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Efficient Single Image Super-Resolution with Entropy Attention
and Receptive Field Augmentation

Anonymous Authors

ABSTRACT
Transformer-based deep models for single image super-resolution
(SISR) have greatly improved the performance of lightweight SISR
tasks in recent years. However, they often suffer from heavy compu-
tational burden and slow inference due to the complex calculation of
multi-head self-attention (MSA), seriously hindering their practical
application and deployment. In this work, we present an efficient SR
model to mitigate the dilemma betweenmodel efficiency and SR per-
formance, which is dubbed Entropy Attention and Receptive Field
Augmentation network (EARFA), and composed of a novel entropy
attention (EA) and a shifting large kernel attention (SLKA). From
the perspective of information theory, EA increases the entropy
of intermediate features conditioned on a Gaussian distribution,
providing more informative input for subsequent reasoning. On the
other hand, SLKA extends the receptive field of SR models with the
assistance of channel shifting, which also favors to boost the diver-
sity of hierarchical features. Since the implementation of EA and
SLKA does not involve complex computations (such as extensive
matrix multiplications), the proposed method can achieve faster
nonlinear inference than Transformer-based SR models while main-
taining better SR performance. Extensive experiments show that
the proposed model can significantly reduce the delay of model
inference while achieving the SR performance comparable with
other advanced models.

CCS CONCEPTS
• Computing methodologies; • Reconstruction;

KEYWORDS
Deep learning, Super-resolution, Entropy attention, Shifting large
kernel attention

1 INTRODUCTION
Efficient single image super-resolution (ESISR) stands as a crucial
task in low-level computer vision community that aims at striking a
good balance between SR performance and model efficiency, which
is different from high-fidelity SISR methods [1–3]. Therefore, ESISR
methods are typically more compatible with application scenarios
with constrained resources, which is one of the reasons why it has
become a research hotspot in the field.
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Figure 1: Comparison of the tradeoff between SR results and
model efficiency onManga109 [4]with SR×4. The diameter of
each circle denotes the Multi-Adds [5] of the corresponding
model. Our EARFA achieves the best SR performance while
keeping fast reasoning speed.

Convolutional neural network (CNN)-based models are the most
common methods for ESISR [7–11]. This kind of methods is pri-
marily implemented by conventional convolutional operations, and
generally works with relatively high inference efficiency. However,
due to limited receptive field and inefficient feature utilization, the
performance of such models is usually unsatisfactory. Another type
of models are built upon more advanced Transformer architec-
tures [12] and greatly push the performance margin of ESISR, such
as SwinIR [13] and SRFormer [14]. A remarkable feature of these
methods is that they can achieve better SR results with fewer model
parameters. But the multi-head self-attention (MSA) inherent in
the Transformer architecture involves a large number of complex
calculations, essentially leading to inefficient SR inference.

Subsequently, researchers began to seek a better balance between
model performance and reasoning efficiency through improving
the representational capacity of CNN-based models and accelerat-
ing mapping inference of Transformer-based models. For example,
most earlier CNN-based models focused on designing more com-
pact network architectures to increase model representation and
decrease model parameters, such as global residual structure [8],
feature pyramid network [15], recursive networks based on parame-
ter sharing [16, 17], information distillation network [18], persistent
memory network [19] etc. Another way to improve the represen-
tational capacity of SISR models is to improve feature utilization
through attention mechanisms, including channel attention-based
RCAN [20], spatial attention-based CSFM [21] and SAN [22], layer-
wsie attention-based HAN [23], attention cube-based A-CubeNet

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The overall structure of our EARFA. DAB constitutes the basic module for nonlinear inference, and LKAB and EAB
are the building components of DAB that integrate SLKA and EA, respectively.

Split

Input
1×1

DW 5×5
Output1×1

H×W×C

H×W×C

H×W×C

H×W×CH×W×2C

Figure 3: The architecture of SGFN. 1 × 1 denotes a convo-
lutional layer with a kernel size of 1×1, and Split refers to
splitting input features into two parts along the channel di-
mension, while DW5 × 5 denotes a depth-wise convolution
with a 5×5 kernel size.

1×1

Entropy

1×1
Sigmoid

Input Output

H×W×C H×W×C

1×1×C

1×1×C
H×W×C

Dec ⋅ Inc ⋅

Figure 4: The network architecture of EA, where 1 × 1 denotes
the convolutional layer with a kernel size of 1×1. Entropy
signifies the computation of the differential entropy [6] for
channel-wise features, and Sigmoid denotes the sigmoid func-
tion for weight normalization.

[24], nonlocal attention-based NLSN [25], as well as directional vari-
ance attention-based DiVANet [26]. These variant models based
on attention mechanisms can improve SR performance to a certain
extent, but they are often accompanied by an increase in compu-
tational complexity. Besides, most of these models show evident
performance improvement for large-scale models, but their effec-
tiveness for ESISR tasks is not significant. For Transformer-based

models, Zhang et al. [27] employed shift convolution (shift-conv)
to effectively extract the image local structural information while
maintaining the same level of complexity as 1×1 convolution. Zhou
et al. [14] proposed the permuted self-attention (PSA) that strikes
a proper balance between channel and spatial information. Al-
though these methods appropriately shrunk the parameter scale of
Transformer-based SISR models, the problem of inference efficiency
still looms prominent.

In terms of SISR tasks, an important reason why Transformer-
based models typically perform better than CNN-based models is
that MSA achieves non-local information perception and expands
the effective receptive field of the models at the cost of higher com-
putational overhead. Therefore, in this work, we propose a novel
Entropy Attention and Receptive Field Augmentation (EARFA)
model for ESISR from the perspective of reducing the computa-
tional overhead and increasing the effective receptive field of the
model. It consists of an Entropy Attention (EA) mechanism for
efficient utilization of intermediate features and a Shifting Large
Kernel Attention (SLKA) for augmenting effective receptive field
of the model and diversity of hierarchical features. EA is introduced
into the model to elevate the entropy of intermediate features con-
ditioned on a Gaussian distribution, and thus increase the input
information for subsequent inference. Specifically, it computes the
differential entropy [6] for channel-wise features, which is used to
measure the information amount in randomly distributed data. And
the attention weights are obtained by driving the features approach-
ing to a Gaussian distribution. SLKA is an improved version of
lager kernel attention (LKA) [28] aimed at further augmenting the
effective receptive field of the model with negligible overhead. This
is implemented by simply shifting partial channels of a intermediate
feature [29]. It is worth noting that both our EA and SLKA do not
involve complex calculations, which avoids significant delays in the
inference process of the proposed EARFA model. Fig.1 illustrates
the comparison of the tradeoff between model performance and
efficiency. As can be seen, our EARFA model achieves better SR
results with less inference delay compared to Transformer-based
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SwinIR [13] and SRFormer [14], despite maintaining slightly more
model parameters.

In summary, the primary contributions of this work are three-
fold as follows:

• From the perspective of information theory, we introduce
a novel EARFA model for ESISR tasks. It achieves superior
SR performance to most existing models and boasts faster
inference than advanced Transformer-based models.

• A new attention mechanism (i.e., EA) based on differential
entropy has been crafted as a new criterion for evaluating
the significance of channel-wise features. Unlike traditional
attention mechanisms modeled on biological attention mech-
anisms in neuroscience, our EA is motivated by information
theory to improve the information degree of hierarchical fea-
tures via increasing the differential entropy of intermediate
features.

• We propose to augment the effective receptive field of the
model with a simple yet efficient variant of LKA [28], which
replaces the point-wise convolution with a shifting convo-
lution. The substitution can not only eliminate the compu-
tational overhead of the point-level convolution, but also
increase the feature diversity and model receptive field.

2 RELATEDWORK
2.1 Efficient SISR based on Deep Learning
Initially, the first wave of efficient SISR methods [7, 8, 30] based
on deep learning predominantly utilized interpolation algorithms
for preprocessing. They employed these algorithms to reconstruct
low-resolution images into high-resolution ones before further
enhancing them using deep learning models to achieve the final
result. As the input image size matched the original dimensions,
these methods often incurred higher latency. To mitigate latency
issues, subsequent efficient SISR [9, 20] approaches began directly
feeding low-resolution images into the model, completing image re-
construction at the model’s end to generate high-resolution images.
In recent years, the emergence of Transformer-based efficient SISR
methods has delivered exceptional performance. These models typ-
ically exhibit small parameter size while showcasing remarkable ef-
ficiency. Nonetheless, the self-attention mechanism in Transformer
is computationally complex, which As a result, the latency of this
type of method is high.

Some of the aforementioned methods exhibit inadequate recon-
struction performance, while others suffer from high latency. As a
result, they fail to strike a balance between reconstruction quality
and inference speed, ultimately lacking sufficient efficiency.

2.2 Attention Mechanisms for Efficient SISR
Since attention mechanisms [31] were introduced, they have been
widely adopted across various networks to bolster model perfor-
mance. In the domain of ESISR, early efforts were concentrated
on channel and spatial attentions, which involve manipulating
feature maps through pooling and activation of high-frequency
areas, respectively. Recent advancements have seen LKA [28] and
MSA significantly improving ESISR outcomes. LKA [28] extends a

Figure 5: Pixel distribution of intermediate features. The left
illustrates the pixel distribution of the input feature, while
the right shows the pixel distribution of the features after
adjustment of approaching to the Gaussian distribution.

model’s receptive-field by merging dilated and depth-wise separa-
ble convolutions, minimizing parameter count and computational
load. Whereas MSA is a staple in Transformer architectures, is
celebrated for its broad utility.

ESISR struggles to preserve extensive information for recon-
struction owing to their limited parameter count. Nevertheless, the
conventional attention mechanism has not taken this aspect into
account, resulting in average performance in ESISR.

2.3 Receptive Field Augmentation
Due to the limited depth of ESISR models, the effective receptive
field of these models [7, 32] are typically deficient, leading to a
limited model representational capacity. In order to enhance the
reconstruction performance of ESISR models, it is necessary to offer
the network with a larger receptive field without compromising
the speed of model inference. Expanding the model’s receptive
field commonly involves utilizing convolutional layers with larger
kernels [33], which is a straightforward and efficient approach.
In transformer-based method [13, 14], enlarging the window size
during self-attention calculation within MSA can also increase the
receptive field.

While the aforementioned approaches can enhance the model’s
receptive field, they introduce additional computational complexity
or parameters, rendering them unsuitable for ESISR.

3 METHODOLOGY
In this section, we first introduce the overall structure of the pro-
posed EARFA, and then demonstrate the principles of EA and
SLKA, respectively.

3.1 Overall Architecture
The overall structure of EARFA is shown in Fig. 2, which is mainly
divided into three parts: shallow feature extraction, deep feature ex-
traction and image reconstruction. We first extract shallow features
with a simple 3×3 convolutional layer:

x𝑠 = SF(x), (1)

where x is the input image, and SF(·) represents the shallow feature
extraction performed using the 3×3 convolution. The obtained
shallow feature is denoted as x𝑠 .

Next, we cascade multiple dual-attention blocks (DAB) to form
thewhole nonlinearmapping. As shonw in Fig. 2, each DAB consists
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Figure 6: The network architecture of SLKA. Shifting denotes
shifting convolution with a kernel size of 1×1, and DW5 × 5
represents the depth-wise convolution with a kernel size
of 5×5, and D2W5 × 5 stands for the depth-wise convolution
with a dilation rate of 3 and a kernel size of 5×5.

of two components: a large kernel attention block (LKAB) and an
entropy attention block (EAB). Given a temporary feature x𝑡 , the
mapping process of DAB can be represented as:

x̃𝑡 = SLKA(LayerNorm(x𝑡 )) + x𝑡 ,

x𝑚 = SGFN(LayerNorm(x̃𝑡 )) + x̃𝑡 ,

x̃𝑚 = EA(LayerNorm(x𝑚)) + x𝑚,

x𝑜 = SGFN(LayerNorm(x̃𝑚)) + x̃𝑚

(2)

where LayerNorm(·) denotes the layer normalization, and x̃𝑡 is the
result of our SLKA enhanced via channel shifting, which possesses
augmented receptive field and feature diversity. x̃𝑚 represents the
result of our EA attention that contains more informative channel-
wise features. The spatial-gate feed-forward network (SGFN) [34]
is adopted to aggregate the channel-wise spatial information of
intermediate features that contain augmented receptive field and
differential entropy. The structure of SGFN used in this work is
illustrated in Fig. 3. It is worth noting that for receptive field and
entropy enhancement, SGFN adopts a two-stage mode to boost the
features progressively, as shown in Fig. 2 and Eqn. 2.

In the image reconstruction section, we utilize a convolutional
layer with a kernel size of 3 × 3 followd by a PixelShuffle layer to
recover HR image, which can be represented as:

y = PixelShuffle(Conv3×3 (x𝑑 )), (3)

where x𝑑 denotes the deep feature obtained by the stacked DABs,
and Conv3×3 (·) indicates the convolutional layer with kernel size
of 3 × 3. PixelShuffle(·) is used to upscale the final feature and
shrink the number of feature channels to 3, and y is the HR output.

3.2 Entropy Attention
Traditional channel-wise attention mechanisms utilize pooling to
aggregate information from each channel. The advantage of this
approach is the simple acquisition of weights for each channel-
wise feature, thereby enhancing model efficiency. However, ESISR

models typically maintain a small parameter scale and limited in-
formation capacity. Thus, for ESISR tasks, we aim at measuring
the weight of each feature map with high efficiency while also
providing more information for image reconstruction. To this end,
we compute the information entropy [6] of each feature map as an
alternative to pooling operations. Formally, information entropy [6]
can be computed as:

H(z) = −
∑︁
𝑘

𝑝
(
𝑧𝑘
)
· log

[
𝑝
(
𝑧𝑘
) ]
, (4)

where z represents a set of data following a random discrete distri-
bution, and 𝑝 (𝑧𝑘 ) denote the probability distribution of 𝑧𝑘 , where
𝑧𝑘 is the value in z that actually participates in the calculation.H(z)
stands for the information entropy [6] of dataset z.

However, the calculation of information entropy in Eqn. (4) is
only applicable to data following discrete random distributions, and
cannot be used to compute the information entropy of continuous
random variables. This is the case for intermediate features of deep
neural networks. Therefore, we opt to calculate the differential
entropy [6], which is suitable for data obeying continuous random
distributions. The expression for the differential entropy [6] can be
formulated as:

H(z) = −
∫
𝑧𝑘 ∈Z

𝑝
(
𝑧𝑘
)
· log

[
𝑝
(
𝑧𝑘
) ]
d𝑧𝑘 , (5)

where z represents a set of data following a continuous random
distributionZ, and 𝑝 (·) is the probability density. 𝑧𝑘 is a continuous
variables in z that actually participates in the calculation. H(z) is
the differential entropy [6] of dataset z. Based on the formula for
differential entropy [6], we can calculate it for each channel-wise
feature and design a novel method for feature enhancement with
entropy attention.

However, typical differential entropy involves differentiation
and probability density distribution estimation for continuous data,
which is intractable and time-consuming. This limitation indicates
that the conventional method of calculating differential entropy
is not suitable for scenarios of computing the differential entropy
of hierarchical features in neural networks. Therefore, we turn to
process the features to align them as closely as possible with a
Gaussian distribution. As demonstrated in Fig. 4, the computation
of the differential entropy conditioned on a Gaussian distribution
can be written as:

H(z) = 1
2
ln

(
2𝜋𝜎2

(
z
) )
. (6)

Here, 𝜎 (·) is the standard deviation, and ln(·) signifies the napierian
logarithm, and H(z) represents the differential entropy [6] of the
feature map conditioned on the Gaussian distribution. The calcu-
lation of H(z) is solely dependent on the variance, resulting more
efficient nonlinear inference. As illustrated in Table 4, compared to
traditional methods of computing the differential entropy, the com-
putation manner used in this work introduces almost no inference
delay under the same running environment.

To better approximate a Gaussian distribution, we apply layer
normalization to preprocess the features before EA. Within EA, we
utilize a convolutional layer with a kernel size of 1 × 1 to reduce
the number of feature channels while further refining the features.
As shown in Fig. 5, we visualize the distribution of features before
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Table 1: Ablation investigation of different configurations of EARFA with SR×4. We compared the results of LKA [28] and
SLKA, SE and EA respectively (PSNR (dB)/SSIM).

Model
SLKA EA LKA SE Set5 [35] Set14 [36] BSD100 [37] Urban100 [38] Manga109 [4]

[Ours] [Ours] [28] [39] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EARFA

% % % % 32.17 0.8954 28.64 0.7831 27.61 0.7374 26.17 0.7883 30.64 0.9103

" % % % 32.49 0.8988 28.82 0.7875 27.74 0.7425 26.59 0.8022 31.11 0.9164

% " % % 32.43 0.8978 28.72 0.7844 27.65 0.7388 26.40 0.7934 30.91 0.9134

% " " % 32.56 0.8998 28.84 0.7878 27.75 0.7429 26.64 0.8035 31.23 0.9176

" % % " 32.55 0.8991 28.83 0.7876 27.74 0.7427 26.62 0.8030 31.12 0.9167

" " % % 32.58 0.8995 28.86 0.7879 27.76 0.7431 26.70 0.8044 31.27 0.9177

Table 2: Quantitative comparison for efficient SISR on benchmark datasets (PSNR (dB) / SSIM). MultAdds [5] and Latency are
computed via upscaling an image to 1280×720 resolution on a NVIDIA RTX 4090 GPU. "+" indicates the model is trained on
DF2K dataset. The best and second best results are marked in red and blue, respectively.

Model Annual Scale
Params Multi-Adds Latency Set5 [35] Set14 [36] BSD100 [37] Urban100 [38] Manga109 [4]
(K) (G) (ms) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-baseline [9] CVPRW17

×2

1370 316.3 26.33 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.54 0.9769
CARN [5] ECCV18 1592 222.8 36.98 37.76 0.959 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN [40] ACM’MM19 694 158.8 18.17 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LatticeNet [41] ECCV20 756 169.5 23.04 38.06 0.9607 33.70 0.9187 32.20 0.8999 32.25 0.9288 38.94 0.9774
ESRT [42] CVPRW22 - - OOM - - - - - - - - - -
SwinIR [13] ICCVW21 910 252.9 958.14 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.934 39.12 0.9783

SRFormer [14] ICCV23 853 236.2 1015.23 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785
EARFA Ours 1026 229.0 182.68 38.24 0.9614 33.98 0.9212 32.36 0.9022 32.98 0.9359 39.36 0.9785
EARFA+ Ours 1026 229.0 182.68 38.27 0.9616 34.14 0.9229 32.41 0.9028 33.20 0.9376 39.63 0.9790

EDSR-baseline [9] CVPRW17

×3

1555 160.2 9.58 34.37 0.927 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439
CARN [5] ECCV18 1592 118.8 14.79 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.5 0.944
IMDN [40] ACM’MM19 703 71.5 5.22 34.36 0.927 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LatticeNet [41] ECCV20 765 76.3 8.36 34.40 0.9272 30.32 0.8416 29.10 0.8049 28.19 0.8513 33.63 0.9442
ESRT [42] CVPRW22 770 96.4 OOM 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
SwinIR [13] ICCVW21 918 114.5 389.89 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478

SRFormer [14] ICCV23 861 104.8 224.54 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489
EARFA Ours 1034 102.4 65.40 34.73 0.9297 30.61 0.8471 29.29 0.8103 28.87 0.8663 34.38 0.9494
EARFA+ Ours 1034 102.4 65.40 34.77 0.9302 30.68 0.8486 29.34 0.8114 29.04 0.8695 34.69 0.9507

EDSR-baseline [9] CVPRW17

×4

1518 114 7.98 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067
CARN [5] ECCV18 1592 90.9 11.32 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN [40] ACM’MM19 715 40.9 4.22 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

LatticeNet [41] ECCV20 777 43.6 8.05 32.18 0.8943 28.61 0.7812 27.57 0.7355 26.14 0.7844 30.53 0.9075
ESRT [42] CVPRW22 751 67.7 OOM 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
SwinIR [13] ICCVW21 930 65.2 101.68 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.798 30.92 0.9151

SRFormer [14] ICCV23 873 62.8 112.15 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165
EARFA Ours 1045 58.4 35.40 32.58 0.8995 28.86 0.7879 27.75 0.7431 26.70 0.8044 31.27 0.9177
EARFA+ Ours 1045 58.4 35.40 32.62 0.9003 28.94 0.7898 27.81 0.7444 26.86 0.8081 31.52 0.9197

computing the differential entropy [6] and observe that the features
follow an approximate Gaussian distribution.

As shown in Fig. 4, the computation process of our EA attention
can be formulated as:

y𝑡 = Inc(Sig(Cde(Dec(x𝑡 )))) ⊙ x𝑡 (7)

Where x𝑡 represents the input to EA. Dec(·) denotes the operation
of using a convolutional layer with a kernel size of 1×1 to reduce
the number of channels while refining features, andCde(·) signifies
computing the differential entropy of each feature map. Sig(·) is

the sigmoid function, and Inc(·) stands for restoring the number of
feature channels, and ⊙ indicates element-wise multiplication.

3.3 Shifting Large Kernel Attention
LKA [28] mainly enhances the receptive field of the model by utiliz-
ing dilated convolution and depth-wise convolution, addressing the
limited receptive field issue in ESISR methods and thereby improv-
ing ESISR performance. However, in LKA [28], it is not necessarily
better for the kernel size of depth-wise convolutions and the dila-
tion rate of dilated convolutions to be larger. Therefore, we need to
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Table 3: Quantitative comparison for super lightweight SISR on benchmark datasets (PSNR (dB) / SSIM). MultAdds [5] and
Latency are computed via upscaling an image to 1280×720 resolution on a NVIDIA RTX 4090 GPU. "+" indicates the model is
trained on DF2K dataset. The best and second best results are marked in red and blue, respectively.

Model Annual Scale
Params Multi-Adds Latency Set5 [35] Set14 [36] BSD100 [37] Urban100 [38] Manga109 [4]
(K) (G) (ms) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [7] TPAMI15

×2

57 52.7 6.85 36.66 0.9545 32.42 0.9063 31.36 0.8879 29.50 0.8946 35.60 0.9663
VDSR [8] CVPR16 665 612.6 32.70 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9729
DRRN [17] CVPR17 297 6796 250.28 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.88 0.9749
IDN [18] CVPR18 553 127 16.1 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 38.01 0.9749
PAN [32] ECCVW20 261 70.5 12.76 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273 38.70 0.9773

ShuffleMixer [43] NIPS22 394 91 36.46 38.01 0.9606 33.63 0.9180 32.17 0.8995 31.89 0.9257 38.83 0.9774
SAFMN [10] ICCV23 228 52 15.83 38.00 0.9605 33.54 0.9177 32.16 0.8995 31.84 0.9256 38.71 0.9771
EARFA-light Ours 199 44.05 63.79 38.08 0.9608 33.64 0.9188 32.23 0.9004 32.27 0.9297 38.85 0.9774
EARFA-light+ Ours 199 44.05 63.79 38.05 0.9608 33.65 0.9188 32.23 0.9005 32.28 0.9298 39.10 0.9781
SRCNN [7] TPAMI15

×3

57 52.7 6.85 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989 30.48 0.9117
VDSR [8] CVPR16 665 612.6 32.70 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9310
DRRN [17] CVPR17 297 6796 250.28 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.71 0.9379
IDN [18] CVPR18 553 57 6.5 34.11 0.9253 29.99 0.8354 28.95 0.8013 27.42 0.8359 32.71 0.9381
PAN [32] ECCVW20 261 39.0 7.42 34.40 0.9271 30.36 0.8423 29.11 0.8050 28.11 0.8511 33.61 0.9448

ShuffleMixer [43] NIPS22 415 43 13.00 34.40 0.9272 30.37 0.8423 29.12 0.8051 28.08 0.8498 33.69 0.9448
SAFMN [10] ICCV23 233 23 6.01 34.34 0.9267 30.33 /0.8418 29.08 0.8048 27.95 0.8474 33.52 0.9437
EARFA-light Ours 203 20.03 25.72 34.47 0.9276 30.40 0.8430 29.15 0.8064 28.26 0.8542 33.89 0.9462
EARFA-light+ Ours 203 20.03 25.72 34.48 0.9280 30.44 0.8438 29.16 0.8067 28.29 0.8549 33.94 0.9466
SRCNN [7] TPAMI15

×4

57 52 6.85 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.58 0.8555
VDSR [8] CVPR16 665 612.6 32.70 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRRN [17] CVPR17 297 6796 250.28 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.45 0.8946
IDN [18] CVPR18 553 32.3 3.23 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 29.41 0.8942
PAN [32] ECCVW20 272 28.2 6.63 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854 30.51 0.9095

ShuffleMixer [43] NIPS22 411 28 9.19 32.21 0.8953 28.66 0.7827 27.61 0.7366 26.08 0.7835 30.65 0.9093
SAFMN [10] ICCV23 240 14 5.80 32.18 0.8948 28.60 0.7813 27.58 0.7359 25.97 0.7809 30.43 0.9063
EARFA-light Ours 209 11.61 14.82 32.29 0.8963 28.63 0.7828 27.61 0.7380 26.22 0.7898 30.62 0.9105
EARFA-light+ Ours 209 11.61 14.82 32.33 0.8964 28.68 0.7832 27.64 0.7382 26.20 0.7889 30.75 0.9115

employ other methods to further enhance the receptive field size
and consequently bolster the model’s expressive power.

To further expand the model’s receptive field and enhance its
expressive capability, we introduce SLKA that replaces the point-
wise convolutions in LKA [28] with shifting convolutions using a
kernel size of 1 × 1. As illustrated in Fig. 6, the shifting convolution
layer divides the input features into five groups along the channel
dimension, keeping one group unchanged while shifting the other
four groups one pixel in the directions of top, bottom, left and right.
This effectively allows each 1×1 convolution kernel to simultane-
ously process features from five pixels in the top, bottom, left, right,
and center positions, resulting in a receptive field size five times
larger than that of a standard 1×1 convolution. As depicted in Fig.
6, our SLKA can be represented as:

y𝑡 = D2W(DW(SC(x𝑡 ))) ⊙ 𝑥 (8)

Where x𝑡 represents the input features to SLKA, SC(·) denotes the
shifting convolution layer with a kernel size of 1×1, DW(·) repre-
sents the depth-wise convolution layer,D2W(·) signifies the dilated
depth-wise convolution layer. The symbol ⊙ indicates element-wise
multiplication. We will compare the effectiveness of LKA [28] and
SLKA in our ablation study.

4 EXPERIMENTS
In this part, we will describe our experimental results. We first
present the feasibility of the proposed method through ablation
studies, and then compare it with other advanced SISRmethods w.r.t
both ESISR tasks and ESISR-light tasks to showcase the superiority
of our EARFA, where the latter corresponds to super lightweight
SISR models.

4.1 Experimental Settings
Datasets and Evaluation. Following the general conventions in
SR community, we first chose DIV2K [44] as the training dataset
of our EARFA. It is one of the most commonly-used dataset for
training SISR models that contains 800 high-definition images. For
further validation and evaluation, we also trained our EARFA with
a larger dataset DF2K (DIV2K [44] + Flick2K [45]), which is denoted
as EARFA+ or EARFA-light+. To inspect the generalization capa-
bility of these models, we selected Set5 [35], Set14 [36], BSD100 [37],
Urban100 [38], and Manga109 [46] as our test datasets, all of which
are popular benchmarks in the field. The experimental results are
evaluated in terms of PSNR (dB) and SSIM [47], which are calculated
on the Y channel from the YCbCr color space.
Implementation Details. Our EARFA consists of 12 DABs, with
the channel compression ratio in EA set to 8. This indicates that the
number of channels is reduced to 1/8 of the input features during
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Figure 7: Visual comparison between the proposed models and other advanced SISR methods on Urban100 [38] with SR×4. The
best and second best results are marked in red and blue, respectively.

the processing in EA. In SLKA, the kernel sizes of shifting convo-
lution, depth-wise convolution, and dilated depth-wise convolution
are 1×1, 5×5, and 7×7, respectively. The dilation rate of the dilated
depth-wise convolution is set to 3. The kernel size of the depth-wise
convolution in SGFN [34] is 5×5.

ForEARFA-light, 8 DABs are included in the nonlinear mapping
with the settings of EA unchanged. The kernel sizes for shifting
convolution, depth-wise convolution and dilated depth-wise convo-
lution are 1×1, 3×3 and 5×5, respectively. The dilation rate of the
dilated depth-wise convolution remains to be 3. The kernel size of
the depth-wise convolution in SGFN [34] is 3×3.
Training Settings. During training, EARFA takes input image
patches of size 64×64 with a batch size of 64. It adopts the Adam [48]
optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99 to minimize the L1 loss.
The whole training process undergoes 500K iterations. The initial
learning is set to 5×10−4 and is halved at 250k, 400k, 450k and 475k
iterations. Additionally, standard data augmentation techniques
such as rotation and horizontal flipping are used for training more
robust models. For EARFA-light, the initial learning rate is set
to 1 × 10−3 and also halved at the same steps as EARFA. Other

configurations for EARFA-light remain the same. The proposed
models are implemented using PyTorch and trained on a NVIDIA
GeForce RTX 2080Ti GPU.

4.2 Ablation Study
Comparison of Attention. As presented in Table 1, the baseline
model without attention achieves PSNR values of 26.17 dB and
30.64 dB on Urban100 [38] and Manga109 [4], respectively. Deploy-
ing SLKA on this basic model results in gains of 0.42 dB on Ur-
ban100 [38] and 0.47dB onManga109 [4], while deploying EA leads
to gains of 0.23dB on Urban100 [38] and 0.27dB on Manga109 [4].
Although the improvements of EA are less than SLKA, it only con-
tains ∼2k parameters and can be used as an efficient plug-and-play
module for typical low-level vision tasks.

On the other hand, compared to the model with EA and LKA [28],
it is evident that deploying models with EA and SLKA yields more
higher PSNR values by 0.06 dB and 0.04 dB on Urban100 [38]
and Manga109 [4], respectively. Similarly, compared to the model
with SE and SLKA, the PSNR values are higher by 0.08 dB and
0.15 dB on Urban100 [38] and Manga109 [4], respectively. These
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experimental results validate the feasibility and robustness of the
proposed structural components.

Table 4: Tradition represents the traditional way to compute
differential entropy, and Gaussian here denotes computing it
conditioned on aGaussian distribution.Avg.Time is calculated
for upsaling an image from 320×180 to 1280×720 resolution
on NVIDIA RTX 4090 GPU.

Batch Size Method #Avg. Time

8 Tradition [6] 4.79 ms
Gaussian 0.81 ms

16 Tradition [6] 9.79 ms
Gaussian 1.19 ms

32 Tradition [6] 19.29 ms
Gaussian 3.04 ms

Comparison of Entropy Latency. To improve the efficiency of
our EA, we did not use the traditional method to calculate the differ-
ential entropy, but instead calculated it conditioned on a Gaussian
distribution for inference acceleration. We randomly generate a set
of tensors to verify the efficiency of different manners to compute
the differential entropy. To mitigate the impact of other factors, we
repeated the calculation 100 times and collected the average results.
As shown in Table 4, with the increasing batch size, traditional
methods for computing differential entropy consume much more
time, whereas calculating the differential entropy under a Gaussian
distribution is nearly instantaneous. Basically, the computation of
differential entropy presented in this work, which is conditioned
on a Gaussian distribution, is almost ∼60× to 70× faster than the
traditional manner.

4.3 Comparison with Advanced Models
Efficient SISR. In this case, we compared our EARFA with EDSR
[9], CARN [5], IMDN [40], LatticeNet [41], ESRT [42], SwinIR [13]
and SRFormer [14] on five benchmark datasets. The quantitative
results for three SR scales (SR×2, SR×3, and SR×4) are presented
in Table 2, where we can observe that our EARFA shows the best
compromise between SR performance and inference latency. Our
EARFA has a more significant advantage in inference efficiency
compared to Transformer-based models. For instance, our EARFA
exhibits a latency of 35.40ms with SR×4, while SRFormer [14] has
a latency of 112.15ms, which is 3.17 times of our EARFA. On
the other hand, EARFA achieves PSNR gains of 0.19 dB and 0.35
dB on Urban100 [49] and Manga109 [4] respectively, compared
to SRFormer [14]. These observations indicate that our EARFA
obtains better SR performance with higher inference efficiency than
other advanced SISR methods, striking a better balance between
performance and efficiency.
Super Lightweight SISR. For this situation, we compare our
EARFA-light with SRCNN [7], VDSR [8], DRRN [17], IDN [18],
PAN [32], ShuffleMixer [43] and SAFMN [10] etc. As shown in Table
3, our EARFA-light also demonstrates superior performance for
all scales and datasets. Specifically, EARFA-light maintains 209K
model parameters, which is lower than the best-performing super
lightweight SR method known to us, i.e., SAFMN [10]. In terms

of SR performance, our EARFA-light presents better result than
SAFMN [10] on the Urban100 [49] and Manga109 [4], by a margin
of 0.25 dB and 0.32 dB, respectively. In this case, our EARFA-light
provides a better tradeoff between SR performance and parameter
scale. EARFA-light excels due to its high efficiency and superior
performance, allowing it to deliver excellent SR results while being
extremely lightweight.

4.4 Visual Results
The visual comparison between our models and other compared
methods on Urban100 [38] with SR×4 is shown in Fig. 7. In some
challenging scenarios, the previous methods may suffer blurring
artifacts, distortions, or inaccurate texture restoration. In contrary,
the proposed EARFA and EARFA-light can effectively mitigate
these artifacts and preserve more structures and finer details. For
example, in testing image “img_004”, the reconstructed images of
the previous methods are mostly have some problems such as blur,
distortion, and poor detail recovery. And our proposed EARFA
can restore the correct structure and details. We also observed this
phenomenon in “img_012” and “img_092”. This is primary because
EA and SLKA provide our models with more informative inference
and enhanced effective receptive fields.

5 CONCLUSIONS
In this work, we propose two novel components, i.e., EA and SLKA
for ESISR tasks, and build an efficient SISR model EARFA based
on these ingredients. The EA introduces differential entropy [6]
into channel attention to relieve the issue that traditional pooling
is inefficient in measuring the information of intermediate features.
To improve the inference efficiency, we also propose an improved
method for calculating differential entropy, which is constrained by
Gaussian distributions. Besides, we also present an enhanced SLKA
of LKA [28] with the aid of simple channel shifting [29], which can
further expand the effective receptive field of the model, so as to
endow the model with the wide-range perception capacity. Since
channel shifting does not introduce additional parameters and the
additional computational overhead (data movement) is negligible,
the balance between SR performance and model efficiency can be
significantly promoted. Extensive experiments have shown that
our EARFA can achieve better SR results with higher efficiency,
even compared to more advanced Transformer-based SISR models.
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