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Abstract Neural networks often are highly redundant and can thus be e�ectively compressed to a 4

fraction of their initial size using model pruning techniques without harming the overall 5

prediction accuracy. Additionally, pruned networks need to maintain robustness against 6

attacks such as adversarial examples. Recent research on combining all these objectives 7

has shown signi�cant advances using uniform compression strategies, that is, all weights 8

or channels are compressed equally according to a preset compression ratio. In this paper, 9

we show that employing non-uniform compression strategies allows to improve clean data 10

accuracy as well as adversarial robustness under high overall compression—in particular 11

using channel pruning. We leverage reinforcement learning for �nding an optimal trade-o� 12

and demonstrate that the resulting compression strategy can be used as a plug-in replacement 13

for uniform compression ratios of existing state-of-the-art approaches. 14

1 Introduction 15

Deploying deep neural networks on resource-constrained hardware is often hindered by the 16

sheer size of the network. Neural network pruning e�ectively removes redundancy at di�erent 17

structural granularity to reduce a model’s size. In safety-critical environments, these networks 18

additionally need to be robust against attacks, such as adversarial examples (Szegedy et al., 2014). 19

With adversarial training (Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2020) it is possible to 20

signi�cantly improve robustness by introducing adversarial examples into the training process. 21

However, recent research (Zhang et al., 2019) suggests that large networks have higher adversarial 22

robustness. Consequently, it is inherently di�cult to strike a balance between the compactness and 23

robustness against attacks when pruning neural networks. 24

The typical network pruning procedure consists of three stages (Liu et al., 2019): First, an 25

over-parameterized model is trained. Second, this pre-trained model is pruned based on a speci�c 26

criterion and strategy. Finally, the pruned network is �ne-tuned to recover the potentially lost 27

performance. The most critical step in the procedure is the second one that de�nes the pruning 28

objective and any additional objectives next to network compression itself. Han et al. (2015) propose 29

to prune network connections following the order of weight magnitude (OWM), which later on has 30

also been shown e�ective for robustness-aware pruning by Sehwag et al. (2019). Ye et al. (2019) and 31

Gui et al. (2019) inherit this criterion and de�ne network pruning as an optimization problem that 32

can be solved by the alternating direction method of multipliers (ADMM), initially proposed by 33

Boyd et al. (2011). Similarly, Sehwag et al. (2020) formulate the pruning criterion as an importance 34

score-based optimization problem that, however, anchors adversarial robustness deeply in the 35

pruning process itself. While both OWM (Ye et al., 2019) and optimization-based criteria (Sehwag 36

et al., 2020) yield good results for robust-aware pruning, they require the speci�cation of the 37

compression ratio as an hyper-parameter that is then used uniformly across all layers. Madaan 38

et al. (2020) propose ANP-VS to combine adversarial training with pruning and thus they merge the 39

previously mentioned steps one and two. As such, the method pursues a di�erent goal for which 40

compression does not need to be adjustable. However, ANP-VS learns an implicit non-uniform 41

compression that yields promising results. 42

In this paper, we follow this intuition and investigate the possibility of improving 43

both compression and adversarial robustness of existing state-of-the-art approaches using 44
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non-uniform compression strategies. The necessity of non-uniform compression is most evident for 45

channels for which Table 1 provides a �rst glimpse of the improvements made by our method 46

Heracles. We prune a network’s layers based on the order of weight magnitude (OWM), but deter- 47

mine the compression rate per layer. Inspired by He et al. (2018), we leverage deep reinforcement 48

learning (Deep-RL) to automatically �nd this global pruning strategy to yield an optimal trade-o� 49

between accuracy and adversarial robustness of the pruned network. The determined compression 50

strategy is then used with approaches for pruning a pre-trained model which allows for increasing 51

accuracy on benign as well as adversarial inputs. 52

Method Channel Acc. on Benign Data Acc. on Attack Data

Compr. Uniform / Non-Uniform [%] Uniform / Non-Uniform [%]

Hydra 0.50 69.92 / 76.82 +6.90 39.82 / 47.06 +7.24
0.10 10.00 / 59.83 +49.83 10.00 / 38.70 +28.70

R-ADMM 0.50 72.65 / 77.59 +4.94 43.60 / 46.16 +2.56
0.10 56.24 / 67.04 +10.80 32.65 / 41.38 +8.73

Table 1: Uniform vs. non-uniform pruning of channels for VGG16 on CIFAR-10.

Contributions and Impact. We show that a non-uniform, global compression strategy is bene�cial 53

for e�ective network pruning when considering adversarial robustness. The compression strategy 54

learned by Heracles can be applied to state-of-the-art pruning techniques as a plug-in replacement 55

for manually speci�ed compression rates to improve original (benign) and adversarial accuracy 56

whilst yielding the same overall compression. In extensive experiments with the CIFAR-10, SVHN, 57

and ImageNet datasets, we show to surpass the performance of Robust-ADMM (Ye et al., 2019) 58

and Hydra (Sehwag et al., 2020) in pruning channels that originally use uniform compression 59

strategies. As shown in Table 1 for channel pruning on VGG16, we yield up to 10.80 % higher 60

begin accuracy and 8.73 % higher accuracy under adversarial inputs using Robust-ADMM. For 61

Hydra, we even successfully escape from a completely damaged model and achieve a remarkable 62

performance improvement. In summary, we are able to signi�cantly improve channel pruning 63

over related work and maintain at least on-par performance in weight pruning. In practice, the 64

additionally gained model robustness helps increase the security and safety of applications on 65

hardware-constraint platforms, for instance, in autonomous driving or edge AI. Moreover, channel 66

pruning is particularly suitable for hardware deployment as it straightforwardly reduces the 67

dimensionality of the necessary computations and thus also speeds up inference. 68

2 Background 69

We begin by brie�y recapping concepts that are central to our approach, such as basic background 70

on network pruning, adversarial training, and reinforcement learning. 71

2.1 Network Pruning 72

Network pruning enables to compress over-parameterized neural networks by removing structural 73

redundancy (Han et al., 2015, 2016). For this, usually a binary mask " with elements in {0, 1} 74

is introduced to cancel out redundant network connections at weight level or channel level. We 75

represent this masking operation by the Hadamard product � that transforms the model (its 76

parameters) at the ; th layer of the network, \ (;) , to a sparse (pruned) representation \̃ (;) : 77

\̃ (;) = " (;) � \ (;) .

Note that determining the importance of connections, and thus populating the binary mask " , 78

depends on the criterion used in the pruning stage. The order of weight magnitude (OWM) has 79
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been shown to outperform other criteria such as Variational Dropout (Molchanov et al., 2017), Soft 80

Weight-Sharing (Karen Ullrich, 2017), or Filter Standard Deviation (Sun et al., 2019). Thus, it is seen 81

as the gold standard in network pruning (Liu et al., 2019). Consequently, for Heracles, we pick up 82

the OWM criterion for pruning as well but learn a global strategy. Similar to Sehwag et al. (2020), 83

we use scored masks to binarize the pruning mask and initially assign scores to each element of 84

the pruning masks " based on scaled-absolute-initialization: 85

k (;) =
|\ (;) |

max |\ (;) |
,

where |\ (;) | takes the absolute values of model’s parameters of layer ; . Note that for channel 86

pruning, score masks are commonly initialized by the sum of absolute weights along each channel 87

to comply with the OWM criterion. 88

2.2 Adversarial Training 89

To date, adversarial training (Madry et al., 2018) in its di�erent manifestations (Zhang et al., 2019; 90

Wong et al., 2020) is the most e�cient defense against adversarial examples (Szegedy et al., 2014). 91

It generates attacks and incorporates them in the training process, solving a min-max optimization 92

problem, which is formally expressed as: 93

min
\

E
(G,~)∼DC

[
max
X

Ladv (\, G + X,~)
]
.

Input pairs of a data sample G ∈ R3 and its label ~ ∈ [:] are drawn from the training data 94

distribution DC , where : represents the number of classes. As the normal training procedure, the 95

outer minimization reduces the loss function Ladv , for instance, the cross-entropy loss. The inner 96

maximization is formulated to increase the maximally allowed (adversarial) perturbation X for 97

each input data sample G , and is solved by projected gradient descent (PGD) (Madry et al., 2018). 98

Building on top of this concept, several approaches have been proposed that improve upon the 99

performance of PGD-based adversarial training (Zhang et al., 2019; Shafahi et al., 2019; Wong et al., 100

2020). 101

However, Guo et al. (2018) and Ye et al. (2019) show that increasing adversarial robustness is 102

accompanied with stronger parameter distribution, which commonly hinders network pruning. By 103

striving for a globally optimal compression strategy with varying compression ratios per layer, we 104

show that adversarial robustness and large compression rates are not mutually exclusive. 105

2.3 Reinforcement Learning 106

For reinforcement learning (RL), an agent strives for an action strategy to maximize the reward R 107

over multiple episodes 8 that provides feedback about the e�ectivity of certain actions in a speci�c 108

environment (Sutton and Barto, 2018): 109

max
c

E

[ ∞∑
8=0

W8 R8 | B0 = B
]
.

Here, B refers to the agent’s state and W represents the discount rate in each episode 8 . Policy c aims 110

to maximize the cumulative reward by optimizing the mapping from states to actions taken by the 111

RL agent. To tailor this process to a particular application, such as network pruning, we have to 112

de�ne a state space representing the environment as well as an action space that speci�es allowed 113

actions. The agent then outputs a so-called action space vector to in�uence its “location” in the 114

environment. In our case, this environment is the model \ we operate on. 115

For instance, Huang et al. (2018) deploy a RL agent for a �lter pruning, where the state space is 116

composed of the number of input feature maps and the shape in each �lter. The agent returns a 117

discrete action vector that scores the importance of each �lter. 118
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Figure 1: Schematic depiction of Heracles, with an intuition of channel and weight pruning (left) and
the global composition of the layer’s state (center) as used for reinforcement learning (right).

3 Non-Uniform Adversarially Robust Pruning 119

Heracles searches for the globally optimal pruning strategy that increases compression of an 120

adversarially trained network with minimal degradation on both benign accuracy and adversarial 121

robustness. A schematic depiction is provided in Fig. 1. In contrast to focusing on direct connections 122

in a network as implemented in related work (Sehwag et al., 2020), we consider the relations of all 123

layers to each other (pre and post relations) and observe that these far-reaching contexts e�ect the 124

robustness after pruning and �ne-tuning. Finding an optimal compression strategy [0 (1) , . . . , 0 (!) ] 125

under these constraints for all ! layers is challenging and is best solved automatically. 126

Model compression. We consider Θ(;) as the ; th layer’s total number of parameters and de�ne 127

the compression rate 0 (;) as the ratio of preserved parameters Θ(;)
B0E43

to all parameters of layer ; , 128

0 (;) =
Θ(;)
B0E43

Θ(;)
.

The compression rate for the entire network, 0, is computed analogously. In line with He et al. 129

(2018), we make sure that the network is not compressed below a speci�ed global compression 130

rate, 0<8= . For this, the layer-speci�c compression rate 0 (;) is constrained to ensure that the overall 131

compression is lower than the sum of i) already pruned parameters of all layer up to ; − 1, ã , 132

ii) parameters that are about to be pruned in layer ; , \̃ (;) , and iii) potentially removed parameters 133

by the most aggressive compression rate 0<8= in layers from ; + 1 onward. This mechanism allows 134

to precisely control the network’s size. For Heracles, we additionally adapt the action range to 135

�t di�erent network compression rates and allow for weight as well as channel pruning. In the 136

supplementary material, we provide further details on the process. 137

Learning Globally Optimal Compression 138

Based on the above de�nition of network compression, we resume to de�ne the details of learning 139

a globally optimal compression strategy using reinforcement learning (Algorithm 1). At each 140

iteration of the searching process, we prune the model as outlined in Section 2.1 to determine the 141

accuracy and robustness of the current state. In the following, we detail the de�nition of the state 142

and action space, specify the reward function used, and elaborate on the exploration phase. 143

State space. For reinforcement learning, we de�ne the RL state B (;) for layer ; based on the following 144

eleven features: 145(
;, 28=, 2>DC , ℎ,F, :, stride,Θ(;) , ã, a, 0?A4E

)
.
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All features but the compression rate of the previous layer, 0?A4E , are dependent on layer ; : For 146

instance, the ; th layer and its output have shape : × : × 28= × 2>DC and ℎ ×F × 2>DC , respectively. 147

stride refers to the striding o�set used for convolutional layers, which may vary depending on 148

input size of subsequent layers. Additionally, we use Θ(;) to denote the number of parameters of a 149

speci�c layer, and specify the number of compressed parameters, ã , that are produced by pruning so 150

far in preceding layers, as well as parameters remaining in latter layers, a . Moreover, we normalize 151

all states to avoid over�tting. 152

Algorithm 1 Heracles’ non-uniform strategy search
Input: Pretrained Model \ , The number layers !, RL-Agent RLA, Target rate 0C0A64C , Rate range
[0<8=, 0<0G ], Warm-up episodes #FD? , Search episodes #BA2ℎ , Valid-set DE0;

Output: Global optimal non-uniform strategy [0 (1) , ..., 0 (!)]

1: Mask scores initialization: k =
|\ |

max( |\ |)
2: for Episode = 1 . . . #BA2ℎ do
3: for ; = 1 . . . ! do

4: if Episode ≤ #FD? then
5: 0 (;) = A0=3><_D=8 5 >A<(0, 1) # Use random compression rate
6: else

7: Train RL-Agent with sampled data
8: 0 (;) = RLA(B (;) ) +NCAD=2 (0, 1, f2) # Predict compression rate
9: end if

10: 0 (;) = 0<8= + 0 (;) · (0<0G − 0<8=) # Re-scale rate

11: 0
(;)
0;;>F

= "0G −�;;>F −�2C8>=(0 (;) , 0C0A64C ) # Compute maximal allowed rate

12: 0 (;) = min(0 (;) , 0 (;)
0;;>F
) # Action control by 00;;>F

13: " (;) = 1

(
k (;) ≥ k (;) 

)
# Binary mask transformation with 0 (;)

14: \̃ (;) = " (;) � \ (;) # Layer pruning
15: end for

16: Robustness evaluation on \̃ with DE0;

17: end for

Action space. The action space of the RL agent here is (roughly speaking) the range of valid 153

compression ratios. In contrast to prior work (Huang et al., 2018), we do not directly produce 154

a discrete binary mask for all layers, but use the Deep Deterministic Policy Gradient (DDPG) 155

algorithm (Lillicrap et al., 2016) to predict a continuous compression rate along each layer. This 156

allows us to approach �ner granularity and prune layers that have di�erent shapes. Consequently, 157

the action space used for Heracles is in the range of (0, 1]. 158

To facilitate more stable reinforcement learning, we use a replay bu�er that is initialized in 159

the RL agent’s warm-up stage using a random uniform distribution to generate 0 (;) (line 5). In the 160

exploration-exploitation stage of the RL process, we then use a truncated normal distribution to 161

add noise with f = 0.5 which exponentially decays with each episode (line 8): 162

NCAD=2 (0 (;) , f2, 0, 1)

Further details on the action range and the action control algorithm are speci�ed in the sup- 163

plementary material, where we introduce the used thresholds and elaborate on the function to 164

selected the maximally allowed action (line 10– 12). 165
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Exploration. The RL agent operates on layer-based states B (;) and predicts a compression rate 0 (;) . 166

We then order the values by magnitude (OWM) and introduce a thresholdk (;) that implements the 167

determined compression rate 0 (;) . Values lower thank (;) are zeroed out to construct the binary 168

pruning mask " (line 13). We evaluate the robustness as well as benign accuracy of the pruned 169

network on the validation dataset to determine the agent’s reward R (line 16) and distribute it 170

to all state vectors. Additionally, these are stored in the replay bu�er to facilitate more stable 171

reinforcement learning. 172

Reward function. Next to the accuracy on clean, benign data Acc14= , we additionally incorporate 173

the adversarial robustness as “adversarial accuracy” Acc03E (adversarial examples that are still 174

classi�ed correctly) in the reward function to yield an optimal trade-o� between both: 175

R = Acc14= + Acc03E
For e�ective and fast exploration, the reward is obtained on the validation dataset only, which 176

is sampled homogeneously from each class of the training data. For CIFAR-10, as an example, we 177

choose 500 images from every class, such that we yield an overall number of 5,000 samples for our 178

validation dataset and thus 10 % of the training dataset. 179

4 Evaluation 180

We evaluate the performance of Heracles’s non-uniform compression strategies by enhancing 181

state-of-the-art robust-aware pruning methods (Section 4.1), before we analyze the found strategies 182

(Section 4.2) and discuss our method’s convergence (Section 4.3). For this, we experiment with 183

multiple architectures that are adversarially pre-trained on di�erent datasets (CIFAR-10, SVHN, 184

and ImageNet). The pruning methods then attempt to maintain accuracy and robustness whilst 185

achieving high compression rates of either channels or weights. 186

In the following, we use CIFAR-10 as the representative for small-scale datasets and in the 187

Appendix we report corresponding results for SVHN, in which the class-wise imbalance (see Table 5) 188

makes the pruning more in challenge. For both small-scale datasets, we consider ResNet18 (He 189

et al., 2016), VGG16 (Simonyan and Zisserman, 2015) and WRN-28-4 (Zagoruyko and Komodakis, 190

2016), and thereby align with the experiments in related work. As the approaches we compare to 191

use slightly di�erent variants of VGG16, we settle on the de�nition of Sehwag et al. (2020) for all 192

our experiments. In the strategy search, we bootstrap the pruning stage with #FD? = 100 episodes 193

as warm-up to generate random strategies, and #BA2ℎ = 300 episodes for Deep-RL exploration- 194

exploitation. Further details on the experimental setup are provided in the supplementary material. 195

Considered Adversaries. We use PGD adversarial training for pre-training and �ne-tuning, and 196

also Heracles’s RL agent uses PGD adversarial examples (Madry et al., 2018) to validate the pruned 197

network during strategy search. To generate these, we initialize with random noise and make 198

10 perturbation steps per sample. For datasets CIFAR-10 and SVHN, models are trained with the 199

maximal ;∞ perturbation budget and step sizes of 8⁄255 and 2⁄255, respectively. For ImageNet, we use 200

“free adversarial training” (Shafahi et al., 2019) with 4 replays, where the perturbation parameters 201

are set to 4⁄255 and 1⁄255. The robustness (accuracy on adversarial examples) of the pruned models is 202

then evaluated with multiple attack strategies each applied to the entire testing dataset with the 203

same perturbation strength considered during training: FGSM (Goodfellow et al., 2015), PGD-10 and 204

PGD-20 (Madry et al., 2018), and C&W∞ (Carlini and Wagner, 2017) optimized by PGD (20 steps). 205

CO2 Emission. We have conducted all our experiments on Nvidia RTX-3090 GPU cards and have 206

consumed about 960GPUhours in total. This amounts to an estimated total CO2 emissions of 207

204.96 kgCO2eq when using Google Cloud Platform in region europe-west31. 208

1Calculated using the “Machine Learning Impact Calculator” at https://mlco2.github.io/impact/
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4.1 Improving related work using Heracles 209

We consider two approaches, Hydra and Robust-ADMM, that use uniform compression strategies 210

for pruning neural networks, whilst maintaining both benign accuracy (Acc14=) and adversarial 211

robustness, that is, the accuracy on adversarially modi�ed inputs (Acc03E). In the following, we 212

show that it is possible to learn a non-uniform compression strategy that improves adversarial 213

robustness when applied to Hydra or Robust-ADMM. Moreover, Heracles is applicable to channel 214

and weight pruning likewise—channel pruning yields a larger potential for improvement, while 215

weight pruning is on par with related work. We simply replace the uniformly used compression 216

ratio of Hydra and Robust-ADMM with the strategy found by our method and present the results 217

in Tables 2a and 2b for channel and weight pruning, respectively. 218

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

VG
G1

6 Hydra 0.50 69.92 / 76.82±0.61 44.63 / 51.63±0.27 39.82 / 47.06±0.43 39.02 / 45.96±0.45 36.95 / 43.98±0.40
0.10 10.00 / 59.83±0.78 10.00 / 41.20±0.52 10.00 / 38.70±0.38 10.00 / 38.20±0.61 10.00 / 35.37±0.40

R-ADMM 0.50 72.65 / 77.59±0.46 49.52 / 51.71±0.24 43.60 / 46.16±0.16 43.12 / 45.45±0.39 41.85 / 43.54±0.36
0.10 56.24 / 67.04±0.54 35.96 / 44.68±0.47 32.65 / 41.38±0.45 30.21 / 40.79±0.47 28.20 / 37.98±0.36

Re
sN

et
18 Hydra 0.50 70.36 / 77.56±0.31 48.63 / 51.50±0.32 42.43 / 47.14±0.14 41.73 / 46.22±0.14 39.27 / 44.81±0.04

0.10 10.00 / 67.52±0.67 10.00 / 44.13±0.72 10.00 / 40.83±0.58 10.00 / 40.27±0.60 10.00 / 38.07±0.56

R-ADMM 0.50 76.99 / 78.06±0.32 49.21 / 50.96±0.24 44.40 / 46.11±0.29 42.67 / 45.19±0.24 40.51 / 44.20±0.29
0.10 63.05 / 69.17±0.94 41.94 / 44.96±0.90 37.79 / 41.71±0.81 36.96 / 40.67±1.09 35.16 / 38.74±0.79

W
RN

-2
8-

4 Hydra 0.50 75.60 / 80.30±0.55 48.25 / 53.59±0.12 42.93 / 48.28±0.27 41.82 / 47.23±0.35 39.96 / 45.99±0.18
0.10 10.00 / 61.93±0.88 10.00 / 40.13±0.62 10.00 / 37.70±0.54 10.00 / 37.26±0.55 10.00 / 35.20±0.58

R-ADMM 0.50 79.67 / 80.11±0.32 51.58 / 53.28±0.49 46.41 / 48.26±0.55 45.41 / 47.35±0.48 43.70 / 45.69±0.56
0.10 66.41 / 66.68±0.82 40.86 / 43.51±0.38 37.59 / 40.56±0.29 36.65 / 40.06±0.32 34.82 / 37.70±0.34

(a) Channel Pruning

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

VG
G1

6 Hydra 0.10 77.51 / 78.21±0.60 50.70 / 52.00±0.21 45.66 / 47.11±0.26 44.57 / 46.07±0.36 43.24 / 44.68±0.23
0.01 63.99 / 64.33±0.71 42.28 / 44.58±0.66 39.40 / 41.44±0.55 38.86 / 40.85±0.57 36.34 / 38.66±1.00

R-ADMM 0.10 75.41 / 74.38±5.57 49.18 / 49.08±4.05 44.37 / 45.31±2.76 43.33 / 43.70±4.18 41.28 / 43.35±2.80
0.01 47.40 / 49.85±1.93 35.22 / 35.30±1.21 31.10 / 33.02±1.10 30.85 / 32.58±1.12 30.24 / 32.66±1.94

Re
sN

et
18 Hydra 0.10 78.14 / 78.58±0.58 51.14 / 51.45±0.35 46.75 / 46.45±0.27 45.90 / 45.48±0.36 43.66 / 44.42±0.24

0.01 71.01 / 72.92±0.96 47.53 / 48.42±0.62 43.42 / 44.43±0.58 42.37 / 43.69±0.55 40.25 / 41.94±0.60

R-ADMM 0.10 78.33 / 78.60±0.79 50.68 / 50.91±0.69 45.46 / 45.87±0.78 44.48 / 44.85±0.88 43.23 / 43.57±0.62
0.01 67.01 / 62.91±1.90 43.57 / 43.99±1.30 40.35 / 40.80±1.12 39.71 / 40.26±1.08 37.58 / 41.38±1.78

W
RN

-2
8-

4 Hydra 0.10 81.91 / 81.77±0.38 54.26 / 53.86±0.49 47.87 / 47.82±0.68 46.80 / 46.77±0.78 46.07 / 45.86±0.66
0.01 68.74 / 71.63±0.72 44.83 / 46.65±0.64 41.10 / 43.36±0.46 40.12 / 42.70±0.51 38.95 / 40.71±0.58

R-ADMM 0.10 80.10 / 80.12±0.57 51.98 / 52.73±0.48 46.98 / 47.34±0.78 46.03 / 46.45±0.89 44.43 / 45.03±0.65
0.01 59.88 / 61.68±0.82 38.31 / 39.74±0.65 36.28 / 37.09±0.63 35.98 / 36.61±0.68 35.76 / 36.83±0.79

(b) Weight Pruning

Table 2: Uniform vs. non-uniform pruning on CIFAR-10 with Hydra and Robust-ADMM. The accuracy
of both strategies is presented in [%] left and right of the / character, respectively, considering
benign input data and 4 di�erent attacks. Non-uniform strategies generated by Heracles are
averaged over 5 experiments and show the standard deviation in ± notation.

CIFAR-10. Heracles’s compression strategy can improve the performance of VGG16, ResNet18, 219

and WRN-28-4 pruned by Hydra as well as Robust-ADMM—partly signi�cantly. As an example, 220
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for pruning channels at a compression rate of 02 = 0.5, the benign and adversarial accuracy in 221

VGG16 pruned by Hydra increase by 6.90 % and up to 7.03 % (C&W∞), respectively. A similar trend 222

is observed for Robust-ADMM and other architectures as well, with WRN-28-4 being the most 223

challenging setting. For aggressive channel pruning (02 = 0.1), Heracles enables Hydra to even 224

avoid an completely damaged model that yields 10 % accuracy and thus random outputs. For weight 225

pruning, the results are less obvious. While Heracles’s non-uniform strategies do not yield similar 226

high levels of improvement they are still slightly better or on par with the uniform compression 227

rates. Again, the results are consistent across architectures for both, Hydra and Robust-ADMM. 228

SVHN. As a second small-sized dataset, we have conducted experiments on the SVHN datasets. 229

While similar in size to the CIFAR-10 dataset, SVHN is highly unbalanced (as shown in Table 5), 230

which can pose additional challenges. In Appendix A.3, we report details on the results and visualize 231

the compression strategies found by Heracles for the di�erent architectures in Fig. 4. 232

ImageNet. Next, we apply our method for moderate pruning of ResNet50 learned on the large-scale 233

dataset ImageNet. Due to the size of the dataset, we reduce the RL agent’s validation dataset for 234

strategy search to 1 % of the training data. Sehwag et al. (2020) demonstrate Hydra’s e�ectivity for 235

pruning weights of a model learned on ImageNet and we are able to con�rm these results in our 236

experiment as shown in Table 3. 237

Pruning Method Benign Data FGSM PGD-10 PGD-20 C&W∞

channels (02 = 0.5) Hydra 46.67 / 50.03 24.34 / 26.18 21.45 / 23.61 20.79 / 22.45 19.36 / 21.06
R-ADMM 48.62 / 50.52 21.16 / 23.85 21.19 / 22.15 21.21 / 23.88 19.36 / 21.47

weights (0F = 0.1) Hydra 49.08 / 48.71 26.26 / 25.81 23.25 / 23.19 22.75 / 22.31 21.21 / 20.70
R-ADMM 35.83 / 37.45 15.42 / 16.51 14.89 / 15.89 14.88 / 15.83 12.60 / 13.81

Table 3: Uniform vs. non-uniform pruning on ImageNet with Hydra and Robust-ADMM. The accuracy
of both strategies is presented in % left and right of the / character, respectively.

While for Hydra results with non-uniform compression remains similar, Heracles’s strategies 238

can improve Robust-ADMM in weight pruning. However, the added value does not su�ce to help 239

Robust-ADMM surpass Hydra. Moreover, in channel pruning both Hydra and Robust-ADMM 240

show obvious improvements over uniform compression by using our method’s strategies and both 241

methods are then nearly on-par in robustness and performance on benign data. 242

4.2 Analysis of Heracles’s Strategies 243

We take weight pruning (0F = 0.1) and channel pruning (02 = 0.5) on CIFAR-10 as an example 244

and inspect the global compression strategies learned by our method. Fig. 2 visualizes the learned 245

strategies by Heracles for VGG16, ResNet18, and WRN-28-4. 246

Channel pruning. The learned strategies for channel pruning (orange lines) consistently preserve 247

more parameters in the �rst several layers and prune the convolutional layers at the end of the 248

networks more aggressively. The strategy, however, di�ers in compression rates of fully connected 249

layers of the network architectures. For VGG16, it is notable that the RL agent preserves much 250

more of them than the middle convolutional layers. Interestingly, in residual block based networks 251

(ResNet18 and WRN-28-4) the RL agent discovers pruning potential on the last connected layer. 252

Weight pruning. With an overall compression rate of 0F = 0.1, the learned strategies for weight 253

pruning (blue lines) are more diverse for the individual network architectures. Networks with 254

residual blocks share parameters which causes a more homogeneous parameter distribution on 255

each layer. As an example, for ResNet18 the agent does not preserve front layers but prunes layers 256
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more homogeneously. Also for WRN-28-4 the pruning strategy approaches uniformity, which also 257

explains the similarity in results between uniform and non-uniform strategies in Table 2b. For 258

VGG16 (a conventional CNN without shortcut layers) in contrast, Heracles particularly preserves 259

layers in the front and prunes layers in the back more distinctively. 260
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Figure 2: Heracles’s strategies for pruning channels (02 = 0.5; dashed orange line) and weights
(0F = 0.1; solid blue line) of VGG16, ResNet18, and WRN-28-4 on CIFAR-10.

4.3 Pruning Convergence 261

We have shown the capability of Heracles’s strategies to outperform related work for compressing 262

channels on CIFAR-10, but our evaluation also exposes the lack of signi�cant improvement when 263

pruning weights. In this section, we take ResNet18 as an example to inspect the RL agent’s searching 264

progress in Fig. 3 to detail the underlying reasons. Top sub-�gures (a and b) refer to moderate 265

compression, bottom ones (c and d) show very aggressive pruning. Left sub-�gures (a and c) belong 266

to channel pruning, whereas right sub-�gures (b and d) show weight pruning. 267

Channel pruning. Convergence for moderate pruning at 02 = 0.5 works �awlessly. After 300 steps 268

the RL agent has successfully determined a strategy that reaches the highest reward. While high 269

initial exploration leads to large �uctuation, after 350 episodes the reward converges. At 02 = 0.1, 270

in turn, model performance is strongly degraded by the highly aggressive pruning. However, the 271

RL agent keeps excavating better strategies, yielding good results eventually (cf. Table 2a). 272

Weight pruning. At 0F = 0.1, the process exhibits a certain instability due to the high sensitivity 273

to the compression rate. Still, the �nal stage converges to the overall best reward. Di�erently, 274

aggressive pruning at 0F = 0.01 hinders successful exploration. The best strategies found, thus, 275

merely realize performance on-par with uniform pruning. 276
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Figure 3: Convergence of Heracles’s RL agent for pruning ResNet18 on CIFAR-10.

5 Limitations 277

Heracles exhibits three noteworthy limitations in practice: First, due to the randomness inherent to 278

reinforcement learning exploration, our method exhibits variance in the yield results and ultimately 279

cannot guarantee that the RL agent converges to an optimal strategy. Our experiments, however, 280

show that this still succeeds in the majority of the cases, surpassing the state of the art. Second, 281

Heracles’s non-uniform strategies are more e�ective for channel pruning than weight pruning. This 282

can be seen directly in the reported accuracy, but also the convergence visualization in Fig. 3, where 283

channel pruning (left) is more e�ective and stable than weight pruning (right)–even at aggressive 284

compression rates. Third, one needs to pay attention to runtime performance and exploration 285

e�ciency. Strategy search for pruning weights of the evaluated CIFAR-10 models, for instance, 286

requires 4.6× longer on average than channel pruning on a single NVIDIA RTX-3090 card. This 287

further emphasizes Heracles’s primary suitability for channel pruning. Moreover, models with 288

pruned channels will also be more resource-friendly during inference as channel pruning reduces 289

the dimensionality of computations rather than zeroing out single values. 290

6 Conclusion 291

Striking a balance between benign accuracy and adversarial robustness during pruning is chal- 292

lenging. Related work has shown impressive results using uniform compression strategies. With 293

Heracles, we present a method that learns a global but layer-speci�c and thus non-uniform com- 294

pression strategy, which can be used to bene�t existing, state-of-the-art approaches. For instance, 295

we increase performance for aggressive channel-pruning (02 = 0.1) with Robust-ADMM by up 296

to 10.80 % and 9.78 % (C&W∞) for benign and adversarial accuracy, respectively. Weight pruning 297

using our compression strategies has shown less distinctive results but still is slightly better or on 298

par with related work. This is founded in the fact that here the best compression strategy often is 299

close to uniformity. If so Heracles also �nds these close-to-uniform strategies. Such �exibility 300

when pruning deep neural networks is crucial in practice to adapt to the model at hand. The results 301

using non-uniform strategies are particularly promising on channel granularity, where Heracles 302

signi�cantly improves related work on adversarially robust pruning. 303
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Availablility 304

For the sake of reproducibility and to foster future research, we make the implementations of 305

Heracles for generating non-uniform pruning strategies publicly available at: 306

https://anonymous.4open.science/r/rl-prune-967A 307
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7 Reproducibility Checklist 383

1. For all authors. . . 384

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s 385

contributions and scope? [Yes] 386

(b) Did you describe the limitations of your work? [Yes] 387

(c) Did you discuss any potential negative societal impacts of your work? [No] Does not apply. 388

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? 389

[Yes] 390

2. If you are including theoretical results. . . 391

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our works focuses 392

on the experimental application of reinforcement learning for pruning strategy search. 393

(b) Did you include complete proofs of all theoretical results? [N/A] cf. above 394

3. If you ran experiments. . . 395

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 396

tal results, including all requirements (e.g., requirements.txt with explicit version), an 397

instructive README with installation, and execution commands (either in the supplemental 398

material or as a url)? [No] Our work aims to generate compression strategies that can be 399

used for related work. As such we do not include implementations of related work (that 400

uses our strategies), but refer the reader to existing open-source implementations. For out 401

strategy search, we provide all source code, a list of all requirements and a README for 402

the implementation. 403

(b) Did you include the raw results of running the given instructions on the given code and 404

data? [Yes] In the supplementary, we o�er the raw evaluation result for each single pruning 405

experiment, all of which contributes all evaluation tables in this paper. 406

(c) Did you include scripts and commands that can be used to generate the �gures and tables 407

in your paper based on the raw results of the code, data, and instructions given? [Yes] 408

(d) Did you ensure su�cient code quality such that your code can be safely executed and the 409

code is properly documented? [Yes] 410

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed 411

hyperparameter settings, and how they were chosen)? [Yes] 412

(f) Did you ensure that you compared di�erent methods (including your own) exactly on 413

the same benchmarks, including the same datasets, search space, code for training and 414

hyperparameters for that code? [Yes] 415

(g) Did you run ablation studies to assess the impact of di�erent components of your approach? 416

[No] Our method does not have multiple components suitable for an ablation study. 417

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] 418

(i) Did you compare performance over time? [N/A] Our evaluation does not involve a temporal 419

component. 420

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] 421
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(k) Did you report error bars (e.g., with respect to the random seed after running experiments 422

multiple times)? [Yes] 423

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] We keep using 424

all commonly used evaluation metrics (for accuracy and robustness) and models to evaluate 425

the performance of our work. All experiments are also conducted on commonly used 426

open-source datasets. We do not propose any new surrogate or other tabular benchmarks. 427

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 428

gpus, internal cluster, or cloud provider)? [Yes] Estimating the total amount of compute is 429

di�cult due to a multitude of di�erent experiment not presented in the paper. However, we 430

do specify the used hardware in the supplementary material. 431

(n) Did you report how you tuned hyperparameters, and what time and resources this required 432

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 433

also hyperparameters of your own method)? [N/A] Hyperparameters used in our work 434

are aligned with commonly used values. Other work for pruning strategy search will be 435

accomplished by the method itself automatically. 436

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 437

(a) If your work uses existing assets, did you cite the creators? [Yes] 438

(b) Did you mention the license of the assets? [N/A] All of our used assets are open-source. 439

(c) Did you include any new assets either in the supplemental material or as a url? [No] We 440

only use open-source assets to conduct our experiments. 441

(d) Did you discuss whether and how consent was obtained from people whose data you’re 442

using/curating? [N/A] cf. above 443

(e) Did you discuss whether the data you are using/curating contains personally identi�able 444

information or o�ensive content? [N/A] All used datasets in our work are open-source and 445

we have not added any new datasets. 446

5. If you used crowdsourcing or conducted research with human subjects. . . 447

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 448

cable? [N/A] This work does not involve any human subjects 449

(b) Did you describe any potential participant risks, with links to Institutional Review Board 450

(irb) approvals, if applicable? [N/A] This work does not involve any human subjects 451

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 452

on participant compensation? [N/A] This work does not involve any human subjects 453
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A Technical Appendix 454

In the supplementary material, we extend on three aspects of our method. We begin by detailing 455

the process of layer-wise action rate control to reach the preset target compression rate. After that, 456

we further describe our experimental setup, before we investigate the performance of Heracles’s 457

non-uniform strategy on SVHN. 458

A.1 Action control 459

The action control algorithm helps to constrain the layer’s compression rate to reach the targeted 460

global network size. In related work (Boyd et al., 2011; Sehwag et al., 2020), the global compression 461

rate is de�ned as the sparsity rather than the ratio of preserved parameters for both weight and 462

channel pruning. Weight pruning is apt to be controlled by the sparsity. However, since sparsity 463

on the channel granularity can not re�ect the real network size after pruning with a global non- 464

uniform strategy, sparsity control is not appropriate anymore. Our approach, thus, considers the 465

in�uence from layer ; on its preceding (joint) layer ; − 1 for channel pruning, such that the pruned 466

network has the exact same size as considered in related work. We denote determining the global 467

parameter-wise compression rate as the function ConvertRate in Algorithm 2. 468

Algorithm 2 Max-Allow-Action

Input: Objective layer ; , Number of total network parameters Θ0;; , Number of network layers !, Target rate 0C , Rate range
[0<8=, 0<0G ], Founded action list [01, . . . , 0;−1 ], Pruning regularity %-A46
Output: Maximal allowed action 0 (; )

0;;>F

%-A46 = “Weight Pruning” :
1: Convert compress rate:

0C = ConvertRate (0C , %-A46 )

2: Initialize: 0 (; ) = 1.0
3: ΘC = 0C · Θ0;;

4: ã =
∑;−1
8=1 0

(8 ) · Θ(8 )
5: a =

∑!
8=;+1 0<8= · Θ

(8 )

6: �DC~ = ΘC − (ã + a)

7: 00;;>F =
�DC~

Θ(; )

8: 0 (; )
0;;>F

= min(0 (; )
0;;>F

, 0<0G )

%-A46 = “Channel Pruning” :
1: Convert compress rate:

0C = ConvertRate (0C , %-A46 )

2: Initialize: 0 (; ) = 1.0
3: ΘC = 0C · Θ0;;

4: ã =
∑;−2
8=1 0

(8 ) · 0 (8+1) · Θ(8 )
5: a =

∑!−1
8=;+1 0

2
<8=
· Θ(8 ) + 0<8= · Θ(!)

6: �DC~ = ΘC − (ã + a)

7: 0 (; )
0;;>F

=
�DC~

0<8= ·Θ(; ) +0 (;−1) ·Θ(;−1)

8: 0 (; )
0;;>F

= min(0 (; )
0;;>F

, 0<0G )

A.2 Experimental setup 469

We conduct experiments on three di�erent datasets: CIFAR-10, SVHN, and ImageNet. In the 470

following, we elaborate on the considered networks and their pre-trained performances as used in 471

our experiment, the action range used by the action-control algorithm, and settings of the RL agent 472

doing the strategy search. 473

Networks. In related work, a variety of di�erent deep neural network architectures are used for 474

evaluating pruning approaches. Some of the supposedly identical networks, however, show subtle 475

di�erences. For a fair comparison, we thus center our experiments on the architectures used by 476

Sehwag et al. (2020) and build the exact same VGG16, ResNet18, and WRN-28-4 as in their open- 477

source implementation2. For our experiments on the large-scale ImageNet dataset, we additionally 478

use ResNet50 as proposed by He et al. (2016). We conduct 90 and 100 epochs for pre-training 479

models on the large-scale and the small-scale datasets, respectively, with a learning rate starting 480

2https://github.com/inspire-group/hydra
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at 0.1 while adapting it with a cosine learning-rate schedule (Loshchilov and Hutter, 2016). For 481

pruning with Heracles’s strategies, we employ the respective default schedules in both Hydra 482

and Robust-ADMM to adapt the learning rate. Table 4 summarizes the used network architectures 483

and lists their performance after adversarial pre-training. These models are used for all pruning 484

experiments to ensure an identical starting point for our comparison. 485

Model/ Network Architecture CIFAR-10 SVHN ImageNet

VGG16 as used by Sehwag et al. (2020) 75.72 / 46.35 92.40 / 55.09 —
ResNet18 as proposed by He et al. (2016) 82.68 / 43.44 92.70 / 59.33 —
WRN-28-4 as proposed by Zagoruyko and Komodakis (2016) 83.35 / 48.86 92.69 / 57.15 —
ResNet50 as proposed by He et al. (2016) — — 60.25 / 32.82

Table 4: The network architectures used in this work and their accuracy after adversarial pre-training
for benign data and PGD-10 attacks, left and right of the / character for di�erent dataset.

Action range. The range of compression rates (0<8=, 0<0G ) considered by the RL agent (the action 486

values) have to be speci�ed upfront, for which a few things need to be followed: For aggressive 487

pruning, su�cient neurons must remain in each layer rather than being pruned entirely. For 488

moderate pruning, the agent has to be encouraged to explore di�erent possibilities. Consequently, 489

we set the range as [0.01, 0.8] and [0.005, 0.5], for weight pruning with compression rates of 490

0F = 0.1 and 0F = 0.01, respectively. For channel pruning with compression rates of 02 = 0.5 491

and 02 = 0.1, in turn, we use [0.1, 1.0] and [0.05, 0.5]. Note that for channel pruning, we maintain 492

a compression rate of 1.0 (no compression) for the �rst layer to keep input information intact. 493

Moreover, for residual blocks, we set the compression rate on the shortcut layers to the same value 494

as for the connected backbone layers, such that networks with residual blocks are processable by 495

the channel-wise pruning strategy. 496

RL agent setting. We use DDPG (Lillicrap et al., 2016) as RL agent for determining the layer’s 497

state and, thus, predict compression rates. In our implementation, the actor network and the critic 498

network are both constructed with two 300 neurons wide, fully connected layers. Moreover, the 499

size of the replay bu�er is set to 200 times the number of prunable layers in the neural network—for 500

instance, for pruning weights of VGG16 the size equals to 200 × 16 = 3,200. The training of the 501

RL agent is performed with learning rates 0.01 and 0.001 respectively on critic and actor in DDPG. 502

And we use a soft update of 0.01 on the target model. During the 300 episodes long RL search 503

phase, we train the agent for 20 epochs on states sampled from the replay bu�er with a batch size 504

of 128. For better exploration, we additionally set the exponential decay X to 0.99. 505

A.3 Heracles’s performance on SVHN 506

In contrast to CIFAR-10, neither training nor testing data of SVHN is balanced. While we use the 507

common accuracy to determine robustness and the model’s natural performance in our experiments 508

on CIFAR-10, for SVHN we hence use the balanced accuracy (Brodersen et al., 2010) as the evaluation 509

metric. Table 5 shows the class-wise distribution of the SVHN dataset. For both datasets, a 510

completely damaged model with random predictions thus is indicated by a (balanced) accuracy of 511

10 % as the datasets contain 10 classes each. 512

Channel pruning. Table 6a summarizes the experimental results of channel pruning on SVHN. With 513

the help of Heracles, both Hydra and Robust-ADMM improve robustness and natural accuracy 514

at 02 = 0.5. Interestingly, pruning ResNet18 by Robust-ADMM equipped with our strategies even 515

yields up to 9.05 % higher robustness against PGD-10 than uniform compression. However, the 516

variance is rather high, which originates the inherent randomness of reinforcement learning. The 517
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Dataset Amount of Samples per Class [%]

1 2 3 4 5 6 7 8 9 10

Training 18.92 14.45 11.60 10.18 9.39 7.82 7.64 6.89 6.36 6.75
Test 19.59 15.94 11.07 9.69 9.16 7.59 7.76 6.38 6.13 6.70

Table 5: Class-wise data distribution of the SVHN dataset.

accuracy on benign data, in turn, remains stable across all strategies and our method yields a 518

pruned model with at least a performance on-par with the uniform strategy. This clearly shows 519

the positive impact of Heracles in moderate pruning. Aggressive channel pruning (02 = 0.1) 520

is more challenging for SVHN, though. Neither uniform nor our non-uniform compression can 521

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

Re
sN

et
18 Hydra 0.50 91.05 / 91.52±0.63 65.17 / 67.06±3.96 53.76 / 54.16±1.62 51.28 / 51.74±0.90 48.63 / 49.66±1.52

0.10 10.00 / 82.74±0.56 10.00 / 46.09±1.38 10.00 / 43.31±0.41 10.00 / 38.87±1.02 10.00 / 34.95±0.76

R-ADMM 0.50 91.59 / 91.94±0.38 74.59 / 80.45±6.18 56.95 / 66.00±8.67 54.06 / 60.42±6.79 51.92 / 59.89±7.22
0.10 86.65 / 85.96±1.46 56.43 / 59.16±1.53 47.05 / 46.52±0.36 45.34 / 44.72±0.10 41.47 / 41.54±0.25

VG
G1

6 Hydra 0.50 89.27 / 91.18±0.32 59.09 / 62.01±0.34 50.07 / 52.14±0.35 48.01 / 49.42±0.22 44.06 / 46.52±0.17
0.10 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00

R-ADMM 0.50 88.72 / 89.97±0.97 57.02 / 60.63±1.20 48.15 / 51.09±0.95 46.03 / 49.20±0.94 42.72 / 46.33±0.56
0.10 79.25 / 85.27±2.77 45.46 / 51.54±2.74 37.92 / 43.12±2.23 36.39 / 41.28±2.15 32.39 / 37.22±2.36

W
RN

-2
8-

4 Hydra 0.50 91.37 / 91.32±0.38 65.01 / 67.42±2.27 54.84 / 55.64±1.03 53.31 / 53.74±0.45 50.16 / 51.10±0.96
0.10 10.00 / 81.30±0.86 10.00 / 48.22±0.98 10.00 / 41.32±0.96 10.00 / 39.94±0.95 10.00 / 36.22±0.97

R-ADMM 0.50 91.57 / 92.03±1.08 73.49 / 74.35±2.41 57.48 / 61.45±8.49 54.85 / 58.04±6.29 53.47 / 56.62±7.17
0.10 89.22 / 88.94±0.48 57.77 / 50.21±1.42 47.55 / 47.37±0.76 45.60 / 40.83±1.93 42.40 / 37.26±1.52

(a) Channel Pruning

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

Re
sN

et
18 Hydra 0.10 91.36 / 91.61±0.13 64.04 / 66.95±1.94 52.74 / 53.61±0.71 50.63 / 51.31±0.49 48.14 / 49.07±0.52

0.01 88.23 / 88.21±0.21 58.76 / 59.72±0.81 49.80 / 50.62±0.24 48.05 / 49.07±0.19 44.86 / 45.34±0.23

R-ADMM 0.10 89.73 / 91.71±0.88 77.39 / 79.11±7.46 57.01 / 61.69±6.34 55.25 / 56.60±3.78 53.35 / 55.16±4.83
0.01 84.63 / 85.11±1.51 51.10 / 55.93±4.28 42.81 / 45.92±1.71 40.93 / 43.38±1.86 36.96 / 40.14±2.16

VG
G1

6 Hydra 0.10 90.46 / 91.40±0.40 59.87 / 62.79±0.90 50.02 / 51.38±0.66 47.89 / 49.01±0.63 44.84 / 46.39±0.51
0.01 84.68 / 89.30±0.53 52.37 / 58.90±0.82 45.34 / 50.40±0.56 43.60 / 48.35±0.59 39.16 / 44.89±0.66

R-ADMM 0.10 89.12 / 90.10±0.33 58.61 / 59.73±0.43 48.62 / 51.25±0.32 46.56 / 48.66±0.36 43.78 / 45.63±0.35
0.01 55.80 / 86.46±2.38 28.55 / 55.32±2.13 24.34 / 47.58±0.67 23.48 / 45.70±1.13 21.15 / 41.71±0.72

W
RN

-2
8-

4 Hydra 0.10 91.61 / 92.16±0.15 67.72 / 67.52±2.23 54.76 / 55.06±0.88 52.74 / 52.87±0.45 50.31 / 50.16±0.90
0.01 88.37 / 82.85±4.93 57.66 / 54.45±2.82 49.24 / 46.42±2.27 46.34 / 45.12±2.19 43.97 / 42.58±0.93

R-ADMM 0.10 90.36 / 90.78±0.57 68.33 / 65.83±1.62 53.92 / 53.41±0.72 52.19 / 50.71±0.95 49.66 / 48.58±0.66
0.01 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00

(b) Weight Pruning

Table 6: Uniform vs. non-uniform pruning on SVHN with Hydra and Robust-ADMM. The balanced
accuracy of both strategies is presented in % left and right of the / character, respectively,
considering benign input data and 4 di�erent attacks. Non-uniform strategies generated by
Heracles are averaged over 5 experiments and show the standard deviation in ± notation.
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prevent VGG16 from complete damage (10 %) and the uniform strategy adapts better to WRN-28-4 522

when pruning with Robust-ADMM. In all other situations, Heracles’s strategies still yield on-par 523

or better performance in aggressive channel pruning as well. Even in situations where uniform 524

compression yields a completely damaged model (ResNet18 and WRN-28-4 using Hydra), our 525

method selects a strategy that results in meaningful and competitive results. 526

Furthermore, we visualize the strategies learned by Heracles for moderate channel pruning in 527

Fig. 4 (orange lines). Similar to our results on CIFAR-10, the RL agent discovers high redundancy (and 528

thus pruning potential) in the middle convolutional layers for VGG16. Di�erently, the compression 529

on ResNet18 is nearly uniform along convolutional layers where the RL agent, however, still 530

acknowledges the higher importance of the �nal fully connected layer. 531

Weight pruning. In comparison to channel pruning, Heracles is more stable and achieves higher 532

robustness on VGG16 and ResNet18 (cf. Table 6b). For both moderate (0F = 0.1) and aggressive 533

(0F = 0.01) pruning, state-of-the-art methods can bene�t from Heracles’s strategies and yield an 534

up to 30.66 % and 26.77 % improvement on benign accuracy and FGSM robustness, respectively. 535

However, also here similar instability issues happen for pruning ResNet18 with Robust-ADMM. 536

In Fig. 4b, we see that the RL agent approaches a strategy close to uniformity for WRN-28-4 and 537

ResNet18. For the latter, in particular for early layers the variance is larger than for layers further 538

back. Overall, we observe that non-uniform compression is more bene�cial for channel pruning 539

than weight pruning. However, for aggressive weight pruning (0F = 0.01) by Robust-ADMM, 540

WRN-28-4’s performance is completely damaged for uniform and non-uniform strategies alike. 541
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(b) ResNet18
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(c) WRN-28-4

Figure 4: Heracles’s strategies for pruning channels (02 = 0.5; dashed orange line) and weights
(0F = 0.1; solid blue line) of VGG16, ResNet18, and WRN-28-4 on SVHN.
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