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A APPENDIX

A.1 EXPERIMENT SETTINGS FOR MAIN RESULTS

In this section, we outline the experimental setup used to evaluate the performance of the proposed
TD-LIF model. We conducted experiments on several benchmark time series datasets, including
Metr-LA (Li et al., 2017), which records average traffic speed on highways in Los Angeles County;
Pems-Bay (Li et al., 2017), capturing traffic speed data in the Bay Area; Electricity (Lai et al.,
2018), which tracks hourly electricity consumption in kWh; and Solar (Lai et al., 2018), detailing
solar power production. Preprocessing steps were applied to ensure consistency across datasets,
standardizing input dimensions, sampling rates, and data normalization.

The TS-LIF model framework was implemented in line with the approach in Lv et al. (2024), in-
corporating CNN-based TCNs (Bai et al., 2018), RNN-based GRUs (Cho, 2014), and Transformer-
based models such as Autoformer (Wu et al., 2021) and iTransformer (Liu et al., 2024). As for the
SNN-based structure, we introduce the TCN, RNN, GRUs, and Transformer models of the SNN
format from Lv et al. (2024). Hyperparameters, including learning rate, timestep intervals, and
feature-mixing weights, were optimized through cross-validation. We employ two statistical met-
rics: the Root Relative Squared Error (RSE) and the coefficient of determination (R2) followed by
the Lv et al. (2024) settings. Detailed descriptions of the experimental settings and hyperparameter
configurations are provided in the appendix.

A.2 DATASET AND METRIC DETAILS

Datasets. The details of the datasets used in the main experiment are shown in Table 3. In the
experimental partitioning of datasets Metr-la and Pems-bay, we adopted a train-validation-test ratio
of 0.7, 0.2, and 0.1, respectively, while for datasets Solar and Electricity, we used ratios of 0.6, 0.2,
and 0.2. The settings for history and prediction lengths in the experiments followed those in the
paper by Lv et al. (2024), except that for the history length in datasets Metr-la and Pems-bay, we
added a setting of 168 to further improve experimental performance.

Table 3: Properties of the datasets in experiments
DATASET Dimension Domain Freq Samples Context Length Pred Length
Metr-la 207 R+ 30-min 34,272 {12, 168} {6, 24, 48, 96}
Pems-bay 325 R+ 30-min 52,116 {12, 168} {6, 24, 48, 96}
Solar 137 R+ Hourly 52,560 168 {6, 24, 48, 96}
Electricity 321 R+ Hourly 26,304 168 {6, 24, 48, 96}

Metrics.To comprehensively evaluate our model’s performance, we employ two statistical metrics:
the Root Relative Squared Error (RSE) and the coefficient of determination (R2). The RSE mea-
sures the relative discrepancy between the predicted and actual values, while the R2 indicates the
proportion of variance in the dependent variable that is predictable from the independent variables.
These metrics are calculated as follows:

RSE =

vuut
PM

m=1 ||Y
m � Ŷm||2
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m=1 ||Y

m � Ȳ||2
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1
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,

(22)

where M denotes the number of samples in the test set, C represents the number of channels or
variables, and L is the prediction horizon. The true values for the m-th sample are denoted by Ym,
and their average over all samples is Ȳ. Specifically, Y m

c,l represents the l-th future value of the c-th
variable for the m-th sample, with its mean across all samples given by Ȳc,l. The predicted values
corresponding to these true values are denoted by Ŷm and Ŷ m

c,l , respectively.
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A.3 IMPLEMENTATION DETAILS

In this section, we summarize the detailed experiment setup of our TS-LIF. Table 4 and 5 show the
hyperparameters of our overall structure in three types of backbones (TCN, GRU, Transformer). As
for the timesteps in the SNN structures, we align them with the history length in each setting. The
threshold of the TS-LIF is set to 1.0.

Table 4: Hyperparameters of different backbones (TCN, GRU, Transformer) used for each dataset
Datesets TCN Layers TCN Kernels GRU Layers Transformer Layers Attention Heads Attention Dim

Metr-la 3 3 1 2 8 256
Pems-bay 3 16 1 2 8 512
Solar 3 16 1 2 8 512
Electricity 3 3 1 2 8 256

Table 5: Training details of different backbones (TCN, GRU, Transformer) used for each dataset
Datesets TCN Hidden TCN Dilation GRU Hidden Transformer d ff Learning Rate Batch Size

Metr-la 64 2 128 1024 {.0001, .0005} {32, 64 }

Pems-bay 64 2 128 2048 {.0001, .0005} {32, 64 }

Solar 64 2 128 2048 .0001 64
Electricity 64 2 128 1024 .0001 64

A.4 EXPERIMENT SETTINGS FOR TEMPORAL ANALYSIS

The injected current, I(t), consists of two sinusoidal components: a low-frequency component,
Ilow freq, with an amplitude of 3 and a frequency of 0.5 Hz, and a high-frequency component, Ihigh freq,
with an amplitude of 5 and a frequency of 4 Hz. This combination represents a complex input
environment with both slow and rapid variations, simulating mixed-frequency stimuli.

For the TCLIF model, we adopted parameters ↵1 = ↵2 = 1, �1 = �0.5, and �2 = 0.5, as suggested
in Zhang et al. (2024a). In contrast, the TS-LIF model was set with ↵1 = 0.95, ↵2 = 0.05, �1 = 0,
and �2 = �0.9, which corresponds to the parameter settings used in the frequency response analysis
in the previous subsection. These values were selected to facilitate low-pass filtering in the dendritic
compartment (vd[t]) and high-pass filtering in the somatic compartment (vs[t]).

A.5 THEORETICAL ENERGY CONSUMPTION CALCULATION

The theoretical energy consumption for each layer during inference is determined based on the
operations performed by spiking neural networks (SNNs) and artificial neural networks (ANNs)
(Yao et al., 2023).

For SNNs, the energy required by layer l is calculated as:

Energy(l) = EAC ⇥ SOPs(l),

where SOPs(l) is the number of spike-based accumulate (AC) operations, and EAC represents the
energy per AC operation.

For ANNs, the energy consumption for layer b is:

Energy(b) = EMAC ⇥ FLOPs(b),

where FLOPs(b) refers to the number of floating-point multiply-and-accumulate (MAC) opera-
tions, and EMAC is the energy per MAC operation. The constants are set as EMAC = 4.6 pJ and
EAC = 0.9 pJ, assuming operations are performed on 45nm hardware.

For SNNs, the number of synaptic operations in layer l is further estimated as:

SOPs(l) = T ⇥ � ⇥ FLOPs(l),

where T is the number of timesteps required in the simulation, and � is the firing rate of the input
spike train for layer l.
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Table 6: Energy consumption per sample of the Electricity dataset during inference. ”OPs” includes
SOPs for SNNs and FLOPs for ANNs. ”SOPs” refers to synaptic operations in SNNs, and ”FLOPs”
denotes floating-point operations in ANNs.

Model Param(M) OPs (G) Energy (mJ) Energy Reduction Train/Infer Time (s) R
2

TCN 0.460 0.14 0.64 - 21.34/11.47 .973
Spike-TCN 0.461 0.15 0.23 63.60% # 306.91/27.85 .963
TS-TCN 0.465 0.19 0.25 60.93% # 308.26/28.14 .971

GRU 1.288 1.32 6.07 - 37.73/7.35 .972
Spike-GRU 1.289 1.63 1.51 75.05% # 235.46/10.05 .964
TS-GRU 1.291 1.67 1.58 73.80% # 246.23/9.78 .981

iTransformer 1.634 2.05 9.47 - 7.24/6.38 .977
iSpikformer 1.634 3.55 3.19 66.30% # 49.84/8.69 .974
TS-former 1.640 3.59 3.22 65.99% # 50.36/8.72 .985

Table 7: Performance of our TS-former with SparseTSF and SAMformer of 3 prediction lengths
(24, 48, 96) on the Metr-la and Electricity datasets. SparseTSF*: replace the ReLU function of
SparseTSF with our TS-LIF. Bold numbers represent the best outcomes.

Datasets Metr-la Electricity
Lengths 24 48 96 24 48 96

Metrics R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE#

SparseTSF 0.576 0.681 0.427 0.792 0.253 0.916 0.991 0.167 0.986 0.195 0.982 0.232

SparseTSF* 0.580 0.692 0.426 0.801 0.247 0.924 0.990 0.177 0.985 0.201 0.982 0.234
SAMformer 0.549 0.739 0.401 0.863 0.219 0.965 0.983 0.218 0.980 0.239 0.978 0.257
TS-former 0.620 0.655 0.445 0.763 0.283 0.874 0.985 0.215 0.981 0.234 0.977 0.261

A.6 PERFORMANCE COMPARISON ON SOTA TIME SERIES FORECASTING METHODS

Table 7 compares the performance of our TS-former with SparseTSF (Lin et al., 2024), SparseTSF*
(where ReLU is replaced by TS-LIF), and SAMformer (Ilbert et al., 2024a) on the Metr-la and
Electricity datasets for prediction lengths of 24, 48, and 96.

On the Metr-la dataset, TS-former achieves the best results across all metrics and prediction lengths,
demonstrating its ability to effectively capture complex temporal dependencies. For example, at a
prediction length of 24, our TS-former achieves an R2 of 0.620 and RSE of 0.655, outperforming
both SparseTSF and SAMformer. On the Electricity dataset, SparseTSF achieves slightly better
performance in some cases, such as an R2 of 0.991 and RSE of 0.167 at a prediction length of 24.
However, TS-former remains competitive, delivering consistent and robust results across different
prediction lengths. These results highlight the effectiveness of TS-LIF in SparseTSF* and the overall
robustness of TS-former in time series forecasting tasks.

A.7 COMPARISON OF TS-LIF WITH OTHER LIF NEURONS

Table 8 compares the performance of our TS-LIF with TC-LIF, LM-H, and CLIF in the GRU back-
bone on the Metr-la and Electricity datasets for prediction lengths of 6, 24, and 96. TS-LIF con-
sistently outperforms the baseline methods across all metrics and prediction lengths. For example,
on the Metr-la dataset, TS-LIF achieves the highest R2 of 0.848 and the lowest RSE of 0.412 at a
prediction length of 6. Similarly, on the Electricity dataset, TS-LIF achieves an R2 of 0.991 and
RSE of 0.216 at the same prediction length, demonstrating its robustness and effectiveness in mod-
eling temporal dependencies. These results highlight the superiority of TS-LIF over existing LIF
structures, making it a strong choice for time series forecasting tasks.

A.8 ROBUSTNESS ANALYSIS ON THE METR-LA DATASET

To further verify the robustness of the proposed TS-LIF model, we evaluated its performance on the
Metr-la dataset under different ratios of missing values in the historical inputs, comparing it to the
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Table 8: Performance of our TS-LIF with other LIF neurons (TC-LIF, LM-H, and CLIF) in the GRU
backbone. Bold numbers represent the best outcomes.

Datasets Metr-la Electricity
Lengths 6 24 96 6 24 96

Metrics R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE#

TC-LIF 0.828 0.453 0.594 0.673 0.259 0.956 0.978 0.263 0.976 0.257 0.941 0.503
LM-H 0.812 0.464 0.570 0.719 0.246 0.973 0.971 0.269 0.969 0.280 0.936 0.512
CLIF 0.837 0.429 0.606 0.667 0.271 0.930 0.973 0.259 0.972 0.276 0.954 0.376

TS-LIF 0.848 0.412 0.618 0.651 0.329 0.853 0.991 0.216 0.981 0.240 0.976 0.271

vanilla LIF-based models. The models were assessed under missing data ratios of 10%, 20%, 40%,
60%, and 80%. The results are presented in Table 9.

Table 9: Experimental performance of the TS-LIF model compared to the vanilla LIF on the Metr-la
dataset, evaluated under different ratios of missing values in the historical inputs. Model * indicates
a backbone model with a prediction length of *, and Transformer 6 represents the Transformer
architecture with a prediction length of 6.

Missing Ratio 10% 20% 40% 60% 80%

Metric R2" RSE# R2" RSE# R2" RSE# R2" RSE# R2" RSE#

Transformer 6
iSpikformer 0.815 0.479 0.813 0.486 0.809 0.488 0.804 0.492 0.802 0.496
TS-former 0.843 0.419 0.842 0.421 0.838 0.430 0.835 0.436 0.831 0.440

Promotion 3.43% 14.3% 3.56% 15.4% 3.58% 13.4% 3.86% 12.8% 3.61% 12.7%

Transformer 96
iSpikformer 0.270 0.915 0.254 0.926 0.230 0.935 0.204 0.948 0.194 0.959
TS-former 0.277 0.907 0.263 0.911 0.238 0.92 7 0.212 0.936 0.205 0.945

Promotion 2.59% 0.88% 3.54% 1.65% 3.47% 0.86% 3.92% 1.28% 5.67% 1.48%

GRU 6
Spike-GRU 0.830 0.429 0.819 0.440 0.771 0.497 0.746 0.522 0.743 0.530
TS-GRU 0.843 0.417 0.839 0.414 0.834 0.425 0.823 0.435 0.792 0.473

Promotion 1.50% 2.40% 2.50% 5.90% 8.10% 16.9% 10.3% 20.0% 6.50% 12.1%

GRU 96
Spike-GRU 0.243 0.924 0.240 0.919 0.213 0.932 0.191 0.944 0.171 0.970
TS-GRU 0.342 0.857 0.341 0.860 0.338 0.863 0.319 0.869 0.294 0.878

Promotion 40.7% 7.80% 42.0% 6.86% 58.7% 7.99% 67.0% 8.63% 71.9% 10.4%

TCN 6
Spike-TCN 0.774 0.509 0.765 0.521 0.757 0.549 0.742 0.570 0.731 0.596
TS-TCN 0.792 0.469 0.781 0.493 0.773 0.512 0.756 0.538 0.744 0.562

Promotion 2.33% 8.53% 2.12% 5.84% 2.11% 7.23% 1.89% 5.94% 1.78% 6.05%

A.9 STANDARD DEVIATION ANALYSIS

Table 10 shows the standard deviation of R2 and RSE metrics over three runs with different random
seeds for TS-GRU and TS-former on the Metr-la and Electricity datasets, across prediction lengths
of 6, 24, 48, and 96. Both models exhibit low standard deviations, demonstrating their stability and
robustness. These results confirm the reliability of TS-GRU and TS-former under varying random
seeds.

A.10 AVERAGE POWER SPECTRUM ANALYSIS

To gain a deeper understanding of how TS-LIF processes temporal features, we analyze the average
power spectrum of dendritic and somatic voltages after the first encoder layer of TS-former. Fig-
ure 5 illustrates the power distribution of voltage signals from dendrites and soma across different
frequency ranges.

The analysis reveals distinct frequency response characteristics between dendritic and somatic com-
partments. These different roles allow TS-LIF to encode diverse temporal features effectively, con-
tributing to its superior performance on time series forecasting tasks.
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Table 10: The standard deviation of 3 runs with different random seeds with our TS-former and
TS-GRU on Metr-la and Electricity datasets.

Datasets Metr-la Electricity
Lengths 6 24 48 96 6 24 48 96

Metrics R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE# R2
" RSE# R2

" RSE#

TS-GRU (ours) .002 .005 .004 .006 .002 .011 .004 .009 .001 .002 .001 .005 .002 .004 .001 .008
TS-former (ours) .001 .008 .002 .006 .005 .013 .002 .010 .001 .003 .001 .003 .001 .005 .001 .007

Figure 5: Average power spectrum analysis of dendritic and somatic voltages. The figure illustrates
the power distribution of voltage signals from dendrites and soma across different frequency ranges,
providing insights into neural signal processing mechanisms.

A.11 EVALUATING LONG-TERM DEPENDENCY CAPTURE WITH DELAYED SPIKING XOR
PROBLEM

To further evaluate the ability of spiking neuron models to capture long-term dependencies, we
conducted experiments using the delayed spiking XOR problem. This task tests the model’s capacity
to retain and process information over extended periods. The task involves three stages: an initial
spike input, a delay period with noisy spikes, and a second spike input. The model computes an
XOR operation between the first and final inputs based on their firing rates.
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Our experimental setup follows the parameters described in (Zheng et al., 2024). Specifically, we
employed a two-layer MLP with only 20 hidden neurons, where the input feature size was set to 20.
The results, measuring prediction accuracy under different delay timesteps and activation functions
(ReLU, LIF, and TS-LIF), are summarized in Table 11.

Table 11: Prediction accuracy of the delayed spiking XOR problem under different delay timesteps
and activation functions.

Delay timesteps ReLU LIF TS-LIF

10 0.5 0.748 0.994
20 0.5 0.504 0.977
30 0.5 0.504 0.791
40 0.5 0.500 0.585
50 0.5 0.500 0.585

The results demonstrate that TS-LIF significantly outperforms both ReLU and standard LIF across
all tested delay timesteps, particularly excelling at shorter and moderate delays. While the perfor-
mance of LIF degrades as delay increases, TS-LIF retains higher accuracy, showcasing its enhanced
capability for capturing long-term dependencies. This improvement can be attributed to the distinct
processing mechanisms of dendritic and somatic compartments, which allow TS-LIF to maintain a
more robust temporal memory compared to traditional spiking and non-spiking activation functions.

A.12 LIMITATIONS AND FUTURE WORK

Limitations. In multivariate time series forecasting, modeling the correlations between variables is
crucial for improving prediction accuracy. Current SNN-based models for time series forecasting
primarily focus on temporal modeling and lack explicit mechanisms for capturing inter-variable
correlations. For instance, explicitly computing cross-variable correlations, as shown in works like
Ilbert et al. (2024a) and Zhang & Yan (2023), can effectively model multivariate relationships. We
intend to explore how SNN filtering mechanisms can efficiently model cross-variable relationships
to further enhance predictive performance.

Future Work. Future research directions include: (1) designing an efficient and effective SNN
mechanism for capturing cross-variable correlations in multivariate time series, and (2) developing
more generalized SNN structures for comprehensive time series analysis tasks, such as anomaly
detection, time series generation, and classification.
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