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This is the supplementary materials for Efficient Single Image
Super-Resolution with Entropy Attention and Receptive Field
Augmentation. We mainly provide further analysis of the effective
receptive field and more visualization results here.

1 COMPARISON OF EFFECTIVE RECEPTIVE
FIELD IMAGE

A feature point in convolutional networks depends on a region of
the input, which is termed as receptive field (RF) for this feature
point. RF can be described as the maximum amount of informa-
tion a feature point can capture, while the effective receptive field
(ERF) [7] can be viewed as the efficiency of information capture for
each feature point. Here, we compared the ERF of several advanced
methods, including EDSR [6], SwinIR [5], and SRFormer [11].

Fig. 1 demonstrates the comparison between the ERFs of these
methods. It can be observed that the ERF of our EARFA covers a
larger area than other methods, covering almost the entire input
image. This indicates that our SLKA endows the proposed method
with the ability to perceive a larger area and output more precise
SR results.

The superiority of our method in terms of ERF shown in Fig. 1
is inapparent. Therefore, we further illustrate the Area Ratio and
Rectangle Side Length of covered by the ERF with the same con-
tribution threshold, as shown in Fig. 3, where the horizontal axis
represents the proportion of included weights to total weights, the
points in the plot are positioned at [0.2, 0.3, 0.5, 0.95]. The vertical
axis on the left side of the graph indicates the area of the central
window required to include the specified proportion of weights. The
vertical axis on the right side of the graph indicates the side length
of the central window required to include the specified proportion
of weights. The image size used for testing ERF [7] is 128 x 128.
When the threshold is set to 0.95, we find that the side length of the
central window for EDSR [6] is 45, indicating that it only requires
a window size of 45 X 45 to cover 95% of the weights. This sug-
gests that its ERF [7] is small, with less concentrated and diverse
effective information, and insufficient feature diversity. SwinIR [5]
requires a central window size of 9999 to cover 95% of the weights,
while SRFormer [11] requires a central window size of 119 X 119,
indicating that SRFormer [11] contains more information richness
compared to SwinIR [5], possessing certain feature diversity. In
contrast, our method requires a central window size of 125 X 125
to cover 95% of the weights. At this point, the relationship between
the side length of the central window and the covered weight range
is almost linear, suggesting that our method has a global receptive
field, containing a significant amount of effective information.

2 EARFA-LIGHT’S VISION RESULTS

In the main text, due to space constraints, we did not provide vi-
sual comparisons between EARFA-light and other state-of-the-art
methods. In this case, we visualize the graph of EARFA-light and

Bicubic [4], FSRCNN [1], IMDN ([3], PAN [10], ShuffleMixer [9],
SAFMN [8] on Urban100 [2]. The visual comparison between our
models and other compared methods on Urban100 [2] with SRx4 is
shown in Fig. 2. In some challenging scenarios, the previous meth-
ods may suffer blurring artifacts, distortions, or inaccurate texture
restoration. In contrary, the proposed EARFA-light can effectively
mitigate these artifacts and preserve more structures and finer de-
tails. For example, in testing image "img_078”, the reconstructed
images of the previous methods are mostly have some problems
such as blur, distortion, and poor detail recovery. And our proposed
EARFA-light can restore the correct structure. We also observed
this phenomenon in other images. This is primary because EA and
SLKA provide our models with more informative inference and
enhanced effective receptive fields.

REFERENCES

[1] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-
resolution convolutional neural network. In Proceedings of the European conference
on computer vision. Springer, 391-407.

[2] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. 2015. Single image super-
resolution from transformed self-exemplars. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 5197-5206.

[3] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. 2019. Lightweight image

super-resolution with information multi-distillation network. In Proceedings of

the 27th acm international conference on multimedia. 2024-2032.

Robert Keys. 1981. Cubic convolution interpolation for digital image processing.

IEEE Transactions On Acoustics, Speech, and Signal Processing 29, 6 (1981), 1153~

1160.

[5] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu

Timofte. 2021. Swinir: Image restoration using swin transformer. In Proceedings

of the IEEE/CVF international conference on computer vision. 1833-1844.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.

2017. Enhanced deep residual networks for single image super-resolution. In

Proceedings of the IEEE conference on computer vision and pattern recognition

workshops. 136—144.

[7] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. 2016. Understanding
the effective receptive field in deep convolutional neural networks. Advances in
neural information processing systems 29 (2016).

[8] Long Sun, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. 2023. Spatially-adaptive
feature modulation for efficient image super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 13190-13199.

[9] Long Sun, Jinshan Pan, and Jinhui Tang. 2022. Shufflemixer: An efficient convnet
for image super-resolution. Advances in Neural Information Processing Systems
35 (2022), 17314-17326.

[10] Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. 2020. Effi-
cient image super-resolution using pixel attention. In Proceedings of the European
Conference on Computer Vision Workshops. Springer, 56-72.

Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin
Hou. 2023. Srformer: Permuted self-attention for single image super-resolution.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 12780~
12791.

4

G

[11

5
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116



ACM MM, 2024, Melbourne, Australia Anonymous Authors

EDSR SwinIR SRFormer EARFA (ours)

Figure 1: The Effective Receptive Field (ERF) of EDSR [6] and SwinIR [5], SRFormer [11], EARFA (ours). The best and second
best results are marked in red and blue, respectively.
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Figure 2: Visual comparison between the proposed models and other advanced SISR methods on Urban100 [2] with SRx4. The
best and second best results are marked in red and blue, respectively.
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Figure 3: Comparative graph of the performance of different methods. The vertical axis on the left side of the graph indicates
the area of the central window required to include the specified proportion of weights. The vertical axis on the right side of the
graph indicates the side length of the central window required to include the specified proportion of weights.
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