424

425

426
427
428
429

431
432
433
434
435

436
437
438
439
440

441
442
443
444
445
446
447
448

449

450

451

452

453

454

455

456

457

Table 1: A comparison between fixed reinforcement learning algorithms (REINFORCE),
backpropagation-based meta RL (MAML, MetaGenRL, LPG), black-box (MetaRNN), and our
black-box method with symmetries (SymLA). wes) denotes a stationary policy that is updated at fixed
intervals by backpropagation.

‘ REINFORCE MetaGenRL / LPG MAML MetaRNN SymLA (ours)

Meta variables / [} Initial 6 % 0

Learned variables 6 % 6 RNN state b~ RNN states hi’z)

L . leorith fixed loss func L learned loss func L fixed loss func L

carning afgonthm + Backprop + Backprop + Backprop e e
Policy wés) Wés) 71'[5,5) T)
Black box X X X v v
Symmetries in learning algorithm v v) X v

A Related Work
Learning to reinforcement learn can be implemented with varying degrees of inductive biases.

Black-Box Meta RL Black-box meta RL can be implemented by policies that receive the reward
signal as input [[Schmidhuber, |1992b] and use memory to learn, such as recurrence in RNNs [Hochre-
iter et al.,2001,|Wang et al., 2016, Duan et al.,|2016]]. These approaches do not feature the symmetries
discussed in this paper which leads to a tendency of overfitting.

Learned Learning Rules & Fast Weights In the supervised and reinforcement learning contexts,
learned learning rules [Bengio et al., [1992] or fast weights [[Schmidhuber, (19924} [1993, Miconi
et al., 2018} Schlag et al.,[2020, Najarro and Risi, 2020|] describe (meta-)learned mechanisms (slow
weights) that update fast weights to implement learning. This often involves outer-products and can
be generalised to black-box meta learning with parameter sharing [Kirsch and Schmidhuber, [2020].
None of these approaches feature all of the symmetries we discuss above and are applicable to RL.

Backpropagation-based Meta RL. Alternatives to black-box meta RL include learning a weight
initialization and adapting it with a human-engineered RL algorithm [Finn et al.| 2017], warping
computed gradients [Flennerhag et al., |2019], meta-learning hyper-parameters [Sutton, [1992| Xu
et al.,[2018] or meta-learning objective functions corresponding to the learning algorithm [Houthooft
et al.,[2018,, [Bechtle et al., 2021, Kirsch et al., 2019, Xu et al., {2020, |Oh et al., 2020].

Neural Network Symmetries Symmetries in neural networks have mainly been investigated to
reflect the structure of the input data. This includes applications of convolutions [Fukushima,
1979], deep sets [Zaheer et al.,[2017], graph neural networks [Wu et al.,|2020], and geometric deep
learning [Bronstein et al.,2017]. While many meta learning algorithms exhibit symmetries [Bengio
et al., [1992], in particular backpropagation-based meta learning [[Andrychowicz et al., 2016, |[Finn
et al.,[2017, [Flennerhag et al., 2019| Kirsch et al., 2019], the effects of these symmetries have not
been discussed in detail. In this work, we provide such a discussion and experimental investigation in
the context of meta RL.

B Bandits from Wang et al. [2016]]

In our experiments, we use bandits of varying difficulty from |Wang et al.| [2016]. Let p; be the
probability of the first arm for a payout of r = 1, r = 0 otherwise, and ps the payout for the second
arm. Then, we define the

e uniform independent bandit with p; ~ UJ0, 1] and p2 ~ U|0, 1],

uniform dependent bandit with p; ~ U[0,1] and po = 1 — py,

easy dependent bandit with p; ~ Cat[0.1,0.9] and p» = 1 — py,

medium dependent bandit with p; ~ Cat[0.25,0.75] and po = 1 — py,
hard dependent bandit with p; ~ Cat[0.4,0.6] and po = 1 — p;.

12

460
461
462
463

464

465
466
467

469
470

471

472
473

Algorithm 1 SymLA meta training

Require: Distribution over RL environment(s) p(e)
0 < initialize LSTM parameters
while meta loss has not converged do > Outer loop in parallel over envs e ~ p(e) and samples

¢ ~ N(¢|6,%)
{hap} <+ initialize LSTM states Va, b
01 ~ p(o1) > Initialize environment e
fort € {1,...,L} do > Inner loop over lifetime in environment e
hap fLSTM(hab,otya,at_Lb,rt_l,mb, ?ﬁa) Va,b > Equation
%b — > . fm(hay) Vb > Create forward messages
Mo — > fm(hay) Va > Create backward messages
Y <= Miq > Read out action
ar ~ p(ag;y) > Sample action from distribution parameterized by y
Send action a; to environment e, observe oy and 7
0 < 0+ aVeEyne)o,2) [Eemp(e) [Zthl rt(e) (P)]] > Update 6 using evolution strategies
(Equation [9)

C Hyper-parameters
C.1 SymLA Architecture

—
We use a single recurrent layer, ' = 1, with a message size of ﬁ = 8 and M = 8. To produce
the next state hq, according to Equation |8, we use parameter-shared LSTMs with a hidden size of
N = 16 (/N = 64 for bandits to match Wang et al. [2016]) and run the recurrent cell for 2 micro
ticks.

C.2 Meta Learning / Outer Loop

We estimate gradients V using evolutionary strategies [Salimans et al.,2017] with 10 evaluations
per population sample to estimate the fitness value (100 evaluations for bandits). Then, we apply
those using Adam with a learning rate of « = 0.01, 51 = 0.9, and B3 = 0.999 (o = 0.2 for bandits).
We use a fixed noise standard deviation of o = 0.035 (¢ = 0.2 for bandits) and a population size of
512. Our inner loop has a length of L = 500 (L = 100 for bandits), concatenating multiple episodes.
We meta-optimize for 4, 000 outer steps for bandit experiments, and 20, 000 otherwise.

C.3 Generalisation to Unseen Environments

We apply a random linear transformation (Glorot normal) to environment observations, mapping
those to a 16-dimensional vector.

13

