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Table 1: A comparison between fixed reinforcement learning algorithms (REINFORCE),
backpropagation-based meta RL (MAML, MetaGenRL, LPG), black-box (MetaRNN), and our
black-box method with symmetries (SymLA). wes) denotes a stationary policy that is updated at fixed
intervals by backpropagation.

‘ REINFORCE MetaGenRL / LPG MAML MetaRNN SymLA (ours)

Meta variables / [} Initial 6 % 0

Learned variables 6 % 6 RNN state b~ RNN states hi’z)

L . leorith fixed loss func L learned loss func L fixed loss func L

carning afgonthm + Backprop + Backprop + Backprop e e
Policy wés) Wés) 71'[5,5) T )
Black box X X X v v
Symmetries in learning algorithm v v ) X v

A Related Work
Learning to reinforcement learn can be implemented with varying degrees of inductive biases.

Black-Box Meta RL  Black-box meta RL can be implemented by policies that receive the reward
signal as input [[Schmidhuber, |1992b] and use memory to learn, such as recurrence in RNNs [Hochre-
iter et al.,2001,|Wang et al., 2016, Duan et al.,|2016]]. These approaches do not feature the symmetries
discussed in this paper which leads to a tendency of overfitting.

Learned Learning Rules & Fast Weights In the supervised and reinforcement learning contexts,
learned learning rules [Bengio et al., [1992] or fast weights [[Schmidhuber, (19924} [1993, Miconi
et al., 2018} Schlag et al.,[2020, Najarro and Risi, 2020|] describe (meta-)learned mechanisms (slow
weights) that update fast weights to implement learning. This often involves outer-products and can
be generalised to black-box meta learning with parameter sharing [Kirsch and Schmidhuber, [2020].
None of these approaches feature all of the symmetries we discuss above and are applicable to RL.

Backpropagation-based Meta RL.  Alternatives to black-box meta RL include learning a weight
initialization and adapting it with a human-engineered RL algorithm [Finn et al.| 2017], warping
computed gradients [Flennerhag et al., |2019], meta-learning hyper-parameters [Sutton, [1992| Xu
et al.,[2018] or meta-learning objective functions corresponding to the learning algorithm [Houthooft
et al.,[2018,, [Bechtle et al., 2021, Kirsch et al., 2019, Xu et al., {2020, |Oh et al., 2020].

Neural Network Symmetries Symmetries in neural networks have mainly been investigated to
reflect the structure of the input data. This includes applications of convolutions [Fukushima,
1979], deep sets [Zaheer et al.,[2017], graph neural networks [Wu et al.,|2020], and geometric deep
learning [Bronstein et al.,2017]. While many meta learning algorithms exhibit symmetries [Bengio
et al., [1992], in particular backpropagation-based meta learning [[Andrychowicz et al., 2016, |[Finn
et al.,[2017, [Flennerhag et al., 2019| Kirsch et al., 2019], the effects of these symmetries have not
been discussed in detail. In this work, we provide such a discussion and experimental investigation in
the context of meta RL.

B Bandits from Wang et al. [2016]]

In our experiments, we use bandits of varying difficulty from |Wang et al.| [2016]. Let p; be the
probability of the first arm for a payout of r = 1, r = 0 otherwise, and ps the payout for the second
arm. Then, we define the

e uniform independent bandit with p; ~ UJ0, 1] and p2 ~ U|0, 1],

uniform dependent bandit with p; ~ U[0,1] and po = 1 — py,

easy dependent bandit with p; ~ Cat[0.1,0.9] and p» = 1 — py,

medium dependent bandit with p; ~ Cat[0.25,0.75] and po = 1 — py,
hard dependent bandit with p; ~ Cat[0.4,0.6] and po = 1 — p;.
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Algorithm 1 SymLA meta training

Require: Distribution over RL environment(s) p(e)
0 < initialize LSTM parameters
while meta loss has not converged do > Outer loop in parallel over envs e ~ p(e) and samples

¢ ~ N(¢|6,%)
{hap} <+ initialize LSTM states  Va, b
01 ~ p(o1) > Initialize environment e
fort € {1,...,L} do > Inner loop over lifetime in environment e
hap fLSTM(hab,otya,at_Lb,rt_l,mb, ?ﬁa) Va,b > Equation
%b — > . fm(hay) Vb > Create forward messages
Mo — > fm(hay) Va > Create backward messages
Y <= Miq > Read out action
ar ~ p(ag;y) > Sample action from distribution parameterized by y
Send action a; to environment e, observe oy and 7
0 < 0+ aVeEyne)o,2) [Eemp(e) [Zthl rt(e) (P)]] > Update 6 using evolution strategies
(Equation [9)

C Hyper-parameters
C.1 SymLA Architecture

—
We use a single recurrent layer, ' = 1, with a message size of ﬁ = 8 and M = 8. To produce
the next state hq, according to Equation |8, we use parameter-shared LSTMs with a hidden size of
N = 16 (/N = 64 for bandits to match Wang et al. [2016]) and run the recurrent cell for 2 micro
ticks.

C.2 Meta Learning / Outer Loop

We estimate gradients V using evolutionary strategies [Salimans et al.,2017] with 10 evaluations
per population sample to estimate the fitness value (100 evaluations for bandits). Then, we apply
those using Adam with a learning rate of « = 0.01, 51 = 0.9, and B3 = 0.999 (o = 0.2 for bandits).
We use a fixed noise standard deviation of o = 0.035 (¢ = 0.2 for bandits) and a population size of
512. Our inner loop has a length of L = 500 (L = 100 for bandits), concatenating multiple episodes.
We meta-optimize for 4, 000 outer steps for bandit experiments, and 20, 000 otherwise.

C.3 Generalisation to Unseen Environments

We apply a random linear transformation (Glorot normal) to environment observations, mapping
those to a 16-dimensional vector.
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