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Figure 1: Details of the MoEs and feature projectors𝜓 chr,𝜓det-g in the proposed Rainmer.

A OVERVIEW
In this supplementary material, we first present details of the MoEs
and two feature projectors:𝜓 chr and𝜓det-g in the proposed Rainmer
(Appendix B). Subsequently, we conduct in-depth investigations of
the multi-view representations for image deraining and AllinOne
image restoration (Appendix C). Furthermore, we analytically quan-
tify the relationships among different datasets, which offers insights
into understanding dataset cooperation, competition, and conflicts.

B ARCHITECTURE OF MOES AND FEATURE
PROJECTORS

MoEs. As stated in our paper, we implement the mixture of experts
(MoEs) the same as [1]. Specifically, given an input image x, we
first expand the channels to 48 with a convolutional layer as shown
in Fig. 1. This process results in a shallow feature 𝐹 sha. With the
help of MoEs, the shallow feature 𝐹 sha is further transferred into
𝐹 spa:

𝐹 spa = 𝑓MoEs (𝐹 sha), (1)
where 𝑓MoEs denotes the function of MoEs.

Typically, MoEs comprises four stages of mixture of expert in-
teraction. Each stage contains eight experts [1]: an average pooling
with kernel size 3 × 3, depth convolutional layers with kernel size
1 × 1, 3 × 3, 5 × 5, 7 × 7, and dilation convolutional layers with
kernel size 3 × 3, 5 × 5, 7 × 7. These eight experts are expected to
extract rich information to well perceive details, degradations, and
illuminations. Except for expert learning modules, MoEs utilizes a
weights generation module as shown in Fig. 1 to adjust responses
corresponding to each expert. The weights 𝑇 𝑠 , 𝑠 ∈ {1, 2, 3, 4} for all
four stages are generated from the same feature 𝐹 spa:

[𝑇 1,𝑇 2,𝑇 3,𝑇 4] = G ◦ GAP(𝐹 spa), (2)

where G represents a GAP-Conv-ReLU-Conv weights generation
module and GAP is the global average pooling operation. Notably,

each weight 𝑇 𝑠 ∈ R8 characterizes the response to eight experts in
the 𝑠-th stage. Denote 𝐹𝑠−1 as the output feature from (𝑠 − 1)-th
stage, then the 𝑠-th stage outputs:

𝐹𝑠 = 𝑓ReLU
(
𝑓Conv

(
𝑇 𝑠 ⊙ cat(𝑓exp (𝐹𝑠−1))

)
+𝐹𝑠−1

)
, 𝑠 = 2, 3, 4 (3)

𝐹 1 = 𝐹 spa, (4)

where 𝑓exp indicates the function of eight experts, cat is the concate-
nation operation, 𝑓Conv denotes a 1 × 1 convolutional layer, 𝑓ReLU
is the ReLU activation, and ⊙ means element-wise multiplication
with broadcasting.
Feature Projectors. The feature extracted by the MoEs contains
rich channel and spatial information that facilitates the perception
of image details, degradations, and illuminations. Therefore, we
further employ feature projectors to project the feature obtained
from MoEs into specific representation spaces. As shown in Fig. 1,
we employ a chromatic projector and a detail/degradation projector
to obtain corresponding representations. Each projector contains a
residual block with two squeeze-and-excitation layers [3] to facili-
tate channel interaction.

C MULTI-VIEW REPRESENTATION ANALYSIS
In this section, we provide an in-depth analysis to investigate the
effect of multi-view representations in image deraining, as well as
AllinOne image restoration.

C.1 Image Deraining
To train models on amalgamated Rain13K (synthetic), GT-Rain (real-
world), and GTAV-balance (nighttime) datasets, we proposed to
extract multi-view representations. Specifically, the detail/degrada-
tion representation is responsible for capturing image details and
degradations (rain streaks, noise, blur, etc.), while the chromatic
representation is introduced to perceive illuminations and color dis-
tortions caused by rain veiling effects. Hence, images with specific
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Figure 2: Visualization of multi-view representations and
dataset relationships among image deraining datasets.

degradation factors and illuminations represent different relation-
ships in different representation spaces, according to their similarity
in detail/degradation or illumination. To investigate this hypothesis,
we visualize multi-view representations among different datasets
using the UMAP [6] technique. Specifically, we choose images from
synthetic datasets (Rain200H [9], Rain800 [10], DDN [2]), real-world
dataset (GT-Rain), and nighttime dataset (GTAV-balance) for visual-
ization. Since rainy images in DDN contain 14 rain types, we select
the first type (light rain) and fifth type (thick rain) and denote them
as DDN_1 and DDN_5. We choose Rain200H, Rain800, and DDN
because they all contribute to the synthetic dataset Rain13K. As for
visualization, we randomly choose 500 rainy images from these
datasets. Note that the representations lie in a high dimensional
spherical surface, hence we utilize UMAP to project representations
into a 3D spherical surface and then visualize the 2D longitude-
latitude space (in another way, spherical coordinate system (𝑟 ,𝜃 ,𝜙)
with 𝑟 = 1) following [8].

Fig. 2 (a) & (b) display the embeddings of Rain200H, Rain800,
DDN_1, DDN_5, GT-Rain, and GTAV-balance in chromatic and
detail/degradation representation space, respectively. It can be seen
that datasets represent different embeddings in different spaces.
Specifically, in chromatic space, the GT-Rain and GTAV-balance
datasets are mainly isolated from other synthetic datasets, owing
to the color distortions in GT-Rain and low illuminance in GTAV-
balance. However, in detail/degradation space, Rain200H and GT-
Rain are nearly isolated from other datasets, due to extremely heavy
rain streaks in Rain200H and complex real-world degradations in
GT-Rain. In summary, the visualization results indicate that the pro-
posed contrastive learning method successfully learned chromatic
and detail/degradation representations. Additionally, we further
visualize the embedding space learned by AirNet [4], a degradation-
based contrastive learning method where images from different
datasets are assigned with different degradation factors. The result
is shown in Fig. 2 (c), which demonstrates a less compact space
compared to Rainmer in Fig. 2 (b). Typically, Rain200H is mixed
with other datasets in Fig. 2 (c).

In addition to visualizations of embeddings, these representa-
tions enable us to quantify the relationships among datasets, where
dataset cooperation and conflict could be investigated. To this end,

(b) Rainmer (detail/degradation)(a) Rainmer (chromatic)

Em
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dd
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gs

Re
la
tio
ns
hi
ps

(c) Rainmer (chromatic) (d) Rainmer (detail/degradation)

Figure 3: Visualization of multi-view representations and
dataset relationships among snow, rain, and raindrop
datasets.

we further compute the relationship score between two arbitrary
datasets by averaging cosine similarities of representations obtained
across these datasets. The results are presented in Fig. 2 (d)-(f). As
shown in Fig. 2 (d), GTAV-balance represents a negative relationship
to other datasets, indicating the influence of illumination intensity.
Moreover, the other datasets all share positive relationships, con-
tributing to the cooperation of learning on daytime datasets. The
result in Fig. 2 (e) provides different dataset relationships, where
Rain200H shares negative relationships with other datasets while
the remaining datasets represent deep cooperation. These coopera-
tions contribute to the outstanding performances of the proposed
Rainmer. In contrast, AirNet has learned worse dataset relation-
ships where dataset conflicts between GT-Rain / GTAV-balance and
synthetic datasets exist, demonstrating the poor performance of
AirNet.

Both the visualizations of embeddings and quantitative dataset
relationships have demonstrated the superiority of the proposed
method.

C.2 Allinone Image Restoration
We further follow Appendix C.1 to visualize learned embeddings
on the AllinOne dataset. Similarly, we randomly choose 500 images
from the snow, rain, and raindrop subset in AllWeather [5] for visu-
alization. The results are presented in Fig. 3. In the chromatic space,
both Fig. 3 (a) & (c) display positive relationships among different
datasets. However, Fig. 3 (b) & (d) demonstrate that degradation
factors of snow, rain, and raindrop are quite different, resulting in
negative relationships, the same as observed in [4, 7].
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