
Published as a conference paper at ICLR 2025

GREENER GRASS: ENHANCING GNNS WITH
ENCODING, REWIRING, AND ATTENTION

Tongzhou Liao
School of Computer Science
Carnegie Mellon University
Pittsburgh, USA

Barnabás Póczos
School of Computer Science
Carnegie Mellon University
Pittsburgh, USA

ABSTRACT

Graph Neural Networks (GNNs) have become important tools for machine learn-
ing on graph-structured data. In this paper, we explore the synergistic combi-
nation of graph encoding, graph rewiring, and graph attention, by introducing
Graph Attention with Stochastic Structures (GRASS), a novel GNN architecture.
GRASS utilizes relative random walk probabilities (RRWP) encoding and a novel
decomposed variant (D-RRWP) to efficiently capture structural information. It
rewires the input graph by superimposing a random regular graph to enhance
long-range information propagation. It also employs a novel additive attention
mechanism tailored for graph-structured data. Our empirical evaluations demon-
strate that GRASS achieves state-of-the-art performance on multiple benchmark
datasets, including a 20.3% reduction in mean absolute error on the ZINC dataset.

1 INTRODUCTION

Graph Neural Networks (GNNs) have revolutionized machine learning tasks involving graph-
structured data (Wu et al., 2020; Veličković, 2023). Various paradigms within GNNs offer dis-
tinct advantages: message-passing neural networks (MPNNs) effectively leverage local graph struc-
ture (Kipf and Welling, 2016) and are often complemented with graph rewiring techniques to mod-
ify the graph’s topology and facilitate message passing (Topping et al., 2021); Graph Transformers
(GTs) incorporate attention mechanisms to capture global dependencies (Yun et al., 2019; Rampášek
et al., 2022) and can be enhanced by graph encoding methods that enrich node and edge features
with structural information (Dwivedi et al., 2021; 2023).

The goal of this work is to create a new architecture that can possess the advantageous properties
of the methods discussed above. To achieve this goal, we propose Graph Attention with Stochastic
Structures (GRASS), a GNN architecture that synergistically combines random walk encoding, ran-
dom rewiring, and introduces a novel additive attention mechanism designed for graph-structured
data. We conduct a series of experiments on multiple benchmark datasets and perform ablation
studies to rigorously assess the contribution of each component in GRASS. Our results show that
GRASS achieves competitive or superior performance compared to existing methods on multiple
popular datasets, suggesting that the synergy of random walk encoding, random rewiring, and a
graph-tailored attention mechanism can effectively enhance GNNs.

Our Contributions.

• We propose GRASS, a GNN architecture that integrates random walk encoding, random
rewiring, and a novel additive attention mechanism designed for graphs.

• We analyze these components with respect to desirable properties of a GNN and provide in-
sights into how they contribute to the model’s performance.

• We provide empirical evidence through experiments and ablation studies that a carefully se-
lected combination of these components can lead to improved performance on multiple bench-
mark datasets.

In the remainder of the paper, we review related work in Section 2, describe the architecture of
GRASS in Section 3, present experimental results in Section 4, and draw conclusions in Section 5.

1

https://orcid.org/0009-0003-5683-4645

Published as a conference paper at ICLR 2025

2 RELATED WORK

In this section, we summarize some of the previous work related to the main concepts of GRASS.

Message-Passing Neural Networks. Message-Passing Neural Networks (MPNNs), such as
Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016), GraphSAGE (Hamilton et al.,
2017), and Graph Isomorphism Networks (GIN) (Xu et al., 2018), propagate information within
local neighborhoods of a graph. By aligning computation with the structure of the graph, MPNNs
offer a strong inductive bias for graph-structured data (Ma et al., 2023).

Graph Rewiring. Graph rewiring techniques modify the topology of graphs to improve their con-
nectivity, often leveraging spectral properties to guide the process (Topping et al., 2021; Arnaiz-
Rodriguez et al., 2022). Rewiring improves MPNNs by alleviating issues in information propa-
gation, such as underreaching, which occurs when distant nodes cannot communicate (Alon and
Yahav, 2020). In this work, we explore a form of random rewiring that superimposes a random
regular graph on the input graph.

Graph Transformers. Attention mechanisms (Vaswani et al., 2017) allow GNNs to weigh the
importance of neighboring nodes during aggregation (Veličković et al., 2017). Graph Transformers
(GTs), such as Graph Transformer Network (GTN) (Yun et al., 2019), extend this idea to global
attention across nodes. GTs often inherit attention mechanisms designed for sequences, which may
not be optimal for graphs (Chen et al., 2024). Designing attention mechanisms specifically for
graph-structured data is an active area of research, and we aim to contribute to it by proposing a
novel additive attention mechanism.

Graph Encoding. Enhancing node and edge features with graph encodings has been shown to
improve GNN performance, especially for GTs (Dwivedi et al., 2023). Techniques such as Laplacian
positional encodings (LapPE) (Dwivedi et al., 2021) and relative random walk probabilities (RRWP)
encoding (Ma et al., 2023) incorporate structural information into node and edge features, enhancing
GTs, which otherwise lack a graph inductive bias (Ma et al., 2023). We utilize RRWP encoding in
GRASS, and propose a decomposed variant (D-RRWP) with improved computational efficiency.

Notable Combinations. The General, Powerful, Scalable (GPS) Graph Transformer (Rampášek
et al., 2022) represents a hybrid of MPNN and GT, merging the inductive bias of message passing
with the global perspective of Transformers. Exphormer (Shirzad et al., 2023) combines GTs and
rewiring by adding random edges and supernodes, generalizing BigBird (Zaheer et al., 2020), a
sparse Transformer, to graph-structured data.

Our work builds upon these paradigms by incorporating random walk encoding and random
rewiring, and we also create a novel additive attention mechanism tailored for graphs. Although
RRWP encoding and random rewiring have been explored separately (Ma et al., 2023; Shirzad et al.,
2023), their combination with each other and a graph-tailored attention mechanism is, to the best
of our knowledge, novel. Our experiments show that this architecture not only matches but often
exceeds state-of-the-art performance across a wide range of benchmark problems.

3 METHODS

In this section, we introduce the design of GRASS. We begin by examining the desirable quali-
ties of a GNN, which guide our architectural design. Subsequently, we introduce the components
of GRASS by following the order of data processing in our model, and describe the role of each
component in terms of the design goals.

Design Goals. We center our design around what we consider to be the key characteristics of an
effective GNN. We will focus on the processing of nodes (N1–N3) and edges (E1–E2) of the model.

N1. Permutation Equivariance. Unlike tokens in a sentence or pixels in an image, nodes in a graph
are unordered, and therefore the model should be permutation equivariant by construction.
Since reordering the nodes of a graph does not change the graph, permuting the nodes of the

2

Published as a conference paper at ICLR 2025

Input Graph

Training Loop

(D-)RRWP
Encoding

Original Edge Representation

Added Edge RepresentationA
tte

nt
io

n

A
tte

nt
io

n

A
tte

nt
io

n

…

Po
ol

in
g

(O
pt

io
na

l)

+ (D-)RRWP
Encoding

+ Random
Rewiring

GRASS Attention
Layers

Original Edge
Embedding

(D-)RRWP
Encoding

Distinct Embedding
for Added Edges

Figure 1: The structure of GRASS. Prior to training, GRASS precomputes (D-)RRWP encodings.
At each training iteration, it rewires the input graph and adds distinct embeddings to added edges.

input graph of a GNN layer should only result in the same permutation of its output (Veličković,
2023). Formally, let f(X,E,A) be the function computed by a layer, where X ∈ R|V |×nnode

represents node features with nnode dimensions, E ∈ R|V |×|V |×nedge represents edge fea-
tures with nedge dimensions, and A ∈ {0, 1}|V |×|V | represents the adjacency matrix (edge
weights are considered scalar-valued edge features). If the layer is permutation equivariant and
(Xout,Eout) = f(Xin,Ein,A), then (PXout,PEoutP

⊤) = f(PXin,PEinP
⊤,PAP⊤) for an

arbitrary permutation matrix P.
N2. Effective Communication – The model should facilitate long-range communication between

nodes. Numerous real-world tasks require the GNN to capture interactions between distant
nodes (Dwivedi et al., 2022). However, MPNN layers, which propagate information locally,
frequently fail in this regard (Ma et al., 2023). A major challenge is underreaching, where an
MPNN with l layers is incapable of supporting communication between two nodes i, j with
distance δ(i, j) > l (Alon and Yahav, 2020). Another challenge is oversquashing, where the
structure of the graph forces information from a large set of nodes to squeeze through a small
set of nodes to reach its target (Topping et al., 2021). A node with a constant-size feature vector
may need to relay information from exponentially many nodes (with respect to model depth),
leading to excessive compression of messages in deep MPNNs (Alon and Yahav, 2020).

N3. Selective Aggregation – The model should only aggregate information from relevant nodes
and edges. MPNN layers commonly update node representations by unconditionally summing
or averaging messages from neighboring nodes and edges (Veličković, 2023). In deep models,
this can lead to oversmoothing, where the representation of nodes becomes too similar to be ef-
fectively classified in the process of repeated aggregation (Chen et al., 2020). Therefore, when
required by the task, nodes should aggregate information from relevant neighbors only, instead
of doing so unconditionally, in order to maintain distinguishability of node representations.

E1. Relationship Representation – The model should effectively represent the relationships be-
tween nodes with edges. Edges in graph-structured data often convey meaningful information
about the relationship between the nodes they connect (Gong and Cheng, 2019). In addition
to the semantic relationships represented by edge features of the input graph, structural rela-
tionships can be represented by edge encodings added by the model (Rampášek et al., 2022).
To capture the relationships between nodes, edge representations should combine information
from both edge features and encodings, and undergo deep processing through multiple layers.

E2. Directionality Preservation – The model should preserve and utilize information carried
by edge directions. Many graphs representing real-world relationships are inherently di-
rected (Rossi et al., 2024). Although edge directionality has been shown to carry important
information for various tasks, many GNN variants require undirected graphs as input, to pre-
vent edge directions from restricting information flow (Rossi et al., 2024). It would be benefi-
cial for the model’s expressivity if edge directionality information could be preserved without
severely limiting communication.

The Structure of GRASS. The high-level structure of GRASS is illustrated in Figure 1. Prior
to training, GRASS precomputes the (D-)RRWP encoding of each graph in the dataset. At each
training iteration, GRASS randomly rewires the input graph, applies node and edge encodings,
and passes the graph through multiple attention layers, producing an output graph with the same
structure. For tasks that require a graph-level representation, such as graph regression and graph
classification, pooling is performed on the output graph to obtain a single output vector.

3

Published as a conference paper at ICLR 2025

3.1 GRAPH ENCODING

Extracting structural information plays an important role in graph-structured learning and is crucial
for Relationship Representation. To this end, we apply relative random walk probabilities (RRWP)
encoding (Ma et al., 2023) to represent structural relationships. In addition, we propose D-RRWP, a
decomposed variant of RRWP that offers improved computational efficiency.

RRWP Encoding. RRWP encoding has been shown to be an expressive representation of graph
structure both theoretically and practically (Ma et al., 2023), serving as a major source of structural
information for the model. To calculate random walk probabilities, we first obtain the transition
matrix T, where Ti,j represents the probability of moving from node i to node j in a random walk
step. It is defined as T = D−1A ∈ [0, 1]|V |×|V |, where A ∈ {0, 1}|V |×|V | is the adjacency matrix
of the input graph G, and D ∈ N|V |×|V | is its degree matrix, a diagonal matrix. The powers of
T are stacked to form the RRWP tensor P, with Ph,i,j representing the probability that a random
walker who starts at node i lands at node j at the h-th step. Formally, P = [T,T2, ...,Tk] ∈
[0, 1]k×|V |×|V |, where k is the number of random walk steps. The diagonal elements P:,i,i, where
i ∈ VG, are used as node encodings, similarly to RWSE (Dwivedi et al., 2021). The rest are used as
edge encodings when the corresponding edge is present in the rewired graph H . All node and edge
encodings undergo batch normalization (BN) (Ioffe and Szegedy, 2015). Here, W denotes trainable
weights, n denotes the dimensionality of hidden layers, and ∥ denotes concatenation.

xRW
i = Wnode-enc BN(P:,i,i) ∈ Rn , (1)

eRW
i,j = Wedge-enc BN(P:,i,j ∥P:,j,i) ∈ Rn . (2)

Before entering attention layers, RRWP encodings are added to both node features and edge features,
including those of edges added by random rewiring. The node encodings are additionally accom-
panied by degree information (Ying et al., 2021). Here, d+(i) and d−(i) denote the out-degree and
in-degree of node i, respectively.

x0
i = xin

i + xRW
i +Wdeg BN(d+(i) ∥ d−(i)) ∈ Rn , (3)

e0i,j = ein
i,j + eRW

i,j ∈ Rn . (4)

Improving Efficiency. RRWP encodings take O(k|V ||E|) time to compute and O(k|V |2) space
to store (Ma et al., 2023). On extremely large graphs, this could be computationally prohibitive even
when computed once per dataset. We propose D-RRWP, a decomposed variant of RRWP. Instead
of computing the exact random walk probabilities P from the transition matrix T, we approximate
it with its truncated eigendecomposition to reduce the complexity to O(km(|V | + |E|)) time and
O((k+m)|V |+k|E|) space, wherem ≤ |V | is the number of eigenpairs used for the approximation.

To ensure that the transition matrix is diagonalizable, we replace T with Tsym = D−
1
2AD−

1
2 ,

which is always diagonalizable if A is a symmetric adjacency matrix—that of an undirected graph.
Given the degree matrix D, this modification does not result in a loss of information, because
Tsym = D

1
2TD−

1
2 . Since Tsym is diagonalizable, its truncated eigendecomposition coincides with

its truncated singular value decomposition (SVD), which provides the optimal low-rank approxima-
tion of the matrix (Eckart and Young, 1936).

Let T̃sym = Q̃Λ̃Q̃⊤ be the truncated eigendecomposition of Tsym, where Λ̃ ∈ [−1, 1]m×m is a
diagonal matrix containing the m largest eigenvalues (in magnitude) of Tsym and Q̃ ∈ R|V |×m
hold the corresponding eigenvectors. Decomposing Tsym takes O(m|E|) time with the Lanczos
algorithm (Lanczos, 1950; Lehoucq et al., 1998) and requires O(m|V |) space. We approximate
the h-th power of Tsym, i.e. the random walk probabilities Ph,i,j = (Th

sym)i,j , by computing
(T̃h

sym)i,j = (Q̃Λ̃hQ̃⊤)i,j = (Q̃i,: ⊙ Q̃j,:) · diag(Λ̃h). Here, ⊙ denotes the Hadamard product.
Computing this approximation for all nodes (i, i), edges (i, j), and random walk steps 1 ≤ h ≤ k
requires O(km(|V | + |E|)) time and O(k(|V | + |E|)) space. This is efficient because raising the
diagonal matrix Λ̃ to the powers 1 to k only costs O(km) time and space. If Tsym were not diago-
nalizable and we had to use SVD instead, efficient power computation would no longer be possible.

Since Λ̃h can take at most m linearly independent values as we vary h, increasing k beyond m does
not add additional information to the encoding. Consequently, we fix k = m in our experiments.

4

Published as a conference paper at ICLR 2025

3.2 RANDOM REWIRING

To achieve Effective Communication, GRASS rewires the input graph by superimposing a random
regular graph. We present some motivations for using random regular graphs instead of deterministic
or non-regular graphs in Appendix A.1. Shirzad et al. (2023) uses a similar technique in generalizing
BigBird (Zaheer et al., 2020) to graphs, and discusses additional motivations. We also demonstrate
the advantage of using random regular graphs with empirical results shown in Figure 4 and Table 3.
Here, we provide details on random regular graph generation and input graph rewiring.

Generating Random Regular Graphs. We generate random regular graphs with the Permutation
Model (Friedman et al., 1989) that we describe here and with pseudocode in Appendix A.2. For a
given positive, even parameter r ≥ 2, and for the input graph G = (VG, EG), we randomly generate
a corresponding r-regular graph by independently and uniformly sampling r

2 random permutations
σ1, σ2, ..., σ r

2
from S|VG|, the symmetric group defined over the nodes of the graph G. Using these

random permutations, we construct a random pseudograph R̃ = (VG, ER̃), where the edge set ER̃

of the graph R̃ is
ER̃ =

⊔
i∈VG, j=1,..., r2

{{i, σj(i)}} . (5)

Here, ⊔ denotes the disjoint union of sets. The resulting graph R̃ is a random regular pseudograph,
and the probability that R̃ is any given regular pseudograph with |VG| nodes and degree r is uni-
form (Friedman et al., 1989).

Being a pseudograph, R̃ might not be simple—it might contain self-loops and multi-edges. Even
when |VG| is large, the probability that R̃ is simple—that it does not contain self-loops or multi-
edges—would not be prohibitively small. In particular, it has an asymptotically tight lower
bound (Ellis, 2011)

lim
|VG|→∞

Pr[R̃ is simple] = e
−
(

r2

2 +r
)
. (6)

Therefore, if we regenerate R̃ when it is not simple, the expected number of trials required for
us to obtain a simple R̃ is upper-bounded by e

r2

2 +r, which can be kept low by keeping r low. In
practice, GRASS requires the superimposed graph to be simple to avoid passing duplicate messages.
Meanwhile, the regularity of the graph is desired but not strictly required. Therefore, when R̃ is not
simple, we remove self-loops and multi-edges from R̃ to obtain R, which is always simple but not
necessarily regular.

Our empirical results presented in Figure 4 and Table 3 suggest that a small value of r is often
sufficient. In our experiments, we use r ≤ 6.

Rewiring the Input Graph. To rewire the input graph G, GRASS superimposes the edges of R
on G, producing a new graph H = (VG, EG ⊔ER) that is used as input for subsequent stages of the
model. Since it is possible that EG ∩ER ̸= ∅, there might be multi-edges in H , and in these cases,
H is not a simple graph. GRASS does not remove these multi-edges to avoid biasing the distribution
of the superimposed random regular graph.

As illustrated in Figure 1, the added edges ER are given a distinct embedding to distinguish them
from the existing edges EG. This aids Selective Aggregation, as it allows a node to select between
its neighbors and a random node. The added edges also receive (D-)RRWP encodings to enhance
Relationship Representation. Although an added edge (i, j) ∈ ER lacks edge features that represent
semantic relationships in the input graph, the structural relationship between nodes i and j can be
represented by the random walk probabilities P:,i,j given to that edge as its (D-)RRWP encoding.

3.3 ATTENTION MECHANISM

Many GTs emulate the structure of Transformers designed for Euclidean data (Dwivedi and Bresson,
2020; Kreuzer et al., 2021; Ying et al., 2021; Hussain et al., 2022; Shirzad et al., 2023). Meanwhile,
GRASS uses attentive node aggregators with attention scores computed by MLP edge aggregators,
which is a more tailored attention mechanism for graph-structured data. Figure 3 provides a simple

5

Published as a conference paper at ICLR 2025

Figure 2: Visualization of the proposed random
rewiring technique. Solid lines denote existing
edges of the input graph, and dashed lines denote
added edges. (a) An example of the input graph
G that has poor connectivity. (b, c) Two among
all possible instances of the randomly rewired
graph H with r = 2. They have better connec-
tivity than the input graph.

(b)(a)

Softmax

Figure 3: Simplified visualization of the GRASS
attention mechanism. (a) The edge aggregator
extracting node relations to update edge repre-
sentations. (b) The attentive node aggregator
weighted by edge representations. For simplicity,
attention from a node to itself, residual connec-
tions, and activation functions are omitted here.
Figure 5 provides a more detailed visualization.

visualization, and Figure 5 illustrates its structure in detail. The GRASS attention mechanism is
defined as follows, where N− denotes in-neighbors, W denotes trainable weights, and ε denotes a
small constant added for numerical stability. For simplicity, biases are not shown in these equations.

sli,j = dropout(exp(Wl
attn←edgee

l−1
i,j)) ∈ R+n

, (7)

ali,j =
sli,j∑

h∈N−(j)∪{j} s
l
h,j + ε

∈ R+n
, (8)

x̃l
j = Wl

tail←tailx
l−1
j +

∑
i∈N−(j)∪{j}

ali,j ⊙ (Wl
tail←headx

l−1
i +Wl

tail←edgee
l−1
i,j) ∈ Rn , (9)

ẽlj,i = Wl
edge←edgee

l−1
i,j +Wl

edge←headx
l−1
i +Wl

edge←tailx
l−1
j ∈ Rn . (10)

Attention Weights. This attention mechanism is unique in the way it uses edge representations as
the medium of attention weights. To achieve Relationship Representation, edge representations must
be updated alongside node representations (Zhou et al., 2023). A directed edge is an ordered pair
of nodes, and an undirected edge can be represented by two directed edges with opposite directions.
The orderedness of nodes connected by an edge allows us to use an MLP as the edge aggregator
while preserving Permutation Equivariance. Assuming that Relationship Representation is satisfied,
edge features would already represent node relationships, which could be used as attention weights
ai,j after applying a linear layer and performing a component-wise softmax over the neighborhood.

Random Edge Removal. To complement the proposed random rewiring technique, which adds
edges but never removes them, GRASS attention randomly removes edges in computing attention
weights with the dropout function in Equation 7. The goal is to reduce the model’s dependence
on the presence of particular edges in the graph, facilitating Selective Aggregation. This can also
be seen as a generalization of DropKey (Li et al., 2022) to graphs, because it randomly masks the
attention matrix prior to the softmax operation, unlike DropAttention (Zehui et al., 2019).

Edge Flipping. While the proposed attention mechanism naturally achieves Directionality Preser-
vation by aggregating information in the same direction as edges, it can severely restrict the flow of
information, putting it in conflict with Effective Communication. As a solution, the direction of each
edge is switched from one layer to the next: in odd-numbered layers, the directions match those of
the edges in the rewired graphH , while in even-numbered layers, they are reversed. This enables the
model to propagate information in both directions even when the input graph is directed, improving
its expressivity. In Equation 10, we compute ẽlj,i, the updated representation of edge j → i by using
el−1i,j , the representation of edge i→ j from the previous layer, effectively flipping the edge.

Feed-Forward Network. Similar to Transformers, the output of the attention mechanism is passed
through an FFN. Here, ϕ denotes a ReLU-like (Nair and Hinton, 2010; Ramachandran et al., 2017)
nonlinear activation function, which we choose to be Mish (Misra, 2019).

x̂l
i = Wl

node-outϕ(x̃
l
i + bl

node-act) + bl
node-out ∈ Rn , (11)

êli,j = Wl
edge-outϕ(ẽ

l
i,j + bl

edge-act) + bl
edge-out ∈ Rn . (12)

6

Published as a conference paper at ICLR 2025

Table 1: Performance on GNN Benchmark Datasets. The performance of GRASS shown here is the
mean ± s.d. of 16 runs on ZINC, and 8 runs on other datasets. The best and second-best results
are highlighted. Performance numbers other than that of GRASS are adapted from Ma et al. (2023),
Shirzad et al. (2023), and Chen et al. (2024). “-” indicates experiments not reported in these works.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GatedGCN-LSPE 0.090 ± 0.001 - - - -
PNA 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 - -
DGN 0.168 ± 0.003 - 72.838 ± 0.417 86.680 ± 0.034 -
GSN 0.101 ± 0.010 - - - -
CIN 0.079 ± 0.006 - - - -
CRaW1 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 - -
GIN-AK+ 0.080 ± 0.001 - 72.19 ± 0.13 86.850 ± 0.057 -
SAN 0.139 ± 0.006 - - - 76.691 ± 0.65
Graphormer 0.122 ± 0.006 - - - -
K-Subgraph SAT 0.094 ± 0.008 - - 86.848 ± 0.037 77.856 ± 0.104
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
Graphormer-URPE 0.086 ± 0.007 - - - -
Graphormer-GD 0.081 ± 0.009 - - - -
GPS 0.070 ± 0.004 - 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
Exphormer - 98.55 ± 0.039 74.69 ± 0.125 86.74 ± 0.015 78.07 ± 0.037
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
NeuralWalker 0.065 ± 0.001 98.760 ± 0.079 80.027 ± 0.185 86.977 ± 0.012 78.189 ± 0.188
GRASS (ours) 0.047 ± 0.001 98.932 ± 0.076 83.750 ± 0.141 89.177 ± 0.313 79.541 ± 0.173

Normalization and Residual Connection. We use post-normalization in residual connections,
which has been shown to improve the expressiveness of Transformers (Liu et al., 2020). The residual
connection is scaled by a constant α to improve training stability (Wang et al., 2022).

xl
i = BN(xl−1

i + αx̂l
i) ∈ Rn , (13)

eli,j = BN(el−1i,j + αêli,j) ∈ Rn . (14)

Graph Pooling. For graph-level tasks, graph pooling is required at the output of a GNN to pro-
duce a vector representation of each graph, capturing global properties relevant to the task (Wu
et al., 2020). GRASS employs sum pooling—a simple method as expressive as the Weisfeiler-
Lehman graph isomorphism test (Leman and Weisfeiler, 1968)—while many more complicated
pooling methods are not as expressive (Baek et al., 2021). Considering the randomness of the added
edges, they are pooled separately from the preexisting edges in the input graphG, because the pooled
output of the randomly added edges may exhibit a different distribution than that of the preexisting
edges. Here, ∥ denotes concatenation.

y =
∑
i∈VG

xL
i

∥∥∥∥∥ ∑
(i,j)∈EG

eLi,j

∥∥∥∥∥ ∑
(i,j)∈ER

eLi,j ∈ R3n . (15)

3.4 INTERPRETATIONS OF GRASS

A Message Passing Perspective. GRASS is an MPNN on a noisy graph. In an MPNN, informa-
tion is propagated along the edges of the input graph, defined by its adjacency matrix (Veličković,
2023). GRASS can be seen as an MPNN that injects additive and multiplicative noise into the ad-
jacency matrix, through random rewiring and random edge removal, respectively. The adjacency
matrix AM followed by message passing is given by

AM = (AG +AR) ·AD , (16)
where AG is the adjacency matrix of the input graphG, AR is that of the superimposed random reg-
ular graph R, AD is a random attention mask sampled by the dropout function in Equation 7 (which
can also be seen as the adjacency matrix of a random graph), + denotes element-wise OR, and ·
denotes element-wise AND. Noise injection is well known as an effective regularizer (Noh et al.,
2017), and for graph-structured data, the random removal of edges has demonstrated regularization
effects (Rong et al., 2019).

7

Published as a conference paper at ICLR 2025

Table 2: Performance on LRGB datasets. The performance of GRASS shown here is the mean ±
s.d. of 8 runs. The best and second-best results are highlighted. Performance numbers other than
that of GRASS are adapted from Gutteridge et al. (2023), Tönshoff et al. (2023), Ma et al. (2023),
Shirzad et al. (2023), and Chen et al. (2024). “-” indicates experiments not reported in these works.
*These models are re-tuned by Tönshoff et al. (2023) to provide stronger baselines.

Model Peptides-func Peptides-struct PascalVOC-SP COCO-SP
AP ↑ MAE ↓ Macro F1 ↑ Macro F1 ↑

GCN* 0.6860 ± 0.0050 0.2460 ± 0.0007 0.2078 ± 0.0031 0.1338 ± 0.0007
GINE* 0.6621 ± 0.0067 0.2473 ± 0.0017 0.2718 ± 0.0054 0.2125 ± 0.0009
GatedGCN* 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3880 ± 0.0040 0.2922 ± 0.0018
DIGL+MPNN 0.6469 ± 0.0019 0.3173 ± 0.0007 0.2824 ± 0.0039 -
DIGL+MPNN+LapPE 0.6830 ± 0.0026 0.2616 ± 0.0018 0.2921 ± 0.0038 -
MixHop-GCN 0.6592 ± 0.0036 0.2921 ± 0.0023 0.2506 ± 0.0133 -
MixHop-GCN+LapPE 0.6843 ± 0.0049 0.2614 ± 0.0023 0.2218 ± 0.0174 -
DRew-GCN 0.6996 ± 0.0076 0.2781 ± 0.0028 0.1848 ± 0.0107 -
DRew-GCN+LapPE 0.7150 ± 0.0044 0.2536 ± 0.0015 0.1851 ± 0.0092 -
DRew-GIN 0.6940 ± 0.0074 0.2799 ± 0.0016 0.2719 ± 0.0043 -
DRew-GIN+LapPE 0.7126 ± 0.0045 0.2606 ± 0.0014 0.2692 ± 0.0059 -
DRew-GatedGCN 0.6733 ± 0.0094 0.2699 ± 0.0018 0.3214 ± 0.0021 -
DRew-GatedGCN+LapPE 0.6977 ± 0.0026 0.2539 ± 0.0007 0.3314 ± 0.0024 -
Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016 0.2694 ± 0.0098 0.2618 ± 0.0031
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3230 ± 0.0039 0.2592 ± 0.0158
GPS+LapPE* 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4440 ± 0.0065 0.3884 ± 0.0055
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3975 ± 0.0037 0.3455 ± 0.0009
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012 - -
NeuralWalker 0.7096 ± 0.0078 0.2463 ± 0.0005 0.4912 ± 0.0042 0.4398 ± 0.0033
GRASS (ours) 0.6737 ± 0.0064 0.2459 ± 0.0007 0.5670 ± 0.0049 0.4752 ± 0.0032

A Graph Transformer Perspective. GRASS is a sparse Graph Transformer. Graph Transformers
allow each node to aggregate information from other nodes through graph attention mechanisms,
with a general definition (Veličković, 2023) being

x′j = ϕ

(
xj ,

⊕
i∈N (j)

a(xi,xj)ψ(xi)

)
, (17)

where ϕ and ψ are neural networks, a is an attention weight function, and
⊕

is a permutation-
invariant aggregator. Many GTs compute attention weights using scaled dot-product atten-
tion (Vaswani et al., 2017), with node features as keys and queries. However, we observe that edge
features in GRASS, which are updated by aggregating information from its head and tail nodes with
an MLP, could be used to directly compute attention weights as a form of additive attention (Bah-
danau et al., 2014). Relationship Representation would then be critical for the attention weights to
be meaningful, which GRASS satisfies through expressive edge encodings and the deep processing
of edge features. Many GTs achieve sparsity by integrating (Rampášek et al., 2022) or general-
izing (Shirzad et al., 2023) BigBird’s sparse dot-product attention. Meanwhile, GRASS achieves
sparsity in a graph-native way: attention is always local, so non-adjacent nodes in the rewired graph
would naturally never attend to each other. Seeing GRASS as a Transformer, its attention mask
would be AM as defined in Equation 16, which contains O(r|V |+ |E|) nonzero elements.

4 EXPERIMENTS

4.1 BENCHMARKING GRASS

Experimental Setup. To measure the performance of GRASS, we train and evaluate it on five of
the GNN Benchmark Datasets (Dwivedi et al., 2023): ZINC, MNIST, CIFAR10, CLUSTER, and
PATTERN, as well as four of the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022)
datasets: Peptides-func, Peptides-struct, PascalVOC-SP, and COCO-SP. Following the experimental
setup of Rampášek et al. (2022) and other work that we compare, we configure GRASS to around
100k parameters for MNIST and CIFAR10, and 500k parameters for all other datasets. Additional
information on the datasets can be found in Appendix F.1.

Due to the use of random rewiring, the output of the model is not deterministic. Therefore, we
evaluate the trained model 100 times for ZINC, and 10 times for other datasets, for each training
run. The average performance is reported as the performance of that run. We use D-RRWP encoding

8

Published as a conference paper at ICLR 2025

Table 3: Ablation study results for the number of added edges per node, with random regular and
non-regular graphs, on ZINC. Reported values for ablated models, except peak VRAM consumption,
are the mean ± s.d. over 8 runs. The variance of model performance due to random rewiring are
measured by evaluating the test set 100 times on each trained model. For comparison, the variance
of model performance due to randomness in the training process is 1.79e-6.

Added Edge per Node 0 3 6 9 12 Fully Connected

MAE ↓
Regular 0.0480 0.0470 0.0484 0.0483

0.0557 ± 0.0019 ± 0.0013 ± 0.0018 ± 0.0012 0.0492

Non-Regular ± 0.0021 0.0488 0.0486 0.0480 0.0475 ± 0.0008
± 0.0015 ± 0.0020 ± 0.0019 ± 0.0021

Variance in MAE Due
to Random Rewiring

Regular
Deterministic

7.60e-8 1.37e-7 1.67e-7 2.24e-7

Deterministic± 3.67e-8 ± 1.00e-7 ± 8.51e-8 ± 1.11e-7

Non-Regular 1.20e-7 1.39e-7 1.63e-7 9.94e-8
± 9.23e-8 ± 4.75e-8 ± 1.19e-7 ± 4.47e-8

Training Time
per Epoch (s)

Regular 1.81 1.95 2.02 2.19
1.74 ± 0.10 ± 0.07 ± 0.05 ± 0.05 2.40

Non-Regular ± 0.02 1.75 1.87 2.00 2.20 ± 0.03
± 0.04 ± 0.07 ± 0.03 ± 0.04

Peak VRAM
Consumption (MiB)

Regular 1415 1911 2529 3051 3569 4273Non-Regular 1889 2489 3009 3511

on Peptides-func, PascalVOC-SP and COCO-SP, and RRWP encoding on other datasets. Models are
trained with the Lion optimizer (Chen et al., 2023). Hyperparameters can be found in Appendix F.2.

0 3 6 9 12 Fully Connected
Added Edges per Node

0.
04

2
0.

04
4

0.
04

6
0.

04
8

0.
05

0
0.

05
2

0.
05

4
0.

05
6

M
AE

0.0557

0.0492

0.0480

0.0488

0.0470

0.0486 0.0484

0.0480

0.0483

0.0475

Regular (MAE)
Non-Regular (MAE)
Common (MAE)
Regular (Peak VRAM Consumption)
Non-Regular (Peak VRAM Consumption)
Common (Peak VRAM Consumption)

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
Pe

ak
 V

RA
M

 C
on

su
m

pt
io

n
(M

iB
)

1415

4273

1911
2529

3051
3569

1889
2489

3009
3511

Figure 4: Visualized ablation study results for the
number of added edges per node, with random
regular and non-regular graphs, on ZINC. Error
bars represent one standard error of the mean.
The setup is identical to that described in Table 3.

Results. As shown in Tables 1 and 2, GRASS
ranks first on ZINC, MNIST, CIFAR10, PAT-
TERN, Peptides-struct, PascalVOC-SP, and
COCO-SP, while ranking second on CLUSTER
and fifth on Peptides-func, among the models
compared. Notably, GRASS achieves 20.3%
lower MAE on ZINC compared to GRIT (Ma
et al., 2023), the second-best model, which has
O(|V |2) time and space complexity.

4.2 ABLATION STUDY

Experimental Setup. We examine the impact
of RRWP encoding and D-RRWP encoding by
comparing their performance with each other
and with LapPE (Dwivedi et al., 2021), a widely
used graph encoding technique. We examine the
effects of random rewiring by varying the num-
ber of added edges per node, and superimposing
random non-regular graphs instead of random regular graphs. Furthermore, we assess the effects of
the GRASS attention mechanism by replacing it with the attention mechanisms of GAT (Veličković
et al., 2017), GatedGCN (Bresson and Laurent, 2017), and Transformer (Vaswani et al., 2017), while
keeping the rest of the model intact. These experiments are conducted on ZINC, a well-known GNN
benchmark that represents tasks on smaller graphs, and PascalVOC-SP, which represents tasks on
larger graphs that require long-range interaction. Detailed results on PascalVOC-SP are presented
in Appendix D. Additionally on ZINC, we explore the impact of minor design choices, including
random edge removal, edge flipping, normalization, graph pooling, and the optimizer. Our find-
ings suggest that the combination of (D-)RRWP encoding, random rewiring, and GRASS attention
demonstrates superior effectiveness compared to alternative combinations on the evaluated datasets.

Random Walk Encoding. On both ZINC and PascalVOC-SP, switching between RRWP and D-
RRWP results in an insignificant change in performance: 0.64% on ZINC and 0.35% on PascalVOC-
SP. Meanwhile, replacing D-RRWP with RRWP results in a 17.73× larger preprocessed dataset on
PascalVOC-SP. This highlights the viability of D-RRWP as an efficient replacement of RRWP on
certain graphs, but we also notice that D-RRWP does not perform as well as RRWP on Peptides-
struct. Replacing RRWP or D-RRWP with LapPE results in a significant degradation of performance
on ZINC, but a much smaller degradation on PascalVOC-SP, indicating that the combination of
LapPE with other components of GRASS is more dataset-dependent and generally not as effective.

9

Published as a conference paper at ICLR 2025

Table 4: Ablation study results for random rewiring, graph encoding, attention mechanism, and
minor design decisions on ZINC. This table shows the performance of each ablated model as the
mean ± s.d. over 8 runs. The implementations of replacement attention mechanisms are provided
by PyTorch Geometric (Fey and Lenssen, 2019), and we adjust the head size to approach 500k
parameters. *The maximum number of Laplacian eigenvectors to use for LapPE on ZINC is 8,
which is constrained by the smallest graph in the dataset. For a fair comparison, we include a setup
that pads the LapPE of smaller graphs with zeros to raise the maximum number of eigenvectors to
32. †The learning rate is adjusted for these configurations to stabilize training. ‡The batch size,
learning rate, betas, and weight decay factor are adjusted for this configuration to stabilize training.

Setup MAE ↓
GRASS 0.0470 ± 0.0013

Rewire at every epoch→ Rewire once before training 0.0645 ± 0.0015
RRWP (32 steps)→ D-RRWP (32 eigenpairs, 32 steps) 0.0473 ± 0.0021
RRWP (32 steps)→ LapPE (8 eigenvectors)* 0.0829 ± 0.0041
RRWP (32 steps)→ Padded LapPE (32 eigenvectors)* 0.0879 ± 0.0067
GRASS attention→ GAT attention (Veličković et al., 2017) 0.0592 ± 0.0023
GRASS attention→ GatedGCN attention† (Bresson and Laurent, 2017) 0.0651 ± 0.0030
GRASS attention→ Transformer attention† (Vaswani et al., 2017) 0.0652 ± 0.0016
No random edge removal 0.0500 ± 0.0018
No edge flipping 0.0470 ± 0.0010
BN→ LN (Ba et al., 2016) 0.0497 ± 0.0009
Sum pooling→Mean pooling 0.0493 ± 0.0024
Lion→ AdamW‡ (Loshchilov et al., 2017) 0.0499 ± 0.0006

Random Rewiring. On both ZINC and PascalVOC-SP, the optimal number of added edges per
node is 6 when using random regular graphs, with any deviation from this value leading to degraded
performance. On ZINC, replacing random regular graphs with non-regular random graphs requires
adding more edges to achieve comparable performance, which in turn increases runtime and memory
consumption. Moreover, fixing the added edges across epochs rather than resampling them at every
epoch results in a 37.2% increase in MAE. These findings demonstrate that both the regularity and
the randomness of the superimposed graphs are crucial for the model’s efficiency and performance.

GRASS Attention. On both ZINC and PascalVOC-SP, replacing GRASS attention with alter-
native attention mechanisms substantially degrades performance, by at least 26.0% on ZINC and
14.7% on PascalVOC-SP. This indicates that GRASS attention, our novel design, is a vital compo-
nent for GRASS to achieve its competitive performance.

Minor Design Decisions. None of the minor design decisions, when altered or removed, results
in a significant performance degradation on ZINC: an advantage of at least 15.2% is maintained
compared to GRIT, the second-best model. This verifies that the performance advantage of GRASS
is achieved mainly by the proposed combination of encoding, rewiring, and attention mechanism.

5 CONCLUSION

We have presented GRASS, a novel GNN architecture that synergistically integrates (D-)RRWP
encoding, random rewiring, and a new graph-tailored additive attention mechanism. Our empirical
evaluations show that GRASS achieves and often surpasses state-of-the-art performance across a
diverse set of benchmark problems.

5.1 LIMITATIONS

Empirical Evaluation of Scalability. GRASS hasO(|V |+|E|) time and space complexity, which
implies good scalability to large and sparse graphs. While evaluating GRASS on extremely large
graphs could provide additional insights, it is beyond the scope of this work due to time constraints.

Nondeterministic Output. The output of GRASS is inherently random due to random rewiring.
The relationship between performance variance and the number of randomly added edges is demon-
strated in Table 3 and Table 6. In scenarios that strictly require deterministic output, the random
number generator used for random rewiring needs to be made deterministic with respect to the input
graph. For example, the random number generator can be seeded with a hash of the input graph.

10

Published as a conference paper at ICLR 2025

5.2 REPRODUCIBILITY

The source code of GRASS is available at https://github.com/grass-gnn/grass.

ACKNOWLEDGMENTS

This work is partially supported by the NSF Award 2307698. We sincerely thank Martin Ritzert,
Danica Sutherland, Hamed Shirzad, Hanke Chen, Owen Li, and Liangyuan Chen for their valuable
feedback.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
graph rewiring via the lovasz bound. In The First Learning on Graphs Conference, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. arXiv preprint arXiv:2102.11533, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pages 2528–2547. PMLR, 2023.

Béla Bollobás and W Fernandez de la Vega. The diameter of random regular graphs. Combinatorica,
2:125–134, 1982.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 3438–3445, 2020.

Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on
graphs via random walks. arXiv preprint arXiv:2406.03386, 2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms.
arXiv preprint arXiv:2302.06675, 2023.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages 933–941.
PMLR, 2017.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

11

https://github.com/grass-gnn/grass

Published as a conference paper at ICLR 2025

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Jamakovic, and Robert E Kooij.
Effective graph resistance. Linear algebra and its applications, 435(10):2491–2506, 2011.

David Ellis. The expansion of random regular graphs. Lecture Notes, Lent, 34, 2011.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Joel Friedman, Jeff Kahn, and Endre Szemeredi. On the second eigenvalue of random regular graphs.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 587–
598, 1989.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 9211–9219, 2019.

Frank Göring. Short proof of menger’s theorem. Discrete Mathematics, 219(1-3):295–296, 2000.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pages 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 655–665, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–
456. pmlr, 2015.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. 1950.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, Xiangjian Jiang, Tiande Guo, and Luoqi Liu.
Dropkey. arXiv preprint arXiv:2208.02646, 2022.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. arXiv preprint arXiv:2004.08249, 2020.

12

Published as a conference paper at ICLR 2025

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

JF Lutzeyer and AT Walden. Comparing graph spectra of adjacency and laplacian matrices. arXiv
preprint arXiv:1712.03769, 2017.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
arXiv preprint arXiv:2305.17589, 2023.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing deep neural
networks by noise: Its interpretation and optimization. Advances in neural information processing
systems, 30, 2017.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Doron Puder. Expansion of random graphs: New proofs, new results. Inventiones mathematicae,
201(3):845–908, 2015.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pages 25–1. PMLR, 2024.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pages 31613–31632. PMLR, 2023.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković. Everything is connected: Graph neural networks. Current Opinion in Structural
Biology, 79:102538, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

13

Published as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Lin Zehui, Pengfei Liu, Luyao Huang, Junkun Chen, Xipeng Qiu, and Xuanjing Huang. Dropat-
tention: A regularization method for fully-connected self-attention networks. arXiv preprint
arXiv:1907.11065, 2019.

Yuchen Zhou, Hongtao Huo, Zhiwen Hou, Lingbin Bu, Jingyi Mao, Yifan Wang, Xiaojun Lv, and
Fanliang Bu. Co-embedding of edges and nodes with deep graph convolutional neural networks.
Scientific Reports, 13(1):16966, 2023.

14

Published as a conference paper at ICLR 2025

A RANDOM REWIRING

A.1 MOTIVATIONS FOR SUPERIMPOSING RANDOM REGULAR GRAPHS

Effects on Diameter. The diameter of a graph upper-bounds the distance between two nodes,
and thus the number of layers for an MPNN to propagate information between them (Alon and
Yahav, 2020). Superimposing a random regular graph on the input graph can drastically decrease its
diameter. The least integer d that satisfies

(r − 1)d−1 ≥ (2 + ε)r|V | log |V | (18)

is the upper bound of the diameter of almost every random r-regular graph with |V | nodes, where
r ≥ 3 and ε > 0 (Bollobás and Fernandez de la Vega, 1982). Since adding edges to a graph
never increases its diameter, the diameter d of the rewired graph is asymptotically upper-bounded
by d ∈ O(logr |V |) when r ≥ 3. Subsequently, all nodes would be able to communicate with
each other given O(logr |V |) message passing layers, which could significantly reduce the risk of
underreaching on large graphs. In addition, the diameter of a graph is a trivial upper bound of
its effective resistance (Ellens et al., 2011), which has been shown to be positively associated with
oversquashing (Black et al., 2023). Intuitively, it upper bounds the “length” of the bottleneck through
which messages are passed.

Effects on Internally Disjoint Paths. Since oversquashing can be attributed to squeezing too
many messages through the fixed-size feature vector of a node (Alon and Yahav, 2020), increasing
the number of internally disjoint paths between two nodes may reduce oversquashing by allowing
information to propagate through more nodes in parallel. Intuitively, it increases the “width” of the
bottleneck. A random r-regular graph with r ≥ 2 almost certainly has a vertex connectivity of r
as |V | → ∞ (Ellis, 2011). Menger’s Theorem then lower-bounds the number of internally disjoint
paths by a graph’s vertex connectivity (Göring, 2000).

Effects on Spectral Gap. Oversquashing has been shown to decrease as the spectral gap of a
graph increases, which is defined as λ1, the smallest positive eigenvalue of the graph’s Laplacian
matrix (Karhadkar et al., 2022). It has been proven that a random r-regular graph sampled uniformly
from the set of all r-regular graphs with |V | nodes almost certainly has µ < 2

√
r − 1 + 1 as |V | →

∞, where µ is the largest absolute value of nontrivial eigenvalues of its adjacency matrix (Puder,
2015). Since the graph is r-regular, its i-th adjacency matrix eigenvalue µi and i-th Laplacian matrix
eigenvalue λi satisfy λi = r − µi (Lutzeyer and Walden, 2017), lower-bounding the spectral gap
with λ1 > r − 2

√
r − 1− 1.

A.2 PSEUDOCODE OF THE PERMUTATION MODEL

Algorithm 1 The Permutation Model (Friedman et al., 1989)

1: procedure PERMUTATIONMODEL(r, |V |)
2: σ ← 2D array of size (r, |V |)
3: for i← 0 to r − 1 do
4: σ[i, :]← RANDPERM(|V |) ▷ Random permutation of integers between 0 and |V | − 1
5: end for
6: A← Array of size r ∗ |V | ▷ Create an empty adjacency list
7: for j ← 0 to |V | − 1 do
8: for k ← 0 to r − 1 do
9: A[j ∗ r + k]← {j, σ[k, j]} ▷ Add an edge to the adjacency list

10: end for
11: end for
12: A← REMOVESELFLOOP(A) ▷ Remove self-loops from the adjacency list
13: A← REMOVEMULTIEDGE(A) ▷ Remove multi-edges from the adjacency list
14: return A
15: end procedure

15

Published as a conference paper at ICLR 2025

B GRASS ATTENTION

Figure 5: The structure of an attention layer of GRASS. Node aggregation is attentive, with attention
weights derived from edge representations. Edge aggregation is done through an MLP. For simplic-
ity, biases are not shown here.

C RESULTS ON HETEROPHILIC GRAPHS

Although tackling heterophily is not the main focus of this work, we have benchmarked GRASS
on roman-empire (Platonov et al., 2023), a heterophilic graph, with results shown in Table 5. The
experimental setup is identical to that described in Section 4.1, and hyperparameters can be found
in Appendix F.2.

Table 5: Performance on the roman-empire dataset. The performance of GRASS shown here is the
mean ± s.d. of 8 runs. The best and second-best results are highlighted. Performance numbers
other than that of GRASS are adapted from Chen et al. (2024).

Model roman-empire
Accuracy ↑

GCN 73.69 ± 0.74
GAT (-sep) 88.75 ± 0.41
GPS 82.00 ± 0.61
NAGphormer 74.34 ± 0.77
Exphormer 89.03 ± 0.37
Polynormer 92.55 ± 0.37
NeuralWalker 92.92 ± 0.36
GRASS (ours) 91.34 ± 0.22

16

Published as a conference paper at ICLR 2025

D ADDITIONAL ABLATION STUDY RESULTS

Table 6: Ablation study results for the number of added edges per node on PascalVOC-SP. Reported
values, except peak VRAM consumption, are the mean ± s.d. over 8 runs. The experimental setup
is identical to that described in Table 3. For comparison, the variance of model performance due to
randomness in the training process is 2.36e-5.

Added Edge per Node 0 3 6 9 12

Macro F1 ↑ 0.4430 0.5606 0.5670 0.5612 0.5619
± 0.0105 ± 0.0102 ± 0.0049 ± 0.0056 ± 0.0075

Variance in Macro F1
Due to Random Rewiring Deterministic 3.40e-6 2.86e-6 2.27e-6 2.54e-6

± 2.12e-6 ± 8.51e-7 ± 9.32e-7 ± 1.37e-6
Training Time
per Epoch (s)

15.66 29.55 42.96 56.31 69.87
± 0.07 ± 0.16 ± 0.09 ± 0.16 ± 0.28

Peak VRAM (MiB) 8525 14191 19893 25591 31231

Table 7: Ablation study results for graph encoding, graph rewiring, and attention mechanism on
PascalVOC-SP. This table shows the performance of each ablated model as the mean ± s.d. over 4
runs. The experimental setup is identical to that described in Table 4. *Using RRWP encoding with
128 random walk steps would result in out-of-memory during preprocessing. With D-RRWP (128
eigenpairs, 128 steps), the preprocessed dataset has size 6.40 GiB, while with RRWP (32 steps), the
preprocessed dataset has size 113.46 GiB, which is 17.73× larger.

Setup Macro F1 ↑
GRASS 0.5670 ± 0.0049

D-RRWP (128 eigenpairs, 128 steps)→ RRWP (32 steps)* 0.5690 ± 0.0045
D-RRWP (128 eigenpairs, 128 steps)→ LapPE (128 eigenvectors) 0.5387 ± 0.0070
Random regular rewiring→ Random non-regular rewiring 0.5622 ± 0.0081
GRASS attention→ GAT attention (Veličković et al., 2017) 0.4663 ± 0.0079
GRASS attention→ GatedGCN attention† (Bresson and Laurent, 2017) 0.4414 ± 0.0075
GRASS attention→ Transformer attention† (Vaswani et al., 2017) 0.4835 ± 0.0062

E COMPUTATIONAL PERFORMANCE

Table 8: Computational performance of GRASS on GNN Benchmark Datasets. Training time per
epoch is the wall-clock time taken to complete a single training epoch, shown as the mean ± s.d.
over 30 epochs. Preprocessing time is the wall-clock time taken to load, preprocess, and store the
whole dataset prior to training. Specifications of the hardware used to run these experiments are also
shown here.

Dataset ZINC MNIST CIFAR10 PATTERN CLUSTER
Training Time per Epoch (s) 1.87 ± 0.07 11.83 ± 0.21 15.56 ± 0.10 33.58 ± 0.05 25.34 ± 0.03
Preprocessing Time 25s 1m 1s 1m 32s 33s 27s
Model Compilation Yes
Activation Checkpointing No
CPU AMD Ryzen 9 9950X
GPU NVIDIA RTX A6000 Ada

Table 9: Computational performance of GRASS on LRGB datasets. Training time per epoch is
shown as the mean ± s.d. over 30 epochs for Peptides-func and Peptides-struct, and over 10 epochs
for PascalVOC-SP and COCO-SP. The definition of statistics are identical to that described in Ta-
ble 8.

Dataset Peptides-func Peptides-struct PascalVOC-SP COCO-SP
Training Time per Epoch (s) 6.19 ± 0.30 5.90 ± 0.03 42.96 ± 0.09 539.50 ± 0.32
Preprocessing Time 1m 10s 1m 32s 3m 58s 19m 49s
Model Compilation Yes Yes
Activation Checkpointing No Yes
CPU AMD Ryzen 9 9950X
GPU NVIDIA RTX A6000 Ada

17

Published as a conference paper at ICLR 2025

F EXPERIMENTAL SETUP

F.1 DATASETS

Table 10: Statistics of GNN Benchmark Datasets, adapted from Rampášek et al. (2022).
Dataset # Graphs Avg. # Nodes Avg. # Edges Directionality Task Metric
ZINC 12000 23.2 24.9 Undirected Graph Regression MAE ↓
MNIST 70000 70.6 564.5 Directed Graph Classification Accuracy ↑
CIFAR10 60000 117.6 941.1 Directed Graph Classification Accuracy ↑
PATTERN 14000 118.9 3039.3 Undirected Node Classification Accuracy ↑
CLUSTER 12000 117.2 2150.9 Undirected Node Classification Accuracy ↑

Table 11: Statistics of LRGB datasets, adapted from Dwivedi et al. (2022).
Dataset # Graphs Avg. # Nodes Avg. # Edges Avg. Short. Path Avg. Diameter Task Metric
Peptides-func 15535 150.94 307.30 20.89 ± 9.79 56.99 ± 28.72 Graph Classification AP ↑
Peptides-struct 15535 150.94 307.30 20.89 ± 9.79 56.99 ± 28.72 Graph Regression MAE ↓
PascalVOC-SP 11355 479.40 2710.48 10.74 ± 0.51 27.62 ± 2.13 Node Classification Macro F1 ↑
COCO-SP 123286 476.88 2693.67 10.66 ± 0.55 27.39 ± 2.14 Node Classification Macro F1 ↑

F.2 HYPERPARAMETERS

Table 12: Model hyperparameters for experiments on GNN Benchmark Datasets. Hidden layers of
the task head, if any, use the GLU activation function (Dauphin et al., 2017).

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
Parameters 496545 103690 103738 495298 495558
Attention Layers 49 15 15 53 53
Attention Layer Dim. 32 24 24 32 32
Task Head Hidden Dim. 192 144 144 N/A (Linear) N/A (Linear)
Epochs 2000 200 400 500 50
Warmup Epoch Ratio 0.1 0.05 0.1 0.1 0.1
Batch Size 200 200 200 200 200
Initial Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Peak Learning Rate 5e-4 1e-3 1e-3 1e-3 1e-3
Final Learning Rate 1e-7 1e-7 1e-7 3e-4 1e-7
Betas (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98)
Weight Decay Factor 0.5 0.3 0.3 3.0 0.3
Label Smoothing Factor N/A (Regression) 0.1 0.1 0.1 0.1
Residual Connection Scale α 0.2 0.4 0.4 0.2 0.2
Random Walk Encoding Type RRWP RRWP RRWP RRWP RRWP
(D-)RRWP Random Walk Length 32 24 24 32 32
Random Regular Graph Degree 6 6 6 6 6
Random Edge Removal Rate 0.1 0.1 0.1 0.5 0.5

Table 13: Model hyperparameters for experiments on LRGB datasets and the roman-empire dataset.
Hidden layers of the task head, if any, use the GLU activation function (Dauphin et al., 2017). *This
dataset consists of a single graph.

Model Peptides-func Peptides-struct PascalVOC-SP COCO-SP roman-empire
Parameters 500074 498315 501493 499377 2075730
Attention Layers 48 48 53 53 24
Attention Layer Dim. 32 32 32 32 96
Task Head Hidden Dim. 192 192 N/A (Linear) N/A (Linear) N/A (Linear)
Epochs 500 500 500 100 4000
Warmup Epoch Ratio 0.1 0.1 0.1 0.1 0.1
Batch Size 200 200 200 200 1*

Initial Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Peak Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Final Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Betas (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98)
Weight Decay Factor 0.3 3.0 1.0 0.3 1.0
Label Smoothing Factor 0.1 N/A (Regression) 0.1 0.1 0.1
Residual Connection Scale α 0.2 0.2 0.2 0.2 0.3
Random Walk Encoding Type D-RRWP RRWP D-RRWP D-RRWP D-RRWP
(D-)RRWP Random Walk Length 128 64 128 64 256
Random Regular Graph Degree 3 3 6 6 3
Random Edge Removal Rate 0.1 0.1 0.1 0.1 0.5

18

	Introduction
	Related Work
	Methods
	Graph Encoding
	Random Rewiring
	Attention Mechanism
	Interpretations of GRASS

	Experiments
	Benchmarking GRASS
	Ablation Study

	Conclusion
	Limitations
	Reproducibility

	Random Rewiring
	Motivations for Superimposing Random Regular Graphs
	Pseudocode of the Permutation Model

	GRASS Attention
	Results on Heterophilic Graphs
	Additional Ablation Study Results
	Computational Performance
	Experimental Setup
	Datasets
	Hyperparameters

