
Table 1: A comparison between fixed reinforcement learning algorithms (REINFORCE),
backpropagation-based meta RL (MAML, MetaGenRL, LPG), black-box (MetaRNN), and our
black-box method with symmetries (SymLA). ⇡(s)

✓ denotes a stationary policy that is updated at fixed
intervals by backpropagation.

REINFORCE MetaGenRL / LPG MAML MetaRNN SymLA (ours)

Meta variables / � Initial ✓0 ✓ ✓

Learned variables ✓ ✓ ✓ RNN state h RNN states h(k)
ab

Learning algorithm fixed loss func L
+ Backprop

learned loss func L�

+ Backprop
fixed loss func L

+ Backprop ⇡✓ ⇡✓

Policy ⇡(s)
✓ ⇡(s)

✓ ⇡(s)
✓ ⇡✓ ⇡✓

Black box 7 7 7 3 3
Symmetries in learning algorithm 3 3 (3) 7 3

A Related Work424

Learning to reinforcement learn can be implemented with varying degrees of inductive biases.425

Black-Box Meta RL Black-box meta RL can be implemented by policies that receive the reward426

signal as input [Schmidhuber, 1992b] and use memory to learn, such as recurrence in RNNs [Hochre-427

iter et al., 2001, Wang et al., 2016, Duan et al., 2016]. These approaches do not feature the symmetries428

discussed in this paper which leads to a tendency of overfitting.429

Learned Learning Rules & Fast Weights In the supervised and reinforcement learning contexts,430

learned learning rules [Bengio et al., 1992] or fast weights [Schmidhuber, 1992a, 1993, Miconi431

et al., 2018, Schlag et al., 2020, Najarro and Risi, 2020] describe (meta-)learned mechanisms (slow432

weights) that update fast weights to implement learning. This often involves outer-products and can433

be generalised to black-box meta learning with parameter sharing [Kirsch and Schmidhuber, 2020].434

None of these approaches feature all of the symmetries we discuss above and are applicable to RL.435

Backpropagation-based Meta RL Alternatives to black-box meta RL include learning a weight436

initialization and adapting it with a human-engineered RL algorithm [Finn et al., 2017], warping437

computed gradients [Flennerhag et al., 2019], meta-learning hyper-parameters [Sutton, 1992, Xu438

et al., 2018] or meta-learning objective functions corresponding to the learning algorithm [Houthooft439

et al., 2018, Bechtle et al., 2021, Kirsch et al., 2019, Xu et al., 2020, Oh et al., 2020].440

Neural Network Symmetries Symmetries in neural networks have mainly been investigated to441

reflect the structure of the input data. This includes applications of convolutions [Fukushima,442

1979], deep sets [Zaheer et al., 2017], graph neural networks [Wu et al., 2020], and geometric deep443

learning [Bronstein et al., 2017]. While many meta learning algorithms exhibit symmetries [Bengio444

et al., 1992], in particular backpropagation-based meta learning [Andrychowicz et al., 2016, Finn445

et al., 2017, Flennerhag et al., 2019, Kirsch et al., 2019], the effects of these symmetries have not446

been discussed in detail. In this work, we provide such a discussion and experimental investigation in447

the context of meta RL.448

B Bandits from Wang et al. [2016]449

In our experiments, we use bandits of varying difficulty from Wang et al. [2016]. Let p1 be the450

probability of the first arm for a payout of r = 1, r = 0 otherwise, and p2 the payout for the second451

arm. Then, we define the452

• uniform independent bandit with p1 ⇠ U [0, 1] and p2 ⇠ U [0, 1],453

• uniform dependent bandit with p1 ⇠ U [0, 1] and p2 = 1� p1,454

• easy dependent bandit with p1 ⇠ Cat[0.1, 0.9] and p2 = 1� p1,455

• medium dependent bandit with p1 ⇠ Cat[0.25, 0.75] and p2 = 1� p1,456

• hard dependent bandit with p1 ⇠ Cat[0.4, 0.6] and p2 = 1� p1.457
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Algorithm 1 SymLA meta training
Require: Distribution over RL environment(s) p(e)
✓  initialize LSTM parameters
while meta loss has not converged do . Outer loop in parallel over envs e ⇠ p(e) and samples
� ⇠ N(�|✓,⌃)

{hab} initialize LSTM states 8a, b
o1 ⇠ p(o1) . Initialize environment e
for t 2 {1, . . . , L} do . Inner loop over lifetime in environment e

hab  fLSTM(hab, ot,a, at�1,b, rt�1,
�!mb,
 �ma) 8a, b . Equation 8

�!mb  
P

a f�!m(hab) 8b . Create forward messages
 �ma  

P
b f �m(hab) 8a . Create backward messages

y  �!m·1 . Read out action
at ⇠ p(at; y) . Sample action from distribution parameterized by y
Send action at to environment e, observe ot+1 and rt

✓  ✓ + ↵r✓E�⇠N(�|✓,⌃)[Ee⇠p(e)[
PL

t=1 r
(e)
t (�)]] . Update ✓ using evolution strategies

(Equation 9)

C Hyper-parameters458

C.1 SymLA Architecture459

We use a single recurrent layer, K = 1, with a message size of
 �
M = 8 and

�!
M = 8. To produce460

the next state hab according to Equation 8, we use parameter-shared LSTMs with a hidden size of461

N = 16 (N = 64 for bandits to match Wang et al. [2016]) and run the recurrent cell for 2 micro462

ticks.463

C.2 Meta Learning / Outer Loop464

We estimate gradients r✓ using evolutionary strategies [Salimans et al., 2017] with 10 evaluations465

per population sample to estimate the fitness value (100 evaluations for bandits). Then, we apply466

those using Adam with a learning rate of ↵ = 0.01, �1 = 0.9, and �2 = 0.999 (↵ = 0.2 for bandits).467

We use a fixed noise standard deviation of � = 0.035 (� = 0.2 for bandits) and a population size of468

512. Our inner loop has a length of L = 500 (L = 100 for bandits), concatenating multiple episodes.469

We meta-optimize for 4, 000 outer steps for bandit experiments, and 20, 000 otherwise.470

C.3 Generalisation to Unseen Environments471

We apply a random linear transformation (Glorot normal) to environment observations, mapping472

those to a 16-dimensional vector.473
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