ȳc,l)2

]
,

(22)

where M denotes the number of samples in the test set, C represents the number of channels or
variables, and L is the prediction horizon. The true values for the m-th sample are denoted by Ym,
and their average over all samples is Ȳ. Specifically, Y m

c,l represents the l-th future value of the c-th
variable for the m-th sample, with its mean across all samples given by Ȳc,l. The predicted values
corresponding to these true values are denoted by Ŷm and Ŷ m

c,l , respectively.
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A.3 IMPLEMENTATION DETAILS

In this section, we summarize the detailed experiment setup of our TS-LIF. Table 4 and 5 show the
hyperparameters of our overall structure in three types of backbones (TCN, GRU, Transformer). As
for the timesteps in the SNN structures, we align them with the history length in each setting. The
threshold of the TS-LIF is set to 1.0.

Table 4: Hyperparameters of different backbones (TCN, GRU, Transformer) used for each dataset
Datesets TCN Layers TCN Kernels GRU Layers Transformer Layers Attention Heads Attention Dim

Metr-la 3 3 1 2 8 256
Pems-bay 3 16 1 2 8 512
Solar 3 16 1 2 8 512
Electricity 3 3 1 2 8 256

Table 5: Training details of different backbones (TCN, GRU, Transformer) used for each dataset
Datesets TCN Hidden TCN Dilation GRU Hidden Transformer d ff Learning Rate Batch Size

Metr-la 64 2 128 1024 {.0001, .0005} {32, 64 }
Pems-bay 64 2 128 2048 {.0001, .0005} {32, 64 }
Solar 64 2 128 2048 .0001 64
Electricity 64 2 128 1024 .0001 64

A.4 EXPERIMENT SETTINGS FOR TEMPORAL ANALYSIS

The injected current, I(t), consists of two sinusoidal components: a low-frequency component,
Ilow freq, with an amplitude of 3 and a frequency of 0.5 Hz, and a high-frequency component, Ihigh freq,
with an amplitude of 5 and a frequency of 4 Hz. This combination represents a complex input
environment with both slow and rapid variations, simulating mixed-frequency stimuli.

For the TCLIF model, we adopted parameters α1 = α2 = 1, β1 = −0.5, and β2 = 0.5, as suggested
in Zhang et al. (2024). In contrast, the TS-LIF model was set with α1 = 0.95, α2 = 0.05, β1 = 0,
and β2 = −0.9, which corresponds to the parameter settings used in the frequency response analysis
in the previous subsection. These values were selected to facilitate low-pass filtering in the dendritic
compartment (vd[t]) and high-pass filtering in the somatic compartment (vs[t]).

A.5 THEORETICAL ENERGY CONSUMPTION CALCULATION

The theoretical energy consumption for each layer during inference is determined based on the
operations performed by spiking neural networks (SNNs) and artificial neural networks (ANNs)
(Yao et al., 2023).

For SNNs, the energy required by layer l is calculated as:

Energy(l) = EAC × SOPs(l),

where SOPs(l) is the number of spike-based accumulate (AC) operations, and EAC represents the
energy per AC operation.

For ANNs, the energy consumption for layer b is:

Energy(b) = EMAC × FLOPs(b),

where FLOPs(b) refers to the number of floating-point multiply-and-accumulate (MAC) opera-
tions, and EMAC is the energy per MAC operation. The constants are set as EMAC = 4.6 pJ and
EAC = 0.9 pJ, assuming operations are performed on 45nm hardware.

For SNNs, the number of synaptic operations in layer l is further estimated as:

SOPs(l) = T × γ × FLOPs(l),

where T is the number of timesteps required in the simulation, and γ is the firing rate of the input
spike train for layer l.

16



Published as a conference paper at ICLR 2025

Table 6: Energy consumption per sample of the Electricity dataset during inference. ”OPs” includes
SOPs for SNNs and FLOPs for ANNs. ”SOPs” refers to synaptic operations in SNNs, and ”FLOPs”
denotes floating-point operations in ANNs.

Model Param(M) OPs (G) Energy (mJ) Energy Reduction Train/Infer Time (s) R2

TCN 0.460 0.14 0.64 - 21.34/11.47 .973
Spike-TCN 0.461 0.15 0.23 63.60% ↓ 306.91/27.85 .963
TS-TCN 0.465 0.19 0.25 60.93% ↓ 308.26/28.14 .971

GRU 1.288 1.32 6.07 - 37.73/7.35 .972
Spike-GRU 1.289 1.63 1.51 75.05% ↓ 235.46/10.05 .964
TS-GRU 1.291 1.67 1.58 73.80% ↓ 246.23/9.78 .981

iTransformer 1.634 2.05 9.47 - 7.24/6.38 .977
iSpikformer 1.634 3.55 3.19 66.30% ↓ 49.84/8.69 .974
TS-former 1.640 3.59 3.22 65.99% ↓ 50.36/8.72 .985

Table 7: Performance of our TS-former with SparseTSF and SAMformer of 3 prediction lengths
(24, 48, 96) on the Metr-la and Electricity datasets. SparseTSF*: replace the ReLU function of
SparseTSF with our TS-LIF. Bold numbers represent the best outcomes.

Datasets Metr-la Electricity

Lengths 24 48 96 24 48 96

Metrics R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓
SparseTSF 0.576 0.681 0.427 0.792 0.253 0.916 0.991 0.167 0.986 0.195 0.982 0.232

SparseTSF* 0.580 0.692 0.426 0.801 0.247 0.924 0.990 0.177 0.985 0.201 0.982 0.234
SAMformer 0.549 0.739 0.401 0.863 0.219 0.965 0.983 0.218 0.980 0.239 0.978 0.257
TS-former 0.620 0.655 0.445 0.763 0.283 0.874 0.985 0.215 0.981 0.234 0.977 0.261

A.6 PERFORMANCE COMPARISON ON SOTA TIME SERIES FORECASTING METHODS

Table 7 compares the performance of our TS-former with SparseTSF (Lin et al., 2024), SparseTSF*
(where ReLU is replaced by TS-LIF), and SAMformer (Ilbert et al., 2024a) on the Metr-la and
Electricity datasets for prediction lengths of 24, 48, and 96.

On the Metr-la dataset, TS-former achieves the best results across all metrics and prediction lengths,
demonstrating its ability to effectively capture complex temporal dependencies. For example, at a
prediction length of 24, our TS-former achieves an R2 of 0.620 and RSE of 0.655, outperforming
both SparseTSF and SAMformer. On the Electricity dataset, SparseTSF achieves slightly better
performance in some cases, such as an R2 of 0.991 and RSE of 0.167 at a prediction length of 24.
However, TS-former remains competitive, delivering consistent and robust results across different
prediction lengths. These results highlight the effectiveness of TS-LIF in SparseTSF* and the overall
robustness of TS-former in time series forecasting tasks.

A.7 COMPARISON OF TS-LIF WITH OTHER LIF NEURONS

Table 8 compares the performance of our TS-LIF with TC-LIF, LM-H, and CLIF in the GRU back-
bone on the Metr-la and Electricity datasets for prediction lengths of 6, 24, and 96. TS-LIF con-
sistently outperforms the baseline methods across all metrics and prediction lengths. For example,
on the Metr-la dataset, TS-LIF achieves the highest R2 of 0.848 and the lowest RSE of 0.412 at a
prediction length of 6. Similarly, on the Electricity dataset, TS-LIF achieves an R2 of 0.991 and
RSE of 0.216 at the same prediction length, demonstrating its robustness and effectiveness in mod-
eling temporal dependencies. These results highlight the superiority of TS-LIF over existing LIF
structures, making it a strong choice for time series forecasting tasks.

A.8 ROBUSTNESS ANALYSIS ON THE METR-LA DATASET

To further verify the robustness of the proposed TS-LIF model, we evaluated its performance on the
Metr-la dataset under different ratios of missing values in the historical inputs, comparing it to the
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Table 8: Performance of our TS-LIF with other LIF neurons (TC-LIF, LM-H, and CLIF) in the GRU
backbone. Bold numbers represent the best outcomes.

Datasets Metr-la Electricity

Lengths 6 24 96 6 24 96

Metrics R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓
TC-LIF 0.828 0.453 0.594 0.673 0.259 0.956 0.978 0.263 0.976 0.257 0.941 0.503
LM-H 0.812 0.464 0.570 0.719 0.246 0.973 0.971 0.269 0.969 0.280 0.936 0.512
CLIF 0.837 0.429 0.606 0.667 0.271 0.930 0.973 0.259 0.972 0.276 0.954 0.376

TS-LIF 0.848 0.412 0.618 0.651 0.329 0.853 0.991 0.216 0.981 0.240 0.976 0.271

vanilla LIF-based models. The models were assessed under missing data ratios of 10%, 20%, 40%,
60%, and 80%. The results are presented in Table 9.

Table 9: Experimental performance of the TS-LIF model compared to the vanilla LIF on the Metr-la
dataset, evaluated under different ratios of missing values in the historical inputs. Model * indicates
a backbone model with a prediction length of *, and Transformer 6 represents the Transformer
architecture with a prediction length of 6.

Missing Ratio 10% 20% 40% 60% 80%

Metric R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓

Transformer 6
iSpikformer 0.815 0.479 0.813 0.486 0.809 0.488 0.804 0.492 0.802 0.496
TS-former 0.843 0.419 0.842 0.421 0.838 0.430 0.835 0.436 0.831 0.440

Promotion 3.43% 14.3% 3.56% 15.4% 3.58% 13.4% 3.86% 12.8% 3.61% 12.7%

Transformer 96
iSpikformer 0.270 0.915 0.254 0.926 0.230 0.935 0.204 0.948 0.194 0.959
TS-former 0.277 0.907 0.263 0.911 0.238 0.92 7 0.212 0.936 0.205 0.945

Promotion 2.59% 0.88% 3.54% 1.65% 3.47% 0.86% 3.92% 1.28% 5.67% 1.48%

GRU 6
Spike-GRU 0.830 0.429 0.819 0.440 0.771 0.497 0.746 0.522 0.743 0.530
TS-GRU 0.843 0.417 0.839 0.414 0.834 0.425 0.823 0.435 0.792 0.473

Promotion 1.50% 2.40% 2.50% 5.90% 8.10% 16.9% 10.3% 20.0% 6.50% 12.1%

GRU 96
Spike-GRU 0.243 0.924 0.240 0.919 0.213 0.932 0.191 0.944 0.171 0.970
TS-GRU 0.342 0.857 0.341 0.860 0.338 0.863 0.319 0.869 0.294 0.878

Promotion 40.7% 7.80% 42.0% 6.86% 58.7% 7.99% 67.0% 8.63% 71.9% 10.4%

TCN 6
Spike-TCN 0.774 0.509 0.765 0.521 0.757 0.549 0.742 0.570 0.731 0.596
TS-TCN 0.792 0.469 0.781 0.493 0.773 0.512 0.756 0.538 0.744 0.562

Promotion 2.33% 8.53% 2.12% 5.84% 2.11% 7.23% 1.89% 5.94% 1.78% 6.05%

TCN 96
Spike-TCN 0.315 0.884 0.307 0.914 0.248 0.936 0.214 0.973 0.202 0.996
TS-TCN 0.323 0.870 0.319 0.883 0.276 0.914 0.256 0.925 0.228 0.970

Promotion 2.54% 1.61% 3.91% 3.52% 11.3% 2.41% 19.6% 5.19% 12.9% 2.68%

A.9 STANDARD DEVIATION ANALYSIS

Table 10 shows the standard deviation of R2 and RSE metrics over three runs with different random
seeds for TS-GRU and TS-former on the Metr-la and Electricity datasets, across prediction lengths
of 6, 24, 48, and 96. Both models exhibit low standard deviations, demonstrating their stability and
robustness. These results confirm the reliability of TS-GRU and TS-former under varying random
seeds.

A.10 AVERAGE POWER SPECTRUM ANALYSIS

To gain a deeper understanding of how TS-LIF processes temporal features, we analyze the average
power spectrum of dendritic and somatic voltages after the first encoder layer of TS-former. Fig-
ure 7 illustrates the power distribution of voltage signals from dendrites and soma across different
frequency ranges.
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Table 10: The standard deviation of 3 runs with different random seeds with our TS-former and
TS-GRU on Metr-la and Electricity datasets.

Datasets Metr-la Electricity

Lengths 6 24 48 96 6 24 48 96

Metrics R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓ R2↑ RSE↓
TS-GRU (ours) .002 .005 .004 .006 .002 .011 .004 .009 .001 .002 .001 .005 .002 .004 .001 .008

TS-former (ours) .001 .008 .002 .006 .005 .013 .002 .010 .001 .003 .001 .003 .001 .005 .001 .007

The analysis reveals distinct frequency response characteristics between dendritic and somatic com-
partments. These different roles allow TS-LIF to encode diverse temporal features effectively, con-
tributing to its superior performance on time series forecasting tasks.

Figure 7: Average power spectrum analysis of dendritic and somatic voltages. The figure illustrates
the power distribution of voltage signals from dendrites and soma across different frequency ranges,
providing insights into neural signal processing mechanisms.

A.11 EVALUATING LONG-TERM DEPENDENCY CAPTURE WITH DELAYED SPIKING XOR
PROBLEM

To further evaluate the ability of spiking neuron models to capture long-term dependencies, we
conducted experiments using the delayed spiking XOR problem. This task tests the model’s capacity
to retain and process information over extended periods. The task involves three stages: an initial
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spike input, a delay period with noisy spikes, and a second spike input. The model computes an
XOR operation between the first and final inputs based on their firing rates.

Our experimental setup follows the parameters described in (Zheng et al., 2024). Specifically, we
employed a two-layer MLP with only 20 hidden neurons, where the input feature size was set to 20.
The results, measuring prediction accuracy under different delay timesteps and activation functions
(ReLU, LIF, and TS-LIF), are summarized in Table 11.

Table 11: Prediction accuracy of the delayed spiking XOR problem under different delay timesteps
and activation functions.

Delay timesteps ReLU LIF TS-LIF

10 0.5 0.748 0.994
20 0.5 0.504 0.977
30 0.5 0.504 0.791
40 0.5 0.500 0.585
50 0.5 0.500 0.585

The results demonstrate that TS-LIF significantly outperforms both ReLU and standard LIF across
all tested delay timesteps, particularly excelling at shorter and moderate delays. While the perfor-
mance of LIF degrades as delay increases, TS-LIF retains higher accuracy, showcasing its enhanced
capability for capturing long-term dependencies. This improvement can be attributed to the distinct
processing mechanisms of dendritic and somatic compartments, which allow TS-LIF to maintain a
more robust temporal memory compared to traditional spiking and non-spiking activation functions.

Figure 8: An illustration of our proposed TS-LIF based spiking structure in three models (TCN,
RNN and Transformer).

A.12 TEMPORAL ALIGNMENT AND SPIKE ENCODER

To utilize the intrinsic nature of SNN to its best, it’s crucial to align the temporal dimension between
time-series data and SNNs. Our central concept is to incorporate relevant finer information of the
spikes within the time-series data at each time step. Specifically, we divide a time step ∆T of the
time series into Ts segments and each of them allows a firing event for neurons whose membrane
potentials surpass the threshold, i.e., ∆T = Ts∆t.

This equation bridges between a time-series time step ∆T and an SNN time step ∆t. As a result,
the independent variable t in time-series (X (t)) and in SNN (U(t), I(t), H(t), S(t)) are now sharing
the same meaning. To this end, the spiking encoder, responsible for generating the first spike trains
based on the floating-point inputs, needs to calculate Ts × T × C possible spike events. The most
straightforward non-parametric approach is to consider each data point in the input time series as the
current value and replicate it Ts times. However, this approach can disrupt the continuous nature of
the underlying X (t) hypothesis. Therefore, we seek to use parametric spike encoding techniques.
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Given the historical observed time-series X ∈ RT×C , we feed it into a convolutional layer followed
by batch normalization and generate the spikes as:

S = SNN (BN (Conv (X))) . (23)

Where SNN is the TS-LIF neuron, by passing through the convolutional layer, the dimension of the
spike train S is expanded to Ts × T × C. Spikes at every SNN time step are generated by pairing
the data with different convolutional kernels.

The convolutional spike encoder capture internal temporal information of the input data, i.e., tempo-
ral changes and shapes, respectively, contributing to the representation of the dynamic nature of the
information over time and catering to the following spiking layers for event-driven modeling. Also
the pipeline of spiking based TCN, RNN-based models and Transformer strcuture are show in the

A.13 LIMITATIONS AND FUTURE WORK

Limitations. In multivariate time series forecasting, modeling the correlations between variables is
crucial for improving prediction accuracy. Current SNN-based models for time series forecasting
primarily focus on temporal modeling and lack explicit mechanisms for capturing inter-variable
correlations. For instance, explicitly computing cross-variable correlations, as shown in works like
Ilbert et al. (2024a) and Zhang & Yan (2023), can effectively model multivariate relationships. We
intend to explore how SNN filtering mechanisms can efficiently model cross-variable relationships
to further enhance predictive performance.

Future Work. Future research directions include: (1) designing an efficient and effective SNN
mechanism for capturing cross-variable correlations in multivariate time series, and (2) developing
more generalized SNN structures for comprehensive time series analysis tasks, such as anomaly
detection, time series generation, and classification.
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