
1 Appendix1

1.1 More Qualitative Visualization2

Visualization on More Categories. We further illustrate the effectiveness of our approach in gener-3

alizing to a variety of categories through qualitative visualizations, as shown in Figure 1. Unlike the4

DSP method [1], which is based on a single-category model, DeepSDF [2], our system is capable of5

supporting multiple object categories using a single pre-trained diffusion model, Shap-E [3].6

Scene-level Visualization. Figure 2 showcases a 3D map visualization of a scene containing mul-7

tiple objects from various categories, including four chairs, a sofa, and a table. Each instance is8

independently reconstructed using 10 RGB-D views.9

1.2 Ablation Study10

Methods to Fuse Observations and Diffusion Priors. We compare three strategies to fuse obser-11

vations and diffusion priors, as shown in Table 1. (1) Optimize then diffuse, which first optimizes12

shape and pose with geometric loss only for a given number of steps, and then uses the diffusion13

model to diffuse the shape. We notice that the information from observations is often lost during the14

post-diffusion process. Consequently, the ultimate shape diverges from the ground truth, resulting15

in a large metric error. (2) Diffuse then optimize, which first uses the diffusion model to generate a16

shape with a text condition, then uses the geometric loss to optimize both shape and pose. We ob-17

serve that the unobserved segment of the shape is prone to corruption during the post-optimization18

process. Ultimately, this leads to a performance level that is similar to optimizing using only geo-19

metric observations without priors, which also remains more artifacts in the meshes and renderings.20

(3) Jointly Optimize and Diffuse, which simultaneously considers both diffusion prior and geomet-21

ric loss during optimization steps so that both sources of information are active. This combined22

optimization can effectively merge constraints from both sources, thereby achieving superior per-23

formance compared to the other strategies.24

Methods to Calculate Gradients from a Pre-trained Diffusion Model. The gradients derived25

from both the diffusion model and the observations are high-dimensional. Employing a method26

to effectively combine these gradients to guide the variable toward a convergence point is not a27

straightforward task. We compare our method with another to demonstrate the effectiveness of our28

approach, as shown in Table 1. (1) NoisePredict (Ours). In Section 3.4 of the main content, we29

discuss our method to use the pre-trained diffusion model to predict the added noise and propagate30

back the error as gradients. This implicitly constrains the shape variable to lie inside the distribu-31

tion modeled by the diffusion model, where it is trained to accurately predict the added noise. (2)32

DirectDiffuse, which directly uses the diffusion model to predict a less noisy version of the cur-33

rent shape for one step, as Θt−1 = ϵβ(Θt, C, t). Yang et al. [4] also use this method to leverage34

shape prior constraints from a single-category diffusion model for object reconstruction. Our task35

is more difficult with the extra unknown variable of pose. As shown in Table 1, DirectDiffuse un-36

derperforms in comparison to NoisePredict (Ours). We attribute this to two primary factors. Firstly,37

making a pre-trained diffusion model to accurately predict a denoised variable is a challenging task.38

Secondly, each step of DirectDiffuse necessitates a precise timestamp t to denote the level of noise39

within the current variable, which becomes particularly complex when jointly optimized with gradi-40

ents from observations. In contrast, our gradients can be derived from randomly sampled, uniformly41

distributed timestamps. This allows for flexible diffusion across arbitrary steps without the stringent42

requirement to adhere to the noise schedule from T to 0.43

Input Conditions. We evaluate both input conditions supported by Shap-E model [3], image and44

text, as shown in Table 1. Each has its unique strengths and weaknesses, contingent on the specific45

applications. The image modality, which contains detailed prior information of a specific instance46

such as texture and shape, is nonetheless limited by the quality of the segmentation task. A cor-47

rupted or occluded mask can result in a corrupted 3D shape prior. On the other hand, a simple text48

prompt like “a chair” can provide a general distribution of complete shapes within the category,49

1



GOM
(Ours)

vMap

RGB-D Reference View Rendered View Novel Views Mesh

GOM
(Ours)

vMap

Methods

GOM
(Ours)

vMap

GOM
(Ours)

vMap

GOM
(Ours)

vMap

Figure 1: Effectiveness of Priors Across Multiple Categories: Leveraging priors, our method (GOM)
can produce higher-quality, 3D-consistent views and generates 3D meshes with fewer artifacts com-
pared to vMap. The results are based on 10 RGB-D views.

Items IoU ↑ CD ↓
Ours w/ Optimize then Diffuse 0.344 0.182
Ours w/ Diffuse then Optimize 0.416 0.160
Ours w/ Jointly Optimize and Diffuse 0.429 0.157
Gradients - DirectDiffuse 0.338 0.222
Gradients - NoisePredict (Ours) 0.429 0.157
Ours w/ Image Condition 0.436 0.160
Ours w/ Text Condition 0.429 0.157

Table 1: Ablation study on the strategies to fuse both observations and diffusion prior. Results are
from 10 RGB-D views on Chairs of ScanNet dataset.

albeit without some instance-specific details. This approach allows the details to be constrained by50

the observations. Future work could explore the use of more complex text prompts and the fusion51

of multiple multi-modal priors to enhance the effectiveness and accuracy of prior constraints.52

1.3 Computation Analysis53

We conducted an evaluation of the system’s computation using 10 RGB-D views on a 16GB V10054

GPU. For each instance, GOM (Ours) requires 43.0 seconds for 200 optimization iterations, which55
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Figure 2: Scene-Level Visualization: An example of a reconstructed 3D map of a scene including
four chairs, one sofa, and one table, all constrained from the same prior network.
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Figure 3: Failure Case: An instance where input observations are occluded and contain corrupted
masks. While our method manages to complete part of the object compared to the baseline, it fails
to fully complete thin elements such as legs and handles.

includes 100 diffusion steps. In comparison, vMap [5] requires 38.1 seconds to complete 200 op-56

timization iterations, utilizing only geometric constraints. Our method, leveraging diffusion prior,57

significantly enhances the quality with minimal computational overhead. The Shap-E model [3]58

requires 45.6 seconds to generate a single instance by diffusing from random noise via a compu-59

tationally intensive sampling process. Our method, utilizing the prior information stored inside60

Shap-E, can achieve faster reconstruction than the original generation model. DSP [1] requires 32.361

seconds for 200 iterations, a speed benefiting from a smaller latent space provided by DeepSDF [2].62

However, it is constrained to a single category and lacks texture information. We adopt a strategy of63

averaging the total number of rays sampled from multiple frames. Consequently, when more frames64

are available, the computation time remains nearly identical for 1, 3, and 10 views. BundleSDF [6]65

reconstructs an object’s Signed Distance Function (SDF) and appearance field from scratch, without66

leveraging any prior information. It utilizes 17 keyframes from the same test scene to reconstruct the67

object and carries out 2500 iterations to optimize both the neural fields and the object pose. The cu-68

mulative running time is 188.6 seconds, partitioned into 118.2 seconds for pose graph optimization69

and 70.4 seconds for global optimization.70

Depending on the specific applications, parameters such as the number of optimization steps, diffu-71

sion steps, and sampled rays can be adjusted to balance accuracy and computation. As a direction72

for future work, the implementation of an incremental mapping framework, as opposed to batch73

optimization from scratch, could further expedite online applications.74

1.4 Failure Case and Discussion75

The ScanNet dataset presents challenges due to occlusions and sensor noise. We illustrate a rep-76

resentative failure case in Figure 3. When the input observations are severely occluded or contain77

incomplete masks, our method can partially complete the object (for instance, the center occluded78
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Figure 4: Latent Space Interpolation: visualizing the transition of Shap-E generated models from
(1) a chair to another chair; (2) a chair to a table; (3) a chair to a car.
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Figure 5: Text-Conditioned Generation: Shap-E can generate diverse shapes based on given text
prompts. The application of more detailed text prompts presents an intriguing future direction for
further constraining the shape and pose mapping process.

part by the tissue placed on the chair), but it fails to complete thin elements like legs and handles79

that the mask does not cover. The paper and pen placed on the chair are reconstructed as part of the80

texture. Despite these challenges, our method still generates a smoother surface with significantly81

fewer artifacts compared to the baselines. Future improvements could include the use of a more82

powerful segmentation model, such as SAM [7], and adaptively increasing the weights of the prior83

in areas with corrupted observations. Further, more flexible shape representation beyond a NeRF,84

such as Gaussian Splatting [8] can be explored to better model the details of objects.85

1.5 Analysis of the Generative Model Shap-E86

Latent Space Interpolation. We illustrate a visualization of latent space interpolation from one87

chair to another, from a chair to a table, and from a chair to a plane in Figure 4. Unlike DeepSDF [2],88

which utilizes a 64-dimensional latent vector for an SDF-based shape, Shap-E employs a consider-89

ably larger latent space for a NeRF-based shape, with a dimension of 1024× 1024. Despite its high90

dimensionality, linear interpolation still provides a meaningful transition for changes in both texture91

and geometry. A smooth latent space aids the optimization process when incorporating gradients92

from both observations and priors.93

Generation from Text Prompt. The Shap-E model is capable of generating a variety of shapes94

based on a given text prompt, as demonstrated in Figure 5. The attributes specified in the text95

prompts, such as color, can influence the output shapes to a certain degree. The use of more complex96

text prompts, such as descriptions from large language models (LLMs) to assist in mapping object97

shapes and poses, presents an intriguing avenue for future research.98
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1.6 Derivation of Optimization with Prior99

We provide the proof for Equation 5 in the main content. Given M observation frames {Fi}Mi=1,100

and a condition C, we aim to estimate a Maximum Likelihood Estimation for the unknown variable101

pose T and shape Θ. We start from a joint distribution of P (T,Θ|F1, ..., FM , C), and aim to get:102

T̂, Θ̂ = argmax
T,Θ

P (T,Θ|F1, ..., FM , C) (1)

According to Bayes’ rule:103

P (T,Θ|F1, ..., FM , C) =
P (F1, ..., FM |T,Θ, C)P (T,Θ|C)

P (F1, ..., FM |C)
(2)

Considering that any observation frames F1, ..., FM are independent to the prior condition C, and104

we can assume the prior of the observation P (Fi) is a constant, thus, P (F1, ..., FM |C) is a constant.105

We can get:106

P (T,Θ|F1, ..., FM , C) ∝ P (F1, ..., FM |T,Θ, C)P (T,Θ|C) (3)

Then, we consider the observation part P (F1, ..., FM |T,Θ, C). Since the observations F1, ..., FM107

are conditionally independent among each other given T and Θ, and are independent to C, the108

likelihood can be factorized as:109

P (F1, ..., FM |T,Θ, C) =
∏
i

P (Fi|T,Θ) (4)

Since we model the pose T and shape Θ separately, they are independent to each other. Further110

considering that the condition C only applies to the shape, we have:111

P (T,Θ|C) = P (T|C)P (Θ|C) = P (T)P (Θ|C) (5)

We assume uniform distribution for the object pose T, so that P (T) is a constant. So we have:112

P (T,Θ|C) ∝ P (Θ|C) (6)

Inserting the observation part (Eq 4) and the prior part (Eq 6) into the joint distribution (Eq 3), we113

can estimate the unknown variables through:114

T̂, Θ̂ = argmax
T,Θ

∏
i

P (Fi|T,Θ)P (Θ|C) (7)

Finally, taking the logarithm, we can get a more convenient form for numerical optimization:115

T̂, Θ̂ = argmax
T,Θ

∑
logP (Fi|T,Θ) + logP (Θ|C) (8)
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