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Abstract

This study considers online learning with general directed feedback graphs. For
this problem, we present best-of-both-worlds algorithms that achieve nearly tight
regret bounds for adversarial environments as well as poly-logarithmic regret
bounds for stochastic environments. As Alon et al. [2015] have shown, tight
regret bounds depend on the structure of the feedback graph: strongly observable
graphs yield minimax regret of Θ̃(α1/2T 1/2), while weakly observable graphs
induce minimax regret of Θ̃(δ1/3T 2/3), where α and δ, respectively, represent the
independence number of the graph and the domination number of a certain portion
of the graph. Our proposed algorithm for strongly observable graphs has a regret
bound of Õ(α1/2T 1/2) for adversarial environments, as well as of O(α(lnT )3

∆min
)

for stochastic environments, where ∆min expresses the minimum suboptimality
gap. This result resolves an open question raised by Erez and Koren [2021]. We
also provide an algorithm for weakly observable graphs that achieves a regret
bound of Õ(δ1/3T 2/3) for adversarial environments and poly-logarithmic regret
for stochastic environments. The proposed algorithms are based on the follow-
the-regularized-leader approach combined with newly designed update rules for
learning rates.

1 Introduction

In this paper, we consider online learning with feedback graphs [Mannor and Shamir, 2011], a
common generalization of the multi-armed bandit problem [Lai et al., 1985, Auer et al., 2002a,b]
and the problem of prediction with expert advice [Littlestone and Warmuth, 1994, Freund and
Schapire, 1997]. This problem is a sequential decision-making problem formulated with a directed
feedback graph G = (V,E), where V = [K] := {1, 2, . . . ,K} is the set of arms or available
actions, and E ⊆ V × V represents the structure of feedback for choosing actions. In each round
of t = 1, 2, . . . , T , a player sequentially chooses an action It ∈ V and then incurs the loss of `t(It),
where `t : V → [0, 1] is a loss function chosen by the environment. After choosing the action, the
player gets feedback of `t(j) for all j such that the feedback graph G has an edge from It to j. If
G consists of only self-loops, i.e., if E = {(i, i) | i ∈ V }, the problem corresponds to a K-armed
bandit problem. If G is a complete directed graph with self-loops, i.e., E = V × V , then the problem
corresponds to a problem of prediction with expert advice.
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Alon et al. [2015] have provided a characterization of minimax regrets for the problem of online
learning with feedback graphs. They divide the class of all directed graphs into three categories. For
the first category, called strongly observable graphs, the minimax regret is Θ̃(α1/2T 1/2), where α is
the independence number of the graph G, and Θ̃ ignores poly-logarithmic factors in T and K. For the
second category, weakly observable graphs, the minimax regret is Θ̃(δ1/3T 2/3), where δ represents
the weakly dominating number. For the last category of unobservable graphs, it is not possible to
achieve sublinear regret, which means that the minimax regret is Θ(T ). The definitions of categories
of graphs and α and δ are given in Section 3.

Best-of-both-worlds (BOBW) algorithms [Bubeck and Slivkins, 2012] have been studied for the
purpose of going beyond such minimax regret bounds; they achieve sublinear regret for adversarial
environments and, as well, have logarithmic regret bounds for stochastic environments. The only
BOBW algorithm for online learning with feedback graphs has been proposed by Erez and Koren
[2021]. They have focused on the case in which G is symmetric and all vertices have self-loops,
i.e., any edge (i, j) ∈ E is accompanied by its reversed edge (j, i) ∈ E and (i, i) ∈ E for
any i ∈ V . Note that this is a special case of strongly observable graphs. For this class of
problems, they provide an algorithm that achieves a regret bound of Õ(θ1/2T 1/2) for adversarial
environments, and of O

(
θpolylog(T )

∆min

)
for stochastic environments, where θ (≥ α) is the clique

covering number of the graphG, and ∆min is the minimum suboptimality gap for the loss distributions.
Their algorithm also works well for adversarially-corrupted stochastic environments, achieving

O

(
θpolylog(T )

∆min
+
(
Cθpolylog(T )

∆min

)1/2
)

-regret, where C represents the total amount of corruption.

As Erez and Koren [2021] have pointed out, however, their results leave room for improvement,
which is due to the fact that the clique covering number θ is significantly larger than the independence
number α in some cases. Indeed, there is an example such that α = 1 while θ = K, as mentioned in
Section 3. This means that regret bound depending on θ is not minimax optimal. In response to this
issue, they have raised the question of whether it is possible to replace α with θ in their regret bounds.
Contributions of this study include a positive solution to this question.

1.1 Contributions of this study

This study provides BOBW algorithms that achieve minimax regret (up to logarithmic factors) for
online learning with general feedback graphs. Our contributions can be summarized as follows:

Theorem 1 (strongly observable case, informal). For the problem with strongly observable graphs,
an algorithm achieves RT = Õ(α1/2T 1/2) for adversarial environments, RT = O

(
α(lnT )3

∆min

)
for

stochastic environments, and RT = O

(
α(lnT )3

∆min
+
(
Cα(lnT )3

∆min

)1/2
)

for adversarially-corrupted

stochastic environments, where α is the independence number of feedback graphs.

Theorem 2 (weakly observable case, informal). For the problem with weakly observable graphs, an
algorithm achieves RT = Õ(δ1/3T 2/3) for adversarial environments, RT = O

(
δ(lnT )2

∆2
min

+ K′ lnT
∆min

)
for stochastic environments, andRT = O

(
δ(lnT )2

∆2
min

+
(
C2δ(lnT )2

∆2
min

)1/3

+ K′ lnT
∆min

+
(
CK′ lnT

∆min

)1/2
)

for adversarially-corrupted stochastic environments, where δ is the weakly dominating number of
feedback graphs, and K ′(≤ K) is the number of vertices not covered by the weakly dominating set.

Remark 1. The regret bound in Theorem 2 for stochastic environments include an O
(
K′ lnT
∆min

)
-

term, which is negligibly small compared to the other term δ(lnT )2

∆2
min

when T is sufficiently large.

However, if K ′ is larger than δ lnT
∆min

, this term can be dominant. In such a case, the regret upper bound
may be improved by modifying the algorithm. Roughly speaking, by combining the approach to
strongly observable case, the O

(
K′ lnT
∆min

)
-term can be replaced with an O

(
α′(lnT )3

∆min

)
-term, where

α′ is the independence number of the subgraph consisting of vertices not dominated by the weakly
dominating set. If α′(lnT )2 ≤ K ′, the modified version provides a better regret bound. Details of
the modification are given Appendix C.
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Table 1: Regret upper bounds for online learning with feedback graphs. Note that regret bounds by
Erez and Koren [2021] and Rouyer et al. [2022] only apply to a special case of strongly observable
graphs with self-loops. We also note that the graph consisting only of self-loops, which corresponds
to the standard multi-armed bandit problem, is a special case of strongly observable graphs.

feedback graph reference adversarial stochastic

strongly [Alon et al., 2015] Õ
(
α1/2T 1/2

)
Õ
(
α1/2T 1/2

)
observable [Erez and Koren, 2021] Õ

(
θ1/2T 1/2

)
O
(∑

k
(lnT )4

∆k

)
[Rouyer et al., 2022] Õ

(
α1/2T 1/2

)
O
(∑

i∈S
(lnT )2

∆i

)
[This work] Theorem 1 Õ

(
α1/2T 1/2

)
O
(
α(lnT )3

∆min

)
self-loops only [Zimmert and Seldin, 2021] O

(
K1/2T 1/2

)
O
(∑

i:∆i>0
lnT
∆i

)
(standard MAB) [This work] Theorem 1 Õ

(
K1/2T 1/2

)
O
(
K(lnT )3

∆min

)
weakly [Alon et al., 2015] Õ

(
δ1/3T 2/3

)
Õ
(
δ1/3T 2/3

)
observable [Kong et al., 2022] Õ

(
K2/3δ1/3T 2/3

)
O
(
δ2 (lnT )3/2

∆3
min

)
[This work] Theorem 2 Õ

(
δ1/3T 2/3

)
O
(
δ(lnT )2

∆2
min

+ K′ lnT
∆min

)

Regret bounds for online learning with feedback graphs are summarized in Table 1. Note that the
regret bounds by Erez and Koren [2021] apply only to the special case of strongly observable graphs
that have self-loops for all vertices. Their algorithm and regret bounds are stated with clique cover
{Vk}Lk=1 of G, which is a partition of all vertices V such that each Vk is a clique. The clique covering
number θ of G is the minimum size L of clique covers. Parameters ∆k in Table 1 are defined to be
the minimum suboptimality gap among actions in Vk, and the summation is taken over k ∈ [L] such
that ∆k > 0. As the clique covering number θ is larger than or equal to the independence number
α of G, our adversarial regret bound of Õ

(
α1/2T 1/2

)
for strongly observable cases is superior to

that obtained by Erez and Koren [2021] and is minimax optimal up to logarithmic factors. Although
our stochastic regret bound is also better than one by Erez and Koren [2021] in many cases, it is
not always so. For example, if α = θ and ∆min is much smaller than many ∆k, their regret may be
better. Note that the work by Rouyer et al. [2022], which proposes BOBW algorithms for strongly
observable graphs with self-loops, has been published at NeurIPS 2022, independently of this study.
While their algorithms achieve better regret bounds for a certain class of problem settings, our results
have the advantage of being applicable to a wider range of problem settings, including directed
feedback graphs without self-loops and adversarially corrupted stochastic settings. A more detailed
discussion can be found in Appendix B

Our study includes the first nearly optimal BOBW algorithm that can be applied to online learning
with weakly observable graphs. As shown in Table 1, the adversarial regret bounds obtained with the
proposed algorithm match the minimax regret bound shown by Alon et al. [2015], up to logarithmic
factors. Similarly to their algorithm, the proposed algorithm uses a weakly dominating set D ⊆ V of
G. If D is a weakly dominating set, all elements in the set of vertices not dominated by D, which is
denoted by V2 ⊆ V , have self-loops. Parameters δ and K in the regret bounds are given by δ = |D|
and K ′ = |V2|. The stochastic regret bound obtained with the proposed algorithm is also nearly tight.
In fact, Alon et al. [2015] have shown a regret lower bound of Ω̃

(
δ

∆2
min

)
in the proof of Theorem 7 in

their paper. Further, if vertices in V2 are not connected by edges except for self-loops, the problem is
at least harder than the K ′-armed bandit problem, which leads to a regret lower bound of Ω

(
K′ lnT
∆min

)
.

We note that, just before the submission of this paper, Kong et al. [2022] published a work on BOBW
algorithms applicable to weakly observable graphs, of which regret bounds are also included in
Table 1.
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1.2 Techniques employed in this study

The proposed algorithms are based on the follow-the-regularized-leader (FTRL) framework, similarly
to the algorithms by Alon et al. [2015] and Erez and Koren [2021]. The main differences with existing
methods are in the definitions of regularization functions and update rules for learning rates.

For strongly observable cases, we employ the Shannon entropy regularizer functions with a newly
developed update rule for learning rates. Most FTRL-based BOBW algorithms are realized by setting
the learning rate adaptively to t and/or observations. On the other hand, it is well known that FTRL
with Shannon-entropy regularization corresponds to Exp3 algorithm [Auer et al., 2002b] as discussed
in, e.g., Lattimore and Szepesvári [2020, Example 28.3]. Since Exp3.G by Alon et al. [2015] achieves
an independence-number-dependent regret bound for adversarial environments, it is intuitively natural
to expect that a variant of Exp3.G with adaptive learning rates can be used to achieve BOBW regret
bounds. However, from the theoretical viewpoint, it is necessary to express the regret depending on
the arm-selection distribution qt to apply the self-bounding technique [Gaillard et al., 2014, Zimmert
and Seldin, 2021], which plays the central role in the BOBW analysis.

The proposed algorithm for weakly observable graphs uses novel regularization functions consisting of
Tsallis-entropy-based and Shannon-entropy-based regularization. Intuitively, we divide the vertices
V into the weakly dominated part V1 and non-dominated part V2, and apply Shannon-entropy
regularization to V1 and Tsallis-entropy regularization to V2. We combine the FTRL method with
exploration using a uniform distribution over the weakly dominating set, similarly to the approach by
Alon et al. [2015]. However, we adjust exploration rates and learning rates in a carefully designed
manner, in contrast to the existing approach that employs fixed parameters. The combination of
the above techniques leads to an entropy-dependent regret bound. By applying the self-bounding
technique to this bound, we obtain improved regret bounds for stochastic environments.

2 Related work

Since Bubeck and Slivkins [2012] initiated the study of best-of-both-worlds (BOBW) algorithms
for the multi-armed bandit (MAB) problem, studies on BOBW algorithms have been extended to a
variety of problem settings, including the problem of prediction with expert advice [Gaillard et al.,
2014, Luo and Schapire, 2015], combinatorial semi-bandits [Zimmert et al., 2019, Ito, 2021a], linear
bandits [Lee et al., 2021], episodic Markov decision processes [Jin and Luo, 2020, Jin et al., 2021],
bandits with switching costs [Rouyer et al., 2021, Amir et al., 2022], bandits with delayed feedback
[Masoudian et al., 2022], online submodular optimization [Ito, 2022], and online learning with
feedback graphs [Erez and Koren, 2021, Kong et al., 2022, Rouyer et al., 2022]. Among these studies,
those using the follow-the-regularized-leader framework [McMahan, 2011] are particularly relevant to
our work. In an analysis of algorithms in this category, we show regret bounds that depend on output
distributions, and we apply the self-bounding technique to derive BOBW regret bounds. In applying
this approach to partial feedback problems including MAB, it has been shown that regularization
based on the Tsallis entropy [Zimmert and Seldin, 2021, Zimmert et al., 2019] or the logarithmic
barrier [Wei and Luo, 2018, Ito, 2021c, Ito et al., 2022] is useful. By way of contrast, our study
employs regularization based on the Shannon entropy and demonstrates for the first time that the
self-bounding technique can be applied even with such regularization.

This study includes the regret bounds for stochastic environments with adversarial corruptions [Lyk-
ouris et al., 2018, Gupta et al., 2019, Amir et al., 2020], which is an intermediate setting between
stochastic and adversarial settings. Zimmert and Seldin [2021] have demonstrated that the self-
bounding technique is also useful in deriving regret bounds for corrupted stochastic environments.
Typically, when the self-bounding technique yields a regret bound of O(R) for stochastic environ-
ments, it also yields a bound of O(R +

√
CR) for corrupted stochastic environments, where C

represents the amount of corruption. Examples of such results can be found in the literature, e.g., that
by Zimmert and Seldin [2021], Erez and Koren [2021], and Ito [2021b]. Our study follows the same
strategy as these studies to obtain regret bounds for corrupted stochastic environments.

The problem of online learning with feedback graphs was formulated by Mannor and Shamir [2011],
and Alon et al. [2015] have provided a full characterization of minimax regret w.r.t. this problem.
Whereas these studies have considered adversarial models, Caron et al. [2012] have considered
stochastic settings and proposed an algorithm with an O(lnT )-regret bound. In addition to these,
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there can be found studies on such various extensions as models with (uninformed) time-varying
feedback graphs [Cohen et al., 2016, Alon et al., 2017], stochastic feedback graphs [Kocák et al.,
2016, Ghari and Shen, 2022, Esposito et al., 2022], non-stationary environments [Lu et al., 2021a],
and corrupted environments [Lu et al., 2021b] as well as such improved algorithms as those with
problem-dependent regret bounds [Hu et al., 2020].

3 Problem setting and known results

Let G = (V,E) be a directed graph with V = [K] = {1, 2, . . . ,K} and E ⊆ V × V , which
we refer to as a feedback graph. For each i ∈ V , we denote the in-neighborhood and the out-
neighborhood of i in G by N in(i) and Nout(i), respectively, i.e., N in(i) = {j ∈ V | (j, i) ∈ E}
and Nout(i) = {j ∈ V | (i, j) ∈ E}.
Before a game starts, the player is given G. For each round t = 1, 2, . . ., the environment selects
the loss functions `t : V → [0, 1], and the player then chooses It ∈ V without knowing `t, where
the value `t(i) represents the loss for choosing i ∈ V in the t-th round. After that, the player incurs
the loss of `t(It) and observes `t(j) for all j ∈ Nout(It). Note that the player cannot observe the
incurred loss if It /∈ Nout(It). The goal of the player is to minimize the sum of incurred loss. To
evaluate performance, we use the regret RT defined by

RT (i∗) = E

[
T∑
t=1

`t(It)−
T∑
t=1

`t(i
∗)

]
, RT = max

i∗∈V
RT (i∗), (1)

where the expectation is taken with respect to the randomness of `t and the algorithm’s internal
randomness. The minimax regret R(G,T ) is defined as the minimum over all randomized algorithms,
of the maximum of RT over all loss sequences {`t}. Alon et al. [2015] have shown that the minimax
regret can be characterized by the notion of observability:
Definition 1 ([Alon et al., 2015]). A graph G is observable if N in(i) 6= ∅ holds for each i ∈ V . A
graph G is strongly observable if {i} ⊆ N in(i) or V \ {i} ⊆ N in(i) holds for each i ∈ V . A graph
G is weakly observable if it is observable but not strongly observable.

We further define the independence number α(G) and the weak domination number δ(G) as follows:
Definition 2. For a graph G = (V,E), an independent set S ⊆ V is a set of vertices such that
u, v ∈ S, u 6= v =⇒ (u, v) /∈ E. The independence number α(G) of G is the size of its largest
independent set. For a graph G = (V,E), a weakly dominating set D ⊆ V is a set of vertices such
that {i ∈ V | i /∈ Nout(i)} ⊆

⋃
i∈DN

out(i). The weak domination number δ(G) of G is the size of
its smallest weakly dominating set.
Remark 2. The definitions of weakly dominating set and weak domination number in this paper
are slightly different from those by Alon et al. [2015]. However, this difference is negligible as the
gap between weak domination numbers in our definition and in theirs is at most one. Details are
discussed in Appendix D.

The minimax regret can then be characterized as follows:
Theorem 3 ([Alon et al., 2015]). Let G be a feedback graph with |V | ≥ 2. Then, the minimax
regret for T ≥ |V |3 is (i) R(G,T ) = Θ̃(α1/2T 1/2) if G is strongly observable; (ii) R(G,T ) =

Θ̃(δ1/3T 2/3) if G is weakly observable; (iii) R(G,T ) = Θ(T ) if G is not observable.

Following this statement by Alon et al. [2015], we assume T ≥ |V |3 = K3 in this paper.

Regret bounds by Erez and Koren [2021] listed in Table 1 depend on the clique covering number
θ(G) of the feedback graph. The clique covering number θ(G) is the minimum value of N such
that there exists a clique cover {Vk}Nk=1 for G of size N . A clique cover is a partition of vertices V
such that each Vk is a clique, i.e., Vk ∩ Vk′ = ∅ for all k 6= k′,

⋃θ
k=1 Vk = V , and Vk × Vk ⊆ E

holds for any k. While there exists an example such that K = θ(G) > α(G) = 1,1 we always have
θ(G) ≥ α(G), that is, the clique covering number is at least the independence number. In fact, for
any clique cover {Vk}Nk=1 and any independence set S ⊆ V , two distinct elements in S can never be
in a single clique Vk, which implies that N ≥ |S|.

1For example, consider the graph G = (V,E) given by V = [K] and E = {(i, j) ∈ V × V | i ≥ j}.
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In this work, we consider the adversarial regime with a self-bounding constraint, a comprehensive
regime including stochastic settings, adversarial settings, and adversarially corrupted stochastic
settings.

Definition 3 (adversarial regime with a self-bounding constraint [Zimmert and Seldin, 2021]). Let
∆ : V → [0, 1] and C ≥ 0. The environment is in an adversarial regime with a (∆, C, T ) self-
bounding constraint if it holds for any algorithm that

RT ≥ E

[
T∑
t=1

∆(It)− C

]
. (2)

As has been shown by Zimmert and Seldin [2021], this regime includes (adversarially corrupted)
stochastic settings. Indeed, if `t follows a distribution D independently for t = 1, 2, . . . , T we have
RT = maxi∗∈V E

[∑T
t=1(`t(It)− `t(i∗))

]
= E

[∑T
t=1 ∆(It)

]
, where we define ∆ by ∆(i) =

E`∼D[`(i)]−mini∗∈V E`∼D[`(i∗)]. This means that the environment is in an adversarial regime with
a (∆, 0, T ) self-bounding constraint. Further, if `t satisfies

∑T
t=1 maxi∈[N ] |`t(i)− `′t(i)| ≤ C for

some `′t ∼ D, the environment is in an adversarial regime with a (∆, C, T ) self-bounding constraint.
Note also that, for any ∆ : V → [0, 1], the adversarial regime with a (∆, 2T, T ) self-bounding
constraint includes all the adversarial environments since (2) clearly holds when C = 2T .

In this paper, we assume that there exists i∗ ∈ V such that ∆(i∗) = 0 and that ∆min :=
mini∈V \{i∗}∆i > 0. This implies that the optimal arm i∗ is assumed to be unique. Similar
assumptions were also made in previous works using the self-bounding technique [Gaillard et al.,
2014, Luo and Schapire, 2015, Wei and Luo, 2018, Zimmert and Seldin, 2021, Erez and Koren,
2021].

4 Preliminary

The proposed algorithms are based on the follow-the-regularized-leader approach. In this approach,
we define a probability distribution pt over V as follows:

qt ∈ arg min
p∈P(V )

{
t−1∑
s=1

〈
ˆ̀
s, p
〉

+ ψt(p)

}
, pt = (1− γt)qt + γtµU , (3)

where P(V ) = {p : V → [0, 1] |
∑
i∈V p(i) = 1} expresses the set of all probability distributions

over V , ˆ̀
s is an unbiased estimator for `s, 〈`, p〉 =

∑
i∈V `(i)p(i) represents the inner product,

ψt : P → R is a convex regularizer function, γt ∈ [0, 0.5] is a parameter, and µU is the uniform
distribution over a nonempty subset U ⊆ V , i.e., µU (i) = 1/|U | for i ∈ U and µU (i) = 0 for
i ∈ V \U . After computing pt defined by (3), we choose It following pt so that Pr[It = i|pt] = pt(i).
We then observe `t(j) for each j ∈ Nout(It). Based on these observations, we set the unbiased
estimator ˆ̀

t : V → R by

ˆ̀
t(i) =

`t(i)

Pt(i)
1[i ∈ Nout(It)], Pt(i) =

∑
j∈N in(i)

pt(j). (4)

Let Dt denote the Bregman divergence with respect to ψt, i.e.,

Dt(p, q) = ψt(p)− ψt(q)− 〈∇ψt(q), p− q〉 . (5)

We then have the following regret bounds:

Lemma 1. If It is chosen by the above procedure, the regret is bounded by

RT ≤ E

[
T∑
t=1

(
γt +

〈
ˆ̀
t, qt − qt+1

〉
−Dt(qt+1, qt) + ψt(qt+1)− ψt+1(qt+1)

)]
+ψT+1(µi∗)− ψ1(q1), (6)

where µi∗(i) = 1 if i = i∗ and µi∗(i) = 0 for i ∈ V \ {i∗}.
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This lemma can be shown by the standard analysis technique for FTRL, e.g., given in Exercise 28.12
of the book by Lattimore and Szepesvári [2020], combined with the fact that ˆ̀

t defined by (4) is an
unbiased estimator of `t. All omitted proofs will be given in the appendix.

We also introduce the following parameters Q(i∗) and Q, which will be used when applying self-
bounding technique:

Q(i∗) =

T∑
t=1

(1− qt(i∗)), Q̄(i∗) = E [Q(i∗)] , Q̄ = min
i∗∈V

Q̄(i∗). (7)

We note that these values are clearly bounded as 0 ≤ Q̄ ≤ Q̄(i∗) ≤ T for any i∗ ∈ V . In an
adversarial regime with a self-bounding constraint, the regret can be bounded from below, as follows:
Lemma 2. In an adversarial regime with a self-bounding constraint given in Definition 3, the regret
is bounded as RT ≥ ∆min

2 Q̄− C.

This lemma will be used to show poly-logarithmic regret in adversarial regime with a self-bounding
constraint.

5 Strongly observable case

This section provides an algorithm achieving regret bounds in Theorem 1. We set U = V and define
ψt using the Shannon entropy H(p) as follows:

ψt(p) = −βtH(p), where H(p) =
∑
i∈V

p(i) ln
1

p(i)
, (8)

where βt > 0 will be defined later. If we choose γt = min
{(

1
αT

)1/2
, 1

2

}
and βt = 1

2γt
for all t, the

FTRL algorithm (3) with (8) coincides with the Exp3.G algorithm with the parameter setting given in
Theorem 2 (i) by Alon et al. [2015]. As shown by them, this round-independent parameter setting
leads to a regret bound of RT = O(α1/2T 1/2 ln(KT )).

In this work, we modify the update rule of βt and γt as follows: We set β1 = c1 ≥ 1 and update βt
and γt by

βt+1 = βt +
c1√

1 + (lnK)−1
∑t
s=1 as

, γt =
1

2βt
, (9)

where as is defined by as = H(qs). In the following, we will show the following regret bounds:
Theorem 4. If the feedback graph G is strongly observable and has the independent number
α = α(G), the FTRL algorithm (3) with U = V and ψt defined by (8) and (9) enjoys a regret bound
of

RT ≤ ĉ ·max
{
Q̄1/2, 1

}
, where ĉ = O

((
α lnT · ln(c1KT )

c1
√

lnK
+ c1
√

lnK

)√
ln(KT )

)
. (10)

Consequently, we have RT = O
(
ĉ
√
T
)

in the adversarial regime and RT = O
(

ĉ2

∆min
+
√

Cĉ2

∆min

)
in adversarial regimes with self-bounding constraints.

When we set c1 = Θ

(√
α lnT ·ln(KT )

lnK

)
, ĉ in this theorem is at most O

(√
α lnT · (ln(KT ))2

)
,

which leads to the regret bounds in Theorem 1. In the rest of this section, we provide proof for
Theorem 4.

Let us start with the following lemma:
Lemma 3. If ψt is given by (8) with βt ≥ 1 and γt ≥ 1/(2βt), the regret for the FTRL algorithm (3)
with U = V is bounded as

RT ≤ E

[
T∑
t=1

(
γt +

2

βt

(
1 + 4α ln

K2

4γt

)
+ (βt+1 − βt)at+1

)]
+ β1 lnK, (11)

where at = H(qt) is the value of the Shannon entropy for qt.
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This lemma follows from Lemma 1 and the technique used in the proof of Alon et al. [2015, Theorem
2]. We note that 0 ≤ at ≤ lnK and a1 = lnK. From Lemma 3 and the update rules of parameters
given by (9), we obtain the following entropy-dependent regret bound:

Proposition 1. Suppose (11) holds. If βt and γt are given by (9), RT ≤ c̃E

[√∑T
t=1 at

]
, where

at = H(qt) and c̃ = O
(
α lnT ·ln(c1KT )

c1
√

lnK
+ c1
√

lnK
)
.

Proof. We will show the following two inequalities:

T∑
t=1

(
γt +

2

βt

(
1 + 4α ln

K2

4γt

))
= O

α lnT · ln(c1K
2T )

c1
√

lnK

√√√√ T∑
t=1

at

 , (12)

T∑
t=1

(βt+1 − βt)at+1 = O

c1√lnK

√√√√ T∑
t=1

at

 . (13)

Let us first show (12). From the definition of γt given in (9), we have [LHS of (12)] ≤∑T
t=1

1
βt

(
3 + 8α ln c1K

2t
2

)
≤
(

3 + 8α ln c1K
2T

2

)∑T
t=1

1
βt

. From the definition of βt given

by (9), βt is bounded as βt = c1 +
∑t−1
u=1

c1√
1+(lnK)−1

∑u
s=1 as

≥ c1t√
1+(lnK)−1

∑t
s=1 as

. We

hence have
∑T
t=1

1
βt
≤
∑T
t=1

1
c1t

√
1 + (lnK)−1

∑t
s=1 as ≤

1+lnT
c1

√
1 + (lnK)−1

∑T
t=1 at ≤

O

(
lnT

c1
√

lnK

√∑T
t=1 at

)
, where the last inequality follows from a1 = lnK. Combining the above

inequalities, we obtain (12).

Let us next show (13). From (9), we have [LHS of (13)] =
∑T
t=1

c1√
1+(lnK)−1

∑t
s=1 as

· at+1 =

2c1
√

lnK
∑T
t=1

at+1√
lnK+

∑t
s=1 as+

√
lnK+

∑t
s=1 as

≤ 2c1
√

lnK
∑T
t=1

at+1√∑t+1
s=1 as+

√∑t
s=1 as

=

2c1
√

lnK
∑T
t=1

(√∑t+1
s=1 as −

√∑t
s=1 as

)
= 2c1

√
lnK

(√∑T+1
s=1 as −

√
a1

)
≤

2c1
√

lnK
√∑T

t=1 at, where inequalities follow from at ≤ a1 = lnK. This proves (13).

Inequalities (12) and (13) combined with (11) lead to the regret bound in Proposition 1.

In addition,
∑T
t=1 at =

∑T
t=1H(qt) is bounded with Q(i∗) defined in (7), as follows:

Lemma 4. Suppose at = H(qt). For any i∗ ∈ V , we have
∑T
t=1 at ≤ Q(i∗) ln eKT

Q(i∗) .

We are now ready to prove Theorem 4.
Proof of Theorem 4. From Lemma 4, if Q(i∗) ≤ e, we have

∑T
t=1 at ≤ e ln(KT ) and otherwise, we

have
∑T
t=1 at ≤ Q(i∗) ln(KT ). Hence, we have

∑T
t=1 at ≤ ln(KT ) ·max {e, Q(i∗)}. Combining

this with Proposition 1, we obtain (10). Since Q̄ ≤ T , we have RT ≤ ĉ
√
T in adversarial regimes.

We next show RT = O
(

ĉ2

∆min
+
√

Cĉ2

∆min

)
. From Lemma 2, (2) implies if the environment satisfies a

(∆, C, T ) self-bounding constraint (2), we haveRT ≥ ∆min

2 Q̄−C. Combining this with Proposition 1
and Lemma 4, it holds for any λ > 0 that

RT = (1 + λ)RT − λRT ≤ (1 + λ)c̃
√
Q̄ ln(KT )− λ∆min

2
Q̄+ λC

≤ ((1 + λ)c̃)2 ln(KT )

2λ∆min
+ λC =

c̃2 ln(KT )

∆min
+

1

2λ

c̃2 ln(KT )

∆min
+
λ

2

(
c̃2 ln(KT )

∆min
+ 2C

)
,

where the first inequality follows from Proposition 1, Lemma 4, the condition of Q(i∗) ≥ e,
and (23). The second inequality follows from a

√
x − b

2x = a2

2b −
1
2

(
a√
b
−
√
bx
)
≤ a2

2b which
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holds for any a, b, x ≥ 0. By choosing λ =

√
c̃2 ln(KT )

∆min
/
(
c̃2 ln(KT )

∆min
+ 2C

)
, we obtain RT =

O
(

ĉ2

∆min
+
√

Cĉ2

∆min

)
.

6 Weakly observable case

This section provides an algorithm achieving regret bounds in Theorem 2. Let D be a weakly
dominating set, defined in Definition 2, and let V1 =

⋃
i∈DN

out(i), V2 = V \ V1. We consider here
the FTRL approach given by (3) with U = D and regularizer functions defined as

ψt(p) = βt
∑
i∈V1

h(p(i)) +
∑
i∈V2

√
tg(p(i)),

where h(x) = x lnx+ (1− x) ln(1− x), g(x) = −2
√
x− 2

√
1− x. (14)

The regularization with h(x) for V1 is a variant of Shannon-entropy regularization, which can be
considered as a modification of the approach of the Exp3.G by Alon et al. [2015]. The remaining
part defined with g(x) for V2 is a modification of the approach used in the Tsallis-INF algorithm by
Zimmert and Seldin [2021], which is a BOBW algorithm for MAB problems. Intuitively, approaches
for MAB work well for vertices in V2 as they have self-loops, i.e., choosing actions in V2 admits
bandit feedback.

Let us define parameters γt and βt by β1 = max{c2, 8|D|} and

γ′t =
1

4

c1bt

c1 +
(∑t

s=1 bs

)1/3
, βt+1 = βt +

c2bt

γ′t

(
c1 +

∑t−1
s=1

bsas+1

γ′s

)1/2
, γt = γ′t +

2|D|
βt

,

(15)

where c1, c2 > 0 are input parameters such that c1 ≥ 2 lnK and with {at} and {bt} are defined by

at = −
∑
i∈V1

h(qt(i)), bt =
∑
i∈V1

qt(i)(1− qt(i)). (16)

Note that at and ĉ used in this Section 6 are different from those defined in Section 5. We then have
the following regret bounds:

Theorem 5. If the feedback graph G is weakly observable, the FTRL algorithm (3) with U = D and
ψt defined by (14) and (15) enjoys a regret bound of

RT ≤ ĉ ·max
{
Q̄2/3, c21

}
+O

(
(|V2| lnT · Q̄)1/2

)
where

ĉ = O

(
c1 +

1
√
c1

(
|D| lnT
c2

+ c2

)√
ln(KT )

)
. (17)

Consequently, if T ≥ K3, we have RT = O
(
ĉT 2/3

)
in the adversarial regime and

RT = O

 ĉ3

∆2
min

+

(
C2ĉ3

∆2
min

)1/3

+
|V2| lnT

∆min
+

√
C|V2| lnT

∆min

 (18)

in adversarial regimes with self-bounding constraints.

We obtain ĉ = O
(

(|D| lnT · ln(KT ))
1/3
)

by setting c1 = Θ
(

(|D| lnT · ln(KT ))
1/3
)

and c2 =

Θ
(√
|D| lnT

)
. By using a weakly dominating set D such that |D| = O(δ(G)), we obtain the regret

bounds in Theorem 2. The remainder of this section is dedicated to the proof of Theorem 5.

We start with the following regret bound:
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Lemma 5. If ψt is given by (14) and if γt ≥ 2|D|
βt

, we have RT ≤ R(1)
T +R

(2)
T + a1β1, where

R
(1)
T = O

(
E

[
T∑
t=1

(
γt +

|D|bt
γtβt

+ (βt+1 − βt)at+1

)])
, (19)

R
(2)
T = O

(
E

[
T∑
t=1

1√
t

∑
i∈V2

√
qt(i)(1− qt(i))

])
, (20)

with {at} and {bt} defined by (16).

When showing (19) and (20), we use techniques used in the proofs of Alon et al. [2015, Theorem 2]
and of Zimmert and Seldin [2021, Lemma 11]. We then have the following bound:

Proposition 2. If γt and βt are given by (15), R(1)
T satisfying (19) is bounded as

R
(1)
T = O

(
E

[
c1B

2/3
T + c̃

√
c21 + (lnK +AT )

(
c1 +B

1/3
T

)])
, (21)

where AT =
∑T
t=1 at, BT =

∑T
t=1 bt and c̃ = O

(
1√
c1

(
|D| lnT
c2

+ c2

))
.

Values of AT and BT in this proposition can be bounded with Q(i∗) defined in (7), as follows:

Lemma 6. AT and BT defined in Proposition 2 satisfy AT ≤ 2Q(i∗) ln eKT
Q(i∗) and BT ≤ 2Q(i∗) .

Further, R(2)
T in Lemma 5 can be bounded with Q̄ as follows:

Lemma 7. R(2)
T satisfying (20) is bounded as R(2)

T = O
(√
|V2| lnT · Q̄

)
.

Proof of Theorem 5. From Proposition 2 and Lemma 6, if Q̄ ≥ c31, we have

R
(1)
T = O

(
E

[
c1Q(i∗)2/3 + c̃

√
Q(i∗) ln(KT )Q(i∗)1/3

])
≤ O

((
c1 + c̃

√
ln(KT )

)
Q̄2/3

)
,

where the inequality follows from Jensen’s inequality. Hence, there exists ĉ such that R(1)
T ≤

ĉ · Q̄2/3 and ĉ = O
(
c1 + c̃

√
ln(KT )

)
. Combining this with Lemma 7, we obtain (17). As

we have Q̄ ≤ T , in adversarial regimes with T ≥ K3, it follows from (17) that RT =
O
(
ĉ ·max{T 2/3, c21}+ (K lnT · T )1/2

)
= O

(
ĉ · T 2/3

)
, where the second equality follows from

the T ≥ K3. Let us next show (18). From (17) and Lemma 2, for any λ ∈ (0, 1], we have

RT = (1 + λ)RT − λRT = O
(

(1 + λ)ĉ · Q̄2/3 + (1 + λ)(|V2| lnT · Q̄)1/2 − λ∆minQ̄+ λC
)
.

By an argument similar to the proof of Theorem 4, we have (1 + λ)(|V2| lnT · Q̄)1/2 − λ∆minQ̄ =

O
((

1 + 1
λ

) |V2| lnT
∆min

)
. We also have (1 +λ)ĉ · Q̄2/3−λ∆minQ̄ =

(
(1+λ)3ĉ3

λ2∆2
min

)1/3 (
λ∆minQ̄

)2/3−
λ∆minQ̄ = O

(
(1+λ)3ĉ3

λ2∆2
min

)
= O

((
1 + 1

λ2

)
ĉ3

∆2
min

)
, where the second equality follows from

x1/3y2/3 ≤ 1
3x + 2

3y that holds for any x, y ≥ 0. Combining these inequalities, we obtain

RT = O
((

1 + 1
λ2

)
ĉ3

∆2
min

+
(
1 + 1

λ

) |V2| lnT
∆min

+ λC
)
. By choosing λ that minimizes the RHS, we

obtain (18).
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A Omitted proofs

A.1 Proof of Lemma 1

Proof. From the definition of the algorithm, we have

RT (i∗) = E

[
T∑
t=1

`t(It)−
T∑
t=1

`t(i
∗)

]
= E

[
T∑
t=1

〈`t, pt − µi∗〉

]

= E

[
T∑
t=1

〈`t, qt − µi∗〉+

T∑
t=1

γt 〈`t, µU − qt〉

]
≤ E

[
T∑
t=1

〈`t, qt − µi∗〉+

T∑
t=1

γt

]

= E

[
T∑
t=1

〈
ˆ̀
t, qt − µi∗

〉
+

T∑
t=1

γt

]
, (22)

where the second equality follows from It ∼ pt, the third equality follows from the second part of
(3), the first inequality follows from 〈`t, µU − qt〉 ≤ 〈`t, µU 〉 ≤ 1, and the last equality follows from
the fact that ˆ̀

t is an unbiased estimator for `t. Further, from Exercise 28.12 of the book by Lattimore
and Szepesvári [2020], we have

T∑
t=1

〈
ˆ̀
t, qt − µi∗

〉
≤

T∑
t=1

(〈
ˆ̀
t, qt − qt+1

〉
−Dt(qt+1, qt) + ψt(qt+1)− ψt+1(qt+1)

)
+ ψT+1(µi∗)− ψ1(q1).

Combining this with (22), we obtain (6).

A.2 Proof of Lemma 2

Proof. Suppose that (2) holds with ∆ : V → R such that ∆(i) ≥ ∆min for all i ∈ [K] \ {i∗}. The
regret is then bounded as

RT ≥ E

[
T∑
t=1

∆(It)

]
− C = E

[
T∑
t=1

∑
i∈V

∆(i)pt(i)

]
− C

≥ E

[
T∑
t=1

∑
i∈V

∆(i)(1− γt)qt(i)

]
− C ≥ E

[
∆min

2
Q(i∗)

]
− C ≥ ∆min

2
Q̄− C, (23)

where the first inequality follows from (2), the first equality follows from It ∼ pt, the second
inequality follows from the definition of pt given in (3), and the third and last inequalities follow
from the assumption of γt ≤ 1

2 and the definitions of Q(i∗) and Q̄ given in (7). This completes the
proof of Lemma 2.

A.3 Proof of Lemma 3

We use the following lemma to analyze the right-hand sided of (6).

Lemma 8. If ψt is given by (8), it holds for any ` : V → R and p, q ∈ P(V ) that

〈`, p− q〉 −Dt(q, p) ≤ βt
∑
i∈V

p(i)ξ

(
`(i)

βt

)
, where ξ(x) = exp(−x) + x− 1. (24)

Proof. The derivative of the LHS of (24) w.r.t. q(i) is expressed as

∂

∂q(i)
(〈`, p− q〉 −Dt(q, p)) = −`(i)− βt (ln q(i)− ln p(i)) . (25)

14



As the LHS of (24) is concave in q, its maximum subject to q : V → R>0 is attained when the values
of (25) are equal to zero, i.e., q(i) = q∗(i) := p(i) exp

(
− `(i)βt

)
. Hence, we have

〈`, p− q〉 −Dt(q, p) ≤ 〈`, p− q∗〉 −Dt(q
∗, p)

=
∑
i∈V

(`(i)(p(i)− q∗(i))− βt (q∗(i) ln q∗(i)− p(i) ln p(i)− (ln p(i) + 1)(q∗(i)− p(i))))

=
∑
i∈V

(`(i)p(i)− βt (q∗(i) ln p(i)− p(i) ln p(i)− (ln p(i) + 1)(q∗(i)− p(i))))

=
∑
i∈V

(`(i)p(i) + βt ((q∗(i)− p(i)))) = βt
∑
i∈V

p(i)

(
exp

(
−`(i)
βt

)
+
`(i)

βt
− 1

)
= βt

∑
i∈V

p(i)ξ

(
`(i)

βt

)
,

where the first equality follows from the definition of the Bregman divergence and (8), the second
equality follows from ln q∗(i) = ln p(i) − `(i)

βt
, and the fourth inequality follows from q∗(i) =

p(i) exp
(
− `(i)βt

)
. This complete the proof of Lemma 8.

Note that as we have exp(−x) ≤ 1 − x + x2 for any x ≥ −1, the function ξ defined in (24)
satisfies ξ(x) ≤ x2 for any x ≥ −1. Hence, Lemma 8 implies that 〈`, p− q〉 − Dt(q, p) ≤
βt
∑
i∈V p(i)ξ

(
`(i)
βt

)
≤ 1

βt

∑
i∈V p(i)`(i)

2 holds for any ` : V → [−βt,∞).

Denote S = {i ∈ V | i /∈ N in(i)}. From Lemma 8 and the argument by Alon et al. [2015, Lemma 4,
Theorem 2], we have

E
[〈

ˆ̀
t, qt − qt+1

〉
−Dt(qt+1, qt)

]
= E

[〈
ˆ̀
t − ¯̀

t · 1, qt − qt+1

〉
−Dt(qt+1, qt)

]
≤ βt

∑
i∈V

qt(i)ξ

(
ˆ̀
t(i)− ¯̀

t

βt

)
≤ 1

βt

∑
i∈S

qt(i)(1− qt(i))ˆ̀
t(i)

2 +
∑
i∈V \S

qt(i)ˆ̀
t(i)

2

 , (26)

where ¯̀
t is defined in a way similar to by Alon et al. [2015, Lemma 4], the first inequality follows

from Lemma 8 and the last inequality follows from the definition of ¯̀
t and the inequality ξ(x) ≤ x2

that holds for x ≥ −1. The first term of the right-hand side of (26) can be bounded as

E

[∑
i∈S

qt(i)(1− qt(i))ˆ̀
t(i)

2

]
= E

[∑
i∈S

qt(i)(1− qt(i))
`t(i)

21[i ∈ Nout(It)]

Pt(i)2

]

= E

[∑
i∈S

qt(i)(1− qt(i))
`t(i)

2

Pt(i)

]
≤ E

[∑
i∈S

qt(i)
1− qt(i)
Pt(i)

]

= E

[∑
i∈S

qt(i)
1− qt(i)
1− pt(i)

]
≤ E

[
2
∑
i∈S

qt(i)

]
≤ 2, (27)

where the first equality follows from (4), the third equality follows from the assumption of strong
observability implying that N in(i) = [K] \ {i} for all i ∈ S, and the second inequality follows from
the second part of (3) and the assumption of γt ∈ [0, 0.5]. The second term of the right-hand side of
(26) is bounded as

∑
i∈V \S

qt(i)ˆ̀
t(i)

2 ≤ E

 ∑
i∈V \S

qt(i)
1

Pt(i)

 ≤ 2E

 ∑
i∈V \S

pt(i)
1

Pt(i)

 ≤ 8α(G) ln
K2

4γt
, (28)

where the second inequality follows from the second part of (3) and the assumption of γt ∈ [0, 0.5],
and the last inequality follows from Lemma 5 by Alon et al. [2015].
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Combining (26), (27) and (28), we obtain

E
[〈

ˆ̀
t, qt − qt+1

〉
−Dt(qt+1, qt)

]
≤ 2

βt

(
1 + 4α(G) ln

K2

4γt

)
. (29)

In addition, from the definition of ψt in (8), we have
T∑
t=1

(ψt(qt+1)− ψt+1(qt+1)) + ψT+1(µi∗)− ψ1(q1)

=

T∑
t=1

(βt+1 − βt)H(qt+1)− βT+1H(µi∗) + β1H(q1)

≤
T∑
t=1

(βt+1 − βt)H(qt+1) + β1 lnK.

By combining this with (29) and Lemma 1, we obtain (11).

A.4 Proof of Lemma 4

Proof. For any p ∈ P(V ), and for any i∗ ∈ V , we have

H(p) =
∑
i∈V

p(i) ln
1

p(i)
=

∑
i∈V \{i∗}

p(i) ln
1

p(i)
+ p(i∗) ln

(
1 +

1− p(i∗)
p(i∗)

)

≤ (K − 1) ·
∑
i∈V \{i∗} p(i)

K − 1
ln

K − 1∑
i∈V \{i∗} p(i)

+ p(i∗)
1− p(i∗)
p(i∗)

= (1− p(i∗))
(

ln
K − 1

1− p(i∗)
+ 1

)
, (30)

where the inequality follows from Jensen’s inequality and ln(1 + x) ≤ x that holds for any x ≥ 0
and the last equality follows from

∑
i∈V p(i) = 1. Using this, we have

T∑
t=1

at =

T∑
t=1

H(qt) ≤
T∑
t=1

(1− qt(i∗))
(

ln
K − 1

1− qt(i∗)
+ 1

)
≤ Q(i∗)

(
ln

(K − 1)T

Q(i∗)
+ 1

)
≤ Q(i∗)

(
ln

eKT

Q(i∗)

)
,

where the second inequality follows from Jensen’s inequality with the definition Q(i∗) =
∑T
t=1(1−

qt(i
∗)).

A.5 Proof of Lemma 5

We use the following lemma to analyze the right-hand sided of (6).
Lemma 9. If ψt is given by (14), it holds for any ` : V → R and p, q ∈ P(V ) that

〈`, p− q〉 −Dt(q, p) ≤ βt
∑
i∈V1

min

{
p(i)ξ

(
`(i)

βt

)
, (1− p(i))ξ

(
−`(i)
βt

)}

+
√
t
∑
i∈V2

min

{√
p(i)ζ

(√
p(i)`(i)√

t

)
,
√

1− p(i)ζ

(
−
√

1− p(i)`(i)√
t

)}
, (31)

where ξ(x) = exp(−x) + x− 1, ζ(x) =
x2

1 + x
. (32)

Proof. For any x, y ∈ (0, 1), we define d(1)(y, x) ≥ 0 and d(2)(y, x) ≥ 0 by

d(1)(y, x) = y ln y − x lnx− (lnx+ 1)(y − x) = y ln
y

x
+ x− y, (33)

d(2)(y, x) = −2
√
y + 2

√
x+

1√
x

(y − x) =
1√
x

(√
y −
√
x
)2
. (34)
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Note that d(1) and d(2) correspond to Bregman divergences over (0, 1) for ψ(1)(x) = x lnx and
ψ(2)(x) = −2

√
x. If ψt is given by (14), the Bregman divergence Dt(q, p) associated with ψt is

expressed as

Dt(q, p) = βt
∑
i∈V1

(
d(1)(q(i), p(i)) + d(1)(1− q(i), 1− p(i))

)
+
√
t
∑
i∈V2

(
d(2)(q(i), p(i)) + d(2)(1− q(i), 1− p(i))

)
.

From this, we have

〈`, p− q〉 −Dt(q, p)

≤
∑
i∈V1

(
`(i)(p(i)− q(i))− βt(d(1)(q(i), p(i)) + d(1)(1− q(i), 1− p(i)))

)
+
∑
i∈V2

(
`(i)(p(i)− q(i))−

√
t(d(2)(q(i), p(i)) + d(2)(1− q(i), 1− p(i)))

)
≤
∑
i∈V1

min
{
`(i)(p(i)− q(i))− βtd(1)(q(i), p(i)), `(i)(p(i)− q(i))− βtd(1)(1− q(i), 1− p(i))

}
+
∑
i∈V2

min
{
`(i)(p(i)− q(i))−

√
td(2)(q(i), p(i)), `(i)(p(i)− q(i))−

√
td(2)(1− q(i), 1− p(i))

}
.

(35)

By the arguments in the proof of Lemma 8, we have

`(i)(p(i)− q(i))− βtd(1)(q(i), p(i)) ≤ βtp(i)ξ
(
`(i)

βt

)
. (36)

In a similar way, we can show

`(i)(p(i)− q(i))− βtd(1)(1− q(i), 1− p(i))

= −`(i)((1− p(i))− (1− q(i)))− βtd(1)(1− q(i), 1− p(i)) ≤ βt(1− p(i))ξ
(
−`(i)
βt

)
. (37)

Let us next evaluate the term `(i)(p(i) − q(i)) −
√
td(2)(q(i), p(i)) in the right-hand side of (35).

Denoting z =
√
q(i), we have

`(i)(p(i)− q(i))−
√
td(2)(q(i), p(i)) = `(i)(p(i)− z2)−

√
t

1√
p(i)

(
z −

√
p(i)

)2

, (38)

where the last inequality follows from (34). Hence, its derivative in z can be expressed as

−2`(i)z − 2
√
t

1√
p(i)

(
z −

√
p(i)

)
= −2

(
`(i) +

√
t

p(i)

)
z + 2

√
t. (39)

The value of this expression is equal to zero when z = z∗ :=

√
tp(i)

√
t+
√
p(i)`(i)

. As (38) is concave in z,

its value is maximized when z = z∗. Hence, we have

`(i)(p(i)− q(i))−
√
td(2)(q(i), p(i)) ≤ `(i)(p(i)− z∗2)−

√
t

1√
p(i)

(
z∗ −

√
p(i)

)2

=
(√

p(i)− z∗
)(

`(i)
(√

p(i) + z∗
)
−
√
t√
p(i)

(√
p(i)− z∗

))

=
p(i)`(i)

√
t+
√
p(i)`(i)

(
`(i)
√
p(i) +

(
`(i) +

√
t√
p(i)

)
z∗ −

√
t

)

=
p(i)`(i)

√
t+
√
p(i)`(i)

`(i)
√
p(i) =

√
p(i)

(√
p(i)`(i)

)2

√
t+
√
p(i)`(i)

=
√
tp(i)ζ

(√
p(i)`(i)√

t

)
. (40)
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In a similar way to that for showing (40), we can show
`(i)(p(i)− q(i))−

√
td(2)(1− q(i), 1− p(i))

= −`(i)((1− p(i))− (1− q(i)))−
√
td(2)(1− q(i), 1− p(i))

≤
√
t(1− p(i))ζ

(
−
√

1− p(i)`(i)√
t

)
. (41)

Combining (35), (36), (37), (40) and (41), we obtain (31).

Note that ξ(x) and ζ(x) defined in (32) satisfy ξ(x) ≤ x2 for x ≥ −1 and ζ(x) ≤ 2x2 for x ≥ − 1
2 .

Using Lemma 9, we evaluate
〈

ˆ̀
t, qt − qt+1

〉
−Dt(qt+1, qt). As we define pt by (3) with U = D,

we have pt(i) ≥ γt
|D| for all i ∈ D. Hence, for any i ∈ V1 =

⋃
j∈DN

out(j), the value of Pt(i)
defined by in (4) is bounded as

Pt(i) =
∑

j∈N in(i)

pt(j) ≥
γt
|D|

, (42)

which implies ˆ̀
t ≤ `t(i)

Pt(i)
≤ |D|γt . From this and the assumption of γt ≥ 2|D|

βt
, we have

ˆ̀
t(i)
βt
≤ |D|

βtγt
≤

1
2 for all i ∈ V1. As we have ζ(x) ≤ x2 for x ≤ − 1

2 , it holds for any i ∈ V1 that

E

[
min

{
qt(i)ξ

(
ˆ̀
t(i)

βt

)
, (1− qt(i))ξ

(
−

ˆ̀
t(i)

βt

)}]

≤ E

min {qt(i), (1− qt(i))}

(
ˆ̀
t(i)

βt

)2


= E

[
min {qt(i), (1− qt(i))}

(
`t(i)

21 [i ∈ Nout(It)]

Pt(i)2βt

)2
]

= E

[
min {qt(i), (1− qt(i))}

`t(i)
2

Pt(i)β2
t

]
≤ E

[
2|D|
β2
t γt

qt(i)(1− qt(i))
]
,

where the last inequality follows from (42) and the inequality min{x, 1− x} ≤ 2x(1− x) that holds
for any x ∈ [0, 1]. We hence have

E

[∑
i∈V1

min

{
qt(i)ξ

(
ˆ̀
t(i)

βt

)
, (1− qt(i))ξ

(
−

ˆ̀
t(i)

βt

)}]
≤ E

[
2|D|
βtγt

∑
i∈V1

qt(i)(1− qt(i))

]

= E

[
2|D|bt
β2
t γt

]
. (43)

For any i ∈ V2, we have i ∈ N in(i), which implies Pt(i) ≥ pt(i) ≥ (1 − γt)qt(i) ≥ 1
2qt(i). We

hence have

E

[
ζ

(√
qt(i)ˆ̀

t(i)√
t

)]
≤ E

[
ζ

(√
qt(i)ˆ̀

t(i)√
t

)]
≤ E

(√qt(i)ˆ̀
t(i)√

t

)2


= E

[
qt(i)

t

`t(i)
21[i ∈ Nout(It)]

Pt(i)2

]
≤ E

[
qt(i)

tPt(i)

]
≤ 2

t
. (44)

Further, if qt(i) ≥ 15
16 , we have

√
1−qt(i)ˆ̀

t(i)√
t

≤ 1
4Pt(i)

√
t
≤ 1

2qt(i)
√
t
≤ 8

15 . As ζ(x) satisfies

ζ(x) ≤ x2

1+x ≤
15
7 x

2 for any x ≥ − 8
15 , we have

ζ

(
−
√

1− qt(i)ˆ̀
t(i)√

t

)
≤ 15

7

(√
1− qt(i)ˆ̀

t(i)√
t

)2

=
15

7

1− qt(i)
t

`t(i)
21[i ∈ Nout(It)]

Pt(i)2

≤ 60

7

1− qt(i)
t

1[i ∈ Nout(It)]

qt(i)2
≤ 60

7

(
16

15

)2
1− qt(i)

t
≤ 10

1− qt(i)
t

(45)
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if i ∈ V2 and qt(i) ≥ 15
16 . From (44) and (45), for i ∈ V2, we have

E

[
min

{√
qt(i)ζ

(√
qt(i)ˆ̀

t(i)√
t

)
,
√

1− qt(i)ζ

(
−
√

1− qt(i)ˆ̀
t(i)√

t

)}
|qt(i)

]

≤

{
2

√
qt(i)

t

(
qt(i) <

15
16

)
10 1−qt(i)

t

(
qt(i) ≥ 15

16

) = O

(
1

t

√
qt(i)(1− qt(i))

)
. (46)

We further have
T∑
t=1

(ψt(qt+1)− ψt+1(qt+1)) + ψT+1(µi∗)− ψ1(q1)

=
∑
i∈V1

(
T∑
t=1

(βt − βt+1)h(qt+1(i))

)
+
∑
i∈V2

(
T∑
t=1

(√
t−
√
t+ 1

)
g(qt+1(i))

)
− 2
√
T + 1 · |V2|+ β1

∑
i∈V1

h(q1(i)) + 2
∑
i∈V2

g(q1(i))

=

T∑
t=1

(βt − βt+1) at+1 + 2
∑
i∈V2

(
T∑
t=0

(√
t+ 1−

√
t
)(√

qt+1(i) +
√

1− qt+1(i)− 1
))

+ β1a1

≤
T∑
t=1

(βt − βt+1) at+1 + β1a1 + 2

T+1∑
t=1

1√
t

∑
i∈V2

√
qt(i)(1− qt(i)), (47)

where at and bt are defined by (16) and the last inequality follows from
√
t+ 1−

√
t ≤ 1√

t+1
and

√
x+
√

1− x− 1 ≤
√
x(1− x). From Lemma 1 combined with (43), (46) and (47), we have

RT = O

(
T∑
t=1

(
γt +

|D|bt
βtγt

+ (βt − βt+1)at+1 +
1√
t

∑
i∈V2

√
qt(i)(1− qt(i))

)
+ β1a1

)
. (48)

A.6 Proof of Proposition 2

Proof. We note that bt ≤ 1 and bt ≤ at ≤ 2 lnK. We define zt = btat+1

γ′t
and Zt =

∑t
s=1 zs. Then,

from the definition of γ′t, we have

zt =
at+1bt
γ′t

= 4
at+1

c1

(
c1 +B

1/3
t

)
≥ at+1 ≥ bt+1 (49)

where the second inequality follows from bt ≤ at. Further, we have

zt = 4
at+1

c1

(
c1 +B

1/3
t

)
≤ 4

(
c1 +B

1/3
t

)
≤ 4c1 + 4

(
b1 +

t−1∑
s=1

zs

)1/3

≤ 8 (c1 + Zt−1) ,

(50)

where the first inequality follows from at+1 ≤ 2 lnK and c1 ≥ 2 lnK and the last inequality follows
from c1 ≥ 2 and b1 ≤ 1. From this, we have

T∑
t=1

(βt+1 − βt)at+1 = c2

T∑
t=1

zt√
c1 + Zt−1

= 4c2

T∑
t=1

Zt − Zt−1

3
√
c1 + Zt−1 +

√
c1 + Zt−1

≤ 4c2

T∑
t=1

Zt − Zt−1√
c1 + Zt +

√
c1 + Zt−1

= 4c2

T∑
t=1

(√
c1 + Zt −

√
c1 + Zt−1

)
≤ 4c2

√
ZT , (51)

where the first equality follows from the definitions of βt and zt, and the first inequality follows from
(50).

19



We define wt = bt
γ′t

and Wt =
∑t
s=1 ws. From the definition of γ′t, we have

wt =
bt
γ′t

= 4

(
1 +

1

c1
B

1/3
t

)
≥ 4. (52)

Further, we have

w1 ≤ 8, wt+1 = 4

(
1 +

1

c1
B

1/3
t+1

)
≤ 4

(
1 +

1

c1
(Bt + 1)1/3

)
≤ 2wt, wt ≤ 4

(
1 + t1/3

)
.

(53)

Then βt can be bounded as

βt = c2 + c2

t−1∑
s=1

ws√
c1 + Zs−1

≥ c2√
c1 + Zt

(
1 +

t−1∑
s=1

ws

)

=
c2√

c1 + Zt
(1 +Wt−1) ≥ c2t√

c1 + Zt
,

where the second inequality follows from (52). Hence, we have

T∑
t=1

bt
γtβt

≤
T∑
t=1

bt
γ′tβt

≤
T∑
t=1

√
c1 + Zt
c2

wt
1 +Wt−1

≤
√
c1 + ZT
c2

T∑
t=1

wt
1 +Wt−1

(54)

≤ O
(√

c1 + ZT
c2

ln (1 +WT )

)
≤ O

(√
c1 + ZT
c2

lnT

)
, (55)

where the last inequality follows from (53) and the fourth inequality can be shown by taking the sum
of the following inequality:

ln(1 +Wt)− ln(1 +Wt−1) = ln
1 +Wt

1 +Wt−1
= ln

(
1 +

wt
1 +Wt−1

)
≥ 1

4
· wt

1 +Wt−1
,

where the inequality follows from the facts that ln(1 + x) ≥ 1
4x holds for any x ∈ [0, 8] and that (53)

implies wt

1+Wt−1
≤ 8 for all t. We further have

T∑
t=1

1

βt
≤

T∑
t=1

√
c1 + Zt
c2t

≤
√
c1 + ZT
c2

T∑
t=1

1

t
= O

(√
c1 + ZT
c2

lnT

)
. (56)

In addition, we have

T∑
t=1

γ′t ≤
T∑
t=1

bt

c1 +B
1/3
t

≤ 3c1
2

T∑
t=1

(
B

2/3
t −B2/3

t−1

)
≤ 3c1

2
B

2/3
T (57)

where the first inequality follows from y2/3−x2/3 ≥ 2
3 (y−x)y−1/3, which holds for any y ≥ x > 0.

Combining (51), (55), (56) and (57), we obtain

T∑
t=1

(
γt +

δbt
γtβt

+ (βt+1 − βt)at+1

)
=

T∑
t=1

(
γ′t +

2δ

βt
+

δbt
γtβt

+ (βt+1 − βt)at+1

)
= O

(
c1B

2/3
T +

(
δ lnT

c2
+ c2

)√
c1 + ZT

)

= O

c1B2/3
t +

(
δ lnT

c2
+ c2

)√√√√c1 +

T∑
t=1

at+1

c1

(
c1 +B

1/3
t

)
= O

(
c1B

2/3
t +

1
√
c1

(
δ lnT

c2
+ c2

)√
c21 + (lnK +AT )

(
c1 +B

1/3
T

))
,

where the third equality follows from (49) and the last equality follows from aT+1 = O(lnK).
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A.7 Proof of Lemma 6

Proof. From the definition of h(x), it holds for any p ∈ P(V ) and i∗ ∈ [K] that

−
∑
i∈V1

h(p(i)) ≤ −
∑
i∈V

h(p(i)) =
∑
i∈V

(
p(i) ln

1

p(i)
+ (1− p(i)) ln

1

1− p(i)

)
= H(p) +

∑
i∈V

(1− p(i)) ln
1

1− p(i)
≤ (1− p(i∗)) ln

eK

1− p(i∗)
+
∑
i∈V

(1− p(i)) ln
1

1− p(i)
,

(58)

where the last inequality follows from (30). We further have∑
i∈V

(1− p(i)) ln
1

1− p(i)
= (1− p(i∗)) ln

1

1− p(i∗)
+

∑
i∈V \{i∗}

(1− p(i)) ln

(
1 +

p(i)

1− p(i)

)

≤ (1− p(i∗)) ln
1

1− p(i∗)
+

∑
i∈V \{i∗}

(1− p(i))
(

p(i)

1− p(i)

)
= (1− p(i∗))

(
ln

1

1− p(i∗)
+ 1

)
.

(59)

Combining (58) and (59), we obtain

−
∑
i∈V1

h(p(i)) ≤ 2(1− p(i∗)) ln
eK

1− p(i∗)
.

From this, we have

AT = −
T∑
t=1

∑
i∈V1

h(qt(i)) ≤ 2

T∑
t=1

(1− qt(i∗)) ln
eK

1− qt(i∗)
≤ 2Q(i∗) ln

eKT

Q(i∗)
,

where the last inequality follows from the similar argument to Lemma 4. We also have

BT ≤
T∑
t=1

∑
i∈V

qt(i)(1− qt(i)) =

T∑
t=1

q(i∗)(1− qt(i∗)) +
∑

i∈V \{i∗}

qt(i)(1− qt(i∗))


≤

T∑
t=1

(1− qt(i∗)) +
∑

i∈V \{i∗}

qt(i)

 = 2

T∑
t=1

(1− qt(i∗)) = 2Q(i∗).

for any i∗ ∈ [K]. This completes that proof of Lemma 6.

A.8 Proof of Lemma 7

Proof. We have

T∑
t=1

1√
t

∑
i∈V2

√
qt(i)(1− qt(i)) ≤

T∑
t=1

1√
t

√
|V2|

∑
i∈V2

qt(i)(1− qt(i))

≤

√√√√( T∑
t=1

1

t

)(
|V2|

T∑
t=1

∑
i∈V2

qt(i)(1− qt(i))

)
≤

√√√√|V2|(lnT + 1)

T∑
t=1

∑
i∈V2

qt(i)(1− qt(i)),

(60)

where inequalities follow from the Cauchy-Schwarz inequality. We further have

T∑
t=1

∑
i∈V2

qt(i)(1− qt(i)) ≤
T∑
t=1

(1− qt(i∗)) +

T∑
t=1

∑
i∈V2\{i∗}

qt(i) ≤ 2

T∑
t=1

(1− qt(i∗)) = 2Q(i∗)

for any i∗ ∈ [K]. Combining this with (60), we obtain R(2)
T = O

(√
|V2| lnT ·Q

)
.
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B Comparison with the result by Rouyer et al. [2022]

While Rouyer et al. [2022] consider the same research question as this paper, their approach is
different from ours in the following points. Their algorithm follows the approach by Seldin and
Slivkins [2014] and Seldin and Lugosi [2017], in which the suboptimality gaps ∆i are explicitly
estimated. In contrast, our algorithms do not use explicit estimation for suboptimality gap, and instead
employ the self-bounding technique to lead to stochastic regret bounds, similarly to the algorithms by
Zimmert and Seldin [2021], Wei and Luo [2018]. Due to these differences in algorithm design and
regret analysis, it seems difficult to integrate these algorithms or provide a unified analysis.

The differences in results can be summarized as follows:

• Advantage of our results:
– Covered classes of feedback graphs: We provide algorithms for both strongly ob-

servable graphs and weakly observable graphs. On the other hand, the algorithms by
Rouyer et al. [2022] only deal with graphs with self-loops, which is a special case of
strongly observable graphs.

– Our algorithms can also handle stochastic environments with adversarial corruptions.
– Our regret bounds for strongly observable graph depend on the independence number
α while the algorithms by Rouyer et al. [2022] depend on strong independent number
α̃, which is the independence number of the subgraph consisting of bidirectional edges.
In general α ≤ α̃, and for symmetric graphs α = α′. We also note that, in some cases,
there is a significant discrepancy between α and α̃. For example, a directed graph
G = (V,E) defined by V = [K], E = {(i, j) ∈ V × V | i ≤ j} has α = 1 and
α̃ = K.

• Advantage of results by Rouyer et al. [2022]:
– Their algorithm has a regret bound expressed with individual suboptimality gaps ∆i

for stochastic environments, while the regret bounds in this paper depend only on
∆min = mini∈[K]\{i∗}∆i. Consequently, if many actions i have large suboptimality
gaps ∆i � ∆min, their algorithms will perform better.

– Their regret bound has an improved dependency on lnT . More precisely, their stochas-
tic regret bounds for problems with strongly observable graphs scale with O((lnT )2),
which is better than our regret bounds of O((lnT )3).

– Their paper includes extension to time varying feedback graphs though our algorithms
seem to be extendable in a similar way.

C An alternative algorithm for the weakly observable case

In the weakly observable case, as shown in Theorem 2, our regret bound for stochastic environments
include an O(K

′ lnT
∆min

)-term, where K ′ = |V2| is the number vertices that are not dominated by
the weakly dominating set D. When T is sufficiently larger than other problem parameters, this
term is negligibly small compared to the other term δ(lnT )2

∆2
min

. However, if K ′ is larger than δ lnT
∆min

,

this O(K
′ lnT

∆min
)-term can be dominant. In such a case, the regret upper bound may be improved

by modifying the algorithm. Roughly speaking, by combining the approach to strongly observable
case, the O(K

′ lnT
∆min

)-term can be replaced with an O(α
(2)(lnT )3

∆min
)-term, where α(2) is the independent

number of the subgraph induced by V2, i.e.,

G2 = (V2, E ∩ (V2 × V2)), α(2) = α(G2). (61)

We here note that G2 is a strongly observable graph with self-loops as D is a weakly dominating set
(Definition 2) and V2 = V \

⋃
i∈DN

out(i). If α(2)(lnT )2 ≤ K ′, the modified version provides a
better regret bound. The details of the modification are given below.

Consider the following regularizer function:

ψt(p) = β
(1)
t

∑
i∈V1

h(p(i)) + β
(2)
t

∑
i∈V2

h(p(i)), where h(x) = x lnx+ (1− x) ln(1− x).
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We define β(1)
t and γ(1)

t in the same way as (15) in Section 6 with repracement of c1 := c
(1)
1 and

c2 := c
(1)
2 . Similarly, we define β(2)

t and γ(2)
t in a similar way as (9) in Section 5 with c1 := c

(2)
1

and as :=
∑
i∈V2

h(qs(i)). Parameters c(1)
1 , c(1)

2 and c(2)
1 are specified later. Using this regularizer

function, we compute qt using FTRL given by (3). Then, we compute pt by

pt = (1− γ(1)
t − γ

(2)
t )qt + γ

(1)
t µD + γ

(2)
t µV2

. (62)

We then have the following regret bound:

RT ≤ ĉ(1) ·max

{
Q̄2/3,

(
c
(1)
1

)2
}

+ ĉ(2) ·max
{
Q̄1/2, 1

}
where

ĉ(1) = O

c(1)
1 +

1√
c
(1)
1

(
|D| lnT
c
(1)
2

+ c
(1)
2

)√
ln(KT )

 ,

ĉ(2) = O

((
α(2) lnT · ln(c

(2)
1 KT )

c
(2)
1

√
lnK

+ c
(2)
1

√
lnK

)√
ln(KT )

)
. (63)

Consequently, in adversarial regimes with self-bounding constraints, we have

RT = O

 (ĉ(1))3

∆2
min

+

(
C2(ĉ(1))3

∆2
min

)1/3

+O

 (ĉ(2))2

∆min
+

√
C(ĉ2)2

∆min

 . (64)

Similarly to the analysis in Section 6, we obtain ĉ(1) = O
(

(|D| lnT · ln(KT ))
1/3
)

by setting

c
(1)
1 = Θ

(
(|D| lnT · ln(KT ))

1/3
)

and c
(1)
2 = Θ

(√
|D| lnT

)
. Further, by setting c

(2)
1 =

Θ

(√
α(2) lnT ·ln(KT )

lnK

)
, we obtain ĉ(2) = O

(√
α(2) lnT · (ln(KT ))2

)
.

Consequently, the modified algorithm achieves

RT = |D|1/3(T lnT )2/3 +
√
α(2)T (lnT )3 (65)

for adversarial environments and

RT =
|D|(lnT )2

∆2
min

+

(
C2|D|(lnT )2

∆2
min

)1/3

+
α(2)(lnT )3

∆min
+

(
Cα(2)(lnT )3

∆min

)1/2

(66)

for stochastic environments with adversarial corruptions (more generally, in adversarial regimes with
self-bounding constraints).

D Note on the definition of weak domination

Previous studies, e.g., Alon et al. [2015], have adopted a slightly different definition of weak
domination rather than one in this paper:
Definition 4 (alternative difitnition of weak domination, [Alon et al., 2015]). For any directed graph
G = (V,E) with a set of weakly observable vertices W ⊆ V , a weakly observable set D′ ⊆ V is
a set of vertices that dominates W , i.e., that satisfies W ⊆

⋃
i∈D′ N

out(i). The weak domination
number δ′(G) of G is the size of its smallest weakly dominating set.

We can see that our definition of weakly dominating set in Definition 2 and that in Definition 4
coincide, with some very limited exceptions. Consequently, we will see that δ(G) and δ′(G) in
Definitions 2 and 4 satisfy δ(G) ≤ δ′(G) ≤ δ(G) + 1. Further, if δ(G) ≥ 2 then δ(G) = δ′(G).
These facts can be confirmed as follows.

From the definition observability (Definition 1), the vertices of a weakly observable graph are
classified into the following three type:

strongly observable vertices, type 1 VSO1 = {i ∈ V | i ∈ N in(i)}: vertices with self-loop
(strongly observable vertices, type 1).
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strongly observable vertices, type 2 VSO2 = {i ∈ V | N in(i) = V \ {i}}: vertices without
self-loop, with edges from all other vertices. (strongly observable vertices, type 2).

weakly observable vertices VWO = V \ (VSO1 ∪ VSO2): weakly observable vertices.

Weakly dominating set D in Definition 2 dominates all vertices except VSO1, i.e., all vertices in
VSO2∪VWO. Weakly dominating setD′ in Definition 4 dominates VWO. It is clear thatD′ dominates
VSO1, which means that D′ is a weakly dominating set in the sense of Definition 2 as well. On the
other hand, if the size of D is greater than or equal to 2, then it also dominates all vertices VSO2. This
implies that D is a weakly dominating set in the sense of Definition 4 as well. Therefore, for vertex
sets of size at least 2, the concept of weak domination is the same in Definition 2 as in Definition 4.
Consequently, we have δ(G) = δ′(G) if δ(G) ≥ 2.

The only exception is the case in which |D| = 1 and D ⊆ VSO2. In this case, however, by adding
an arbitrary vertex to D, we can make it dominate VSO2 as well. In other words, for any i ∈ V \D,
D ∪ {i} dominates VSO2, and hence, is a weakly dominating set in the sense of Definition 4 as well.
Hence, even if δ(G) = 1, we have 1 ≤ δ′(G) ≤ 2.
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