
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scalable Multi-Source Pre-training for Graph Neural Networks
Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) have been shown as powerful tools
in various scenarios, such as multimodal and multimedia. A funda-
mental approach, pre-training on available graphs and subsequently
transferring the acquired knowledge to optimize downstream tasks
with limited labels, was widely exploited to mitigate the demand
for extensive labeled training data. However, previous works com-
monly assumed that pre-training and fine-tuning occur in the same
or closely related domains that share similar feature/label spaces
and graph distributions. A limitation is that for each individual
graph without accessible pre-training data, a GNN must be trained
from scratch, imposing high training overhead and hindering the
ability of generalization. In this paper, we address the GNN multi-
domain pre-training problem, which intends to pre-train a transfer-
able GNN model from heterogeneous multi-source graph domains
and then apply it in an unseen one with minor fine-tuning costs. To
this end, we propose a scaLAble Multi-source Pre-training (LAMP)
method. For pre-training, LAMP presents a graph dual-distillation
approach to distill massive knowledge from various graph domains
to form synthetic homogeneous graphs. Simultaneously, high-level
meta-knowledge from the synthetic graphs is extracted to train the
GNN model, whose capability can be adjusted according to target
graph contexts through a co-training modulation architecture. For
fine-tuning, LAMP respectively aligns the target graph distribution,
graph context, and graph task with the pretext so that the down-
stream task in the unseen domain can be reshaped to leverage the
transferable knowledge efficiently. Extensive experiments on four
real-world graph domain datasets demonstrate the superiority of
LAMP, showcasing notable improvements in various downstream
graph learning tasks. Our codes are publicly available on GitHub1.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
GNNs, Multi-source pre-training, Unseen domain fine-tuning

ACM Reference Format:
Anonymous Author(s). 2018. Scalable Multi-Source Pre-training for Graph
Neural Networks. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym ’XX). ACM,
New York, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1Due to anonymity, the link will be available after acceptance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph neural networks (GNNs) have emerged as powerful models
in handling graph-related data with rich relational information
[19, 24, 58]. Hence, GNNs exhibited significant potential in many
real-world networking systems [35, 46, 50, 52, 54, 56]. By employ-
ing neighborhood aggregation and message passing among graph
nodes, GNNs can output informative node representations, which
play a crucial role in diverse machine learning tasks [4, 31, 45].

To alleviate the burden of substantial handcraft annotations and
the cost of model retraining from scratch, graph pre-training has be-
come a fundamental approach to enable knowledge transfer among
various graph learning tasks. Conventional GNN pre-training fol-
lows a two-stage process that involves pre-training and fine-tuning.
The pre-training stage captures transferable graph patterns from
accessible graph information, and the fine-tuning stage tunes the
pre-trained model to generalize the pre-trained knowledge to the
downstream tasks. In line with the process, many works designed
pre-training tasks to capture the latent knowledge [12, 14, 26] more
effectively. They leveraged substantial unlabeled structural data,
evolving from mechanically tailored tasks (e.g., masking techniques
[12, 14] and contrastive learning [30, 37, 51]) to intentionally de-
signed strategies (e.g., generative pre-training [13] and learning
to pre-train [28]). However, there is a clear gap between the pre-
training and downstream tasks when their training objectives are
farmore different, leading to failure knowledge elicitation (a.k.a neg-
ative transfer [41, 44]). To this end, recent works have introduced
graph prompt [27, 32, 33] in the fine-tuning stage to bridge the gap
by aligning downstream objectives with that of the pre-training.

However, previous approaches mainly work in settings where
pre-training and fine-tuning occur in the same or closely related do-
mains with heterogeneous feature/label spaces and graph distribu-
tions, making it unlikely to transfer knowledge from heterogeneous
domains. In this paper, we study a more general graph pre-training
problem calledGNNmulti-domain pre-training, where a GNNmodel
is trained on multi-source graphs with heterogeneous feature/label
spaces and distributions, and then applied to an unseen domain
without train-from-scratch. A motivation scenario of our work is
illustrated in Fig. 1(a), where a general GNN model is trained based
on multiple heterogeneous graphs (i.e., citation, social, and com-
ment networks) to learn the graph-related knowledge, and then
applied to a co-purchasing network for product recommendation
with the minor cost of fine-tuning by a few labeled samples. To
the best of our knowledge, this problem was not addressed in the
literature, and it poses the following challenges.

• Heterogeneous domains: Accessible domains for pre-training
have massive knowledge, and different graph domains may have
heterogeneous feature/label space and data distributions. Thus,
a scalable mechanism for co-training on various graph domains
is necessary to alleviate domain heterogeneity.

• Transferable knowledge: In the situation when pre-training
and fine-tuning domains exhibit substantial divergence, how to
extract informative transferable knowledge from source domains

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and adapt it to the unseen domain efficiently requires sophisti-
cated framework design.

• Pretext and downstream task gap: The gap between the con-
structed pretext and the dedicated downstream task from unseen
domains is more pronounced. Mitigating this gap to avoid “nega-
tive transfer” is a key challenge.
To address the aforementioned challenges, we propose a novel

scaLAble Multi-source Pre-training (LAMP) framework for GNN
learning. LAMP is specifically designed to pre-train a GNN model
on multi-source domains scalably, aiming to extract common trans-
ferable knowledge that can be effectively generalized to the graphs
in target domains. As shown in Fig. 1(b), the LAMP framework
comprises three major modules.

(1) Synthetic graph distillation. This module aims to trans-
form the massive knowledge from multi-source heterogeneous
domains into a set of synthetic small graphs with unified feature
spaces and distributions. To achieve this, we propose a graph dual-
distillation method which can jointly distill the intrinsic semantic
knowledge and external graph distribution from multiple domains
into synthetic graphs.

(2) Modulated meta pre-training. This module aims to extract
transferable knowledge which can be exploited by unseen domain
graphs. Thus simultaneously with the graph synthesis, we derive
high-level meta knowledge by sampling link prediction meta-tasks
for pre-training. Moreover, we co-train an additional modulation
architecture to adapt the pre-trained GNN model according to dif-
ferent graph contexts so that the model’s representational capacity
can be improved for better fine-tuning.

(3) Knowledge transfer for downstream tasks. This mod-
ule aims to enable the GNN to seamlessly utilize the pre-trained
knowledge in downstream tasks. Therefore, leveraging the interme-
diate results from pre-training, alignment methods are proposed by
matching downstream graph distribution with the synthetic graphs,
employing the co-training modulation architecture to adjust the
pre-trained GNN model, and reshaping the downstream task in line
with the form of the pretext task.

The contributions of our work are summarized as follows.
• We are the first to address the multi-domain GNN pre-training

problem. Our study can overcome the limit of “one-graph-one-
model” for conventional GNNs and shed a light on building
foundation models with multiple heterogeneous graph domains.

• We propose a novel GNN pre-training framework called LAMP to
generalize the latent knowledge from multi-source domains and
transfer it to the downstream tasks of unseen domains, which can
effectively alleviate domain heterogeneity to capture informative
meta knowledge.

• Extensive experiments based on four heterogeneous graph datasets
under the leave-one-domain-out setting show that the LAMP
framework significantly outperforms the state-of-the-art pre-
training methods with higher accuracy and significantly lower
training costs.

2 RELATEDWORK
Graph Neural Networks (GNNs) have prevailed for learning graph
data representations and were found wide applications in diverse

fields such as social networks [5, 46, 54], knowledge graphs [34, 35,
50], recommendation systems [8, 52, 56], andmultimedia [39, 42, 47].
Utilizing neighboring information aggregation and message pass-
ing mechanisms, many effective GNN structures were proposed
including graph conventional network (GCN) [19], graph attention
network (GAT) [36] and graph isomorphism network (GIN) [48].
They have proven effective for node classification [9, 19], graph
classification [1, 21], and link prediction [23, 31]. Inspired by the
successful pre-training techniques employed in neural language
processing (NLP) [6, 20, 22] and computer vision (CV) [3, 17, 25],
graph pre-training presented significant prospects of the swift and
efficient training of GNN models with reducing annotation costs
and alleviating the requirement of training from scratch. It acquired
intrinsic graph knowledge by training GNN models on easily ac-
cessible graphs and transferring such knowledge to downstream
tasks by updating the pre-trained GNN weights. Consequently, the
conventional graph pre-training method adhered to a pre-train/fine-
tune procedure, typically conducted within a single graph domain.
We summarize the state-of-the-arts into two categories:

(1) Graph self-supervised learning methods. Initially, vari-
ous pre-training approaches employed distinct self-supervised tasks
based on diverse graph attributes, including node features [12, 14],
graph edges [12, 14], and graph contexts [12, 37]. These tasks were
inspired by conventional self-supervised methods, which involve
the masking of partial patterns (e.g., node properties and edges)
in the graph and then train a GNN model on the remaining graph
to predict the masked attribute. Recently, contrastive learning was
used to capture universal network topological properties across
multiple networks [30]. Meanwhile, GraphCL [51] minimized the
distance between pairs of graph-level representations for the same
graph. Additionally, GPT-GNN [13] adopted the concept of genera-
tive language model pre-training and established an autoregressive
framework to iteratively perform reconstruction on given graphs.
L2P-GNN [28] simulated fine-tuning during pre-training to allow
the pre-trained model to be adapted to downstream tasks quickly.

(2) Graph prompt learning methods. The gap between dif-
ferent pre-training and downstream objectives can potentially lead
to negative transfer [32, 41, 44]. To address this issue, increasing
attention was directed towards graph prompt-tuning. Prompting
originated from large language models [55], aiming to integrate
pre-training and downstream tasks within a common task template.
For example, GPPT [32] reframed node classification as the pretext
of edge prediction by introducing labeled tokens to the original
graph. GraphPrompt [27] employed a learnable prompt to assist
a downstream task in identifying the most relevant knowledge
from the pretext. ProG [33] standardized the format of graph and
language prompts, and utilized meta-learning to acquire a better
initialization for the prompt efficiently. These works introduced
graph prompts in the fine-tuning stage to bridge the gap by aligning
downstream objectives with that of the pre-training.

In contrast to the existing works that confine the pre-training
and fine-tuning processes within the same or similar domains, we
are the first to address the heterogeneous multi-domain GNN pre-
training problem. We proposed a novel GNN pre-training frame-
work to generalize latent knowledge from multi-source domains
and transfer it to downstream tasks in unseen domains.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Co-purchasing
Network

GNN Model

Multi-source
Pre-training

Unseen Domain
Fine-tuning

Social Network

Comment
Network

(a) (b)

Citation Network

Iteratively

D
ow

ns
tr

ea
m

ta
sk

s

Link Prediction Meta Tasks

② Modulated Meta
Pre-training

Meta Pretraining
Loss：𝓛𝐩𝐫𝐞

① Synthetic Graphs Distillation
Distribution Alignment

③ Knowledge Transfer for Downstream Tasks
Total loss in pre-training stage

𝓛 = 𝓛𝐚𝐩𝐩𝐫+𝜶𝓛𝐝𝐢𝐬 + 𝜷𝓛𝐩𝐫𝐞

Multiple
synthetic graphs

M
ul

ti-
so

ur
ce

 D
om

ai
ns

Transform Approximate

Knowledge

Graph Dual-

Distillation

Distribution
Match

ℒ$%%&

ℒ'()

Transform
Transform

Context

Support Query

Meta

O
ut

pu
t

GN
N

La
ye

r

G
N

N
 L

ay
er

GN
N

La
ye

r

GN
N

La
ye

r

O
ut

pu
t

Modulated Model

Modulation G
N

N
 L

ay
er

G
N

N
 L

ay
er

O
ut

pu
t

Training

Meta

Testing

{𝓖𝒌} {𝒈𝒌} {𝒈𝒌(𝓖𝒌)}

{𝓢𝒕}

𝓖∗
Context Alignment Task Alignment

𝒈∗ 𝒈∗(𝓖∗)

𝓢𝒕
𝐬𝐩𝐭 𝓢𝒕

𝐪𝐫𝐲

𝒄(𝓢𝒕
𝐬𝐩𝐭)

𝒇𝝓𝒆

Co-purchase
Graph

Finetune based
on link prediction

Citation

Comment

Transform

Modulate GNN

Context 𝒄(𝒈∗(𝓖∗))

Social

Sampling
Subgraphs

Figure 1: An overview of LAMP framework. LAMP pre-trains a GNN model from multi-source domains (i.e., citation network,
social network, and comment network), which can be fine-tuned in an unseen graph domain (i.e., a co-purchasing network).

3 PRELIMINARIES
To simplify the presentation, we primarily focus on undirected
graphs. Let G = (𝑋,𝐴) denote an undirected graph, where 𝑋 ∈
R𝑁×𝑑 represents the 𝑑-dimensional node feature for a total of 𝑁
nodes; 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of the graph. A GNN
model iteratively updates the presentation of a node by aggregat-
ing the representations from its neighbors across multiple layers.
Specifically, the operation in each layer can be formulated as:

𝑍 (𝑙) = M(𝑍 (𝑙−1) , 𝐴; 𝜃 (𝑙)), (1)

where 𝑙 = 1, 2 . . . , 𝐿 is the layer indicator of the GNN model, and
𝑍 (0) = 𝑋 . In the equation,M(·) represents the aggregation func-
tion, and 𝜃 = {𝜃 (1) , 𝜃 (2) , . . . , 𝜃 (𝐿) } denotes the model parameters.
The general objective of GNN learning tasks can be formulated as:

min ℓ (Pred(𝑍 (𝐿)), 𝑌) = min
𝜃,𝜓

𝑓𝜓 (GNN(G;𝜃), 𝑌), (2)

where ℓ (·, ·) is loss function to measure the difference between
the predictions Pred(𝑍 (𝐿)) and corresponding true labels 𝑌 . For a
clearer discussion, we use GNN(G;𝜃) to represent the final node
representations 𝑍 (𝐿) for the GNN model and exploit 𝑓𝜓 (·) with
parameter𝜓 to serve as an overall prediction function, combining
the prediction operation in Pred(·) and the loss function ℓ . Thus
𝜃,𝜓 are the parameters to be optimized during task training.

The objective of our proposed multi-domain pre-training is to ex-
tract diverse transferable knowledge and effectively transfer it to the
downstream tasks in an unseen domain. Specifically, assume that
we have 𝐾 different domains, which are massive in knowledge and
heterogeneous in features and label spaces. {G𝑘 | (𝑘 = 1, 2, · · · , 𝐾)}
are subgraphs sampled from them respectively. Also, a target graph
represented by G∗ for the downstream tasks is from another distinct
unseen domain rather than the multi-source domains. Compared
to the conventional single-domain pre-training process, the pro-
posed multi-source pre-training can produce a more uniform GNN
model with better generalization. The detailed formulations of the
conventional and our proposed pre-training approaches, as well as
the notations summarization, can be found in Appendix A.

4 THE LAMP METHOD
The LAMP framework is illustrated in Fig. 1(b), comprising three
major modules: Synthetic Graph Distillation, Modulated Meta Pre-
training, and Knowledge Transfer for Downstream Tasks. During pre-
training, LAMP distills a set of synthetic homogeneous graphs from
multi-source domains through a graph dual-distillation method.
Then, it extracts link prediction meta-tasks from these synthetic
graphs to pre-train a GNN model and a modulation architecture to
adapt GNN models to different graph contexts. During fine-tuning,
it aligns the downstream graph with the pretext from the views
of graph distribution, graph context, and graph task to mitigate
“negative transfer” as much as possible. The details of the proposed
method are as follows.

4.1 Synthetic Graph Distillation
The common practice of pre-training within a single domain limits
the consideration of more diverse patterns. However, graphs origi-
nating from diverse domains often exhibit heterogeneous feature
spaces and graph distributions, posing challenges to processing
them within a single GNN model. To address the heterogeneity,
we transform the multiple graph domains into synthetic homoge-
neous graphs with a unified feature space via knowledge distilla-
tion. Specifically, we propose a graph dual-distillation method to
approximate knowledge and match graph distribution between the
multi-domains and the synthetic graphs.

(1) Knowledge Approximation.We denote𝑇 synthetic graphs
as {S𝑡 |𝑡 = 1, 2, · · · ,𝑇 } generated by parameters {𝜙S𝑡

|𝑡 = 1, 2, · · · ,𝑇 }.
Meanwhile, we employ a set of deep neural networks (DNNs)
{𝑔𝑘 |𝑘 = 1, 2,· · ·, 𝐾} with parameters {𝜙G𝑘

|𝑘 = 1, 2,· · ·, 𝐾} to trans-
form the 𝐾 multi-source graphs {G𝑘 } into a unified node feature
space with dimension 𝑑 . Thus, {𝑔𝑘 (G𝑘) |𝑘 = 1, 2,· · ·, 𝐾} means the
transformed multi-source subgraphs. The knowledge approxima-
tion operation distills the self-supervised intrinsic semantic knowl-
edge into the synthetic graphs. Therefore, the objective is to form
a set of small synthetic graphs so that GNN parameters (initial-
ized randomly and trained on synthetic graphs {S𝑡 }) can achieve

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

competitive performances to the parameters (initialized randomly
and trained on original multi-source domain graphs {𝑔𝑘 (G𝑘)}) in
specific self-supervised tasks.

The objective can be achieved in a bi-level manner [43] to train
the GNNs by minimizing an approximation loss Lappr:

Lappr = 𝑓𝜓 (GNN({𝑔𝑘 (G𝑘)} ;𝜃syn), {𝑌 kwg
𝑘

}),

where 𝜃syn = 𝜃 − 𝜂∇𝜃 𝑓𝜓 (GNN({S𝑡 } ;𝜃), {𝑌 kwg
𝑡 }),

(3)

where 𝑌 kwg is the specific labels of certain self-supervised knowl-
edge and 𝜂 is the inner learning rate. This equation intuitively
suggests that GNN model parameters 𝜃 initialized randomly and
then trained on the synthetic graphs as 𝜃syn should achieve a mini-
mized loss when they are applied to the transformed graph 𝑔𝑘 (G𝑘).
Hence, 𝜃syn is derived as a function of {S𝑡 } with parameters {𝜙S𝑡

},
and thereby the objective loss Lappr is differentiable w.r.t both
{𝜙S𝑡

} and {𝜙G𝑘
}, allowing for the joint optimization using stan-

dard gradient-based methods. In this way, this process can pre-
serve intrinsic semantic information across multi-source domains
into multiple small graphs. The semantic information can be de-
rived from any self-supervised task, and we leverage the Graph
Autoencoder (GAE) [18] in this paper. However, preserving intrin-
sic semantics alone is insufficient for knowledge distillation since
external graph distribution is also crucial for graph domains.

(2) Distribution Matching. Graph distribution encompasses
node features and graph structures, which is hard to calculate quali-
tatively. Hence, we propose to represent graph distribution by view-
ing it as a collection of walk distributions, where zero-walk distri-
bution is equivalent to node distribution, and one-walk distribution
represents edge distribution until the 𝑟 -th (𝑟 = 0, 1, · · · , 𝑅) walk dis-
tribution related to 𝑟 +1 neighboring nodes. These distributions can
be represented by the empirical matrices 𝑃G = {𝑃0

G, 𝑃
1
G, . . . , 𝑃

𝑅
G, } =

{𝑋,𝐴1𝑋, . . . , 𝐴𝑅𝑋, }, where {𝐴𝑟 } indicates the average normalized
powered adjacency matrics and 𝑋 is the node feature vectors. With
the empirical matrices for graph distribution, the distance between
the ground truth and the synthetic graph distributions can be esti-
mated through the commonly usedWasserstein Distance [38].

Wasserstein distance is developed to measure the distance be-
tween two discrete distributions. Formally, Wasserstein distance
with the first moment can be written as:

𝑊1 (Psrc, Ptgt) = sup
∥ 𝑓𝜔 ∥𝐿≤1

E𝑥∼Psrc [𝑓𝜔 (𝑥)] − E𝑥∼Ptgt [𝑓𝜔 (𝑥)], (4)

where Psrc, Ptgt are the real distributions for source and target do-
mains respectively, and ∥ 𝑓𝜔 ∥𝐿 ≤ 1 is the Lipschitz norm of 𝑓𝜔 . The
equation indicates the existence of an optimal 1-Lipschitz function
𝑓𝜔 that separates Psrc and Ptgt, with its maximum expectation being
the first Wasserstein distance. Thus, a trained neural network 𝑓𝜔∗

parameterized by 𝜔∗ can serve as a Wasserstein discriminator to fit
such a 1-Lipschitz function. The discriminator can be obtained by
maximizing the formula E𝑥∼Psrc [𝑓𝜔 (𝑥)] − E𝑥∼Ptgt [𝑓𝜔 (𝑥)], where
the expectation can be approximated by empirical average value.
Thus, Eq.(4) takes all samples as input and outputs a real number.

Distribution matching intends to minimize the Wasserstein dis-
tance between two graph distributions. We use 𝑃 (G) to empirically
estimate theWasserstein distance between themulti-domain graphs
and the synthetic graphs. Therefore, distribution matching can be

achieved by minimizing the distribution distance loss Ldis:

Ldis =
𝑅∑︁
𝑟=0

𝑊1 (𝑃𝑟{S𝑡 } , 𝑃
𝑟
{𝑔𝑘 (𝐺𝑘 }) =

𝑅∑︁
𝑟=0

[𝑓𝜔∗ (𝑃𝑟{S𝑡 }) − 𝑓𝜔∗ (𝑃𝑟{𝑔𝑘 (𝐺𝑘) }
)],

where 𝜔∗=argmax
𝜔

𝑅∑︁
𝑟=0

[𝑓𝜔 (𝑃𝑟{S𝑡 })− 𝑓𝜔 (𝑃𝑟{𝑔𝑘 (𝐺𝑘)}
)] . (5)

It quantifies the graph distribution distance between the syn-
thetic and multi-source graphs by amalgamating empirical Wasser-
stein distances for up to 𝑅-walk distributions. Minimizing Ldis is
also a bi-level process. Firstly, the distance function 𝑓𝜔 with train-
able parameters 𝜔 can be maximized to the supremum, which is
the Wasserstein distance of the graph distributions. Secondly, Ldis
is then minimized by freezing the trained 𝜔∗ and optimizing {𝜙S𝑡

}
and {𝜙G𝑘

} so that the distribution distance can be narrowed down.
Knowledge approximation ensures that knowledge frommultiple

source domains is integrated into synthetic graphs. Distribution
matching helps synthetic graphs retain the distribution from source
graphs. In the implementation of bi-level process for Lappr,Ldis,
the prepositive optimizations of 𝜃syn and 𝜔∗ can be conducted
within a fixed number of steps as in the literatures [15, 16, 49, 57].

4.2 Modulated Meta Pre-training
To adapt the pre-trained GNN model to an unseen graph domain,
the divergence in graph domains can be tackled in two aspects. The
first involves domain-specific graph patterns. For instance, a citation
network may exhibit sparser connections than a co-purchasing
network. A single GNN model initialization may struggle to handle
varying graph patterns from different domains. Thus, we co-train
an additional modulation architecture to adjust the pre-trained
model capability to different downstream graph patterns without
changing the model’s definition and introducing extra inference
overhead. The second concerns domain-specific semantic informa-
tion. For instance, information from a citation network may not be
useful for a co-purchasing network. We argue that meta-knowledge,
encompassing learning experiences, is high-level and more transfer-
able across diverse graph domains than knowledge from basic tasks.
Hence, meta-tasks are explicitly designed for GNN pre-training.

We first introduce the modulation process. Recall that a GNN
model is parameterized by 𝜃 = {𝜃 (1) , 𝜃 (2) , . . . , 𝜃 (𝐿) } and the out-
puts of its layers are {𝑍 (1) , 𝑍 (2) , . . . , 𝑍 (𝐿) }. The overall modulation
process can be formulated as:

𝜃 = {𝜃 (1) , 𝜃 (2) , · · · , 𝜃 (𝐿) } = 𝑓𝜙𝑚 (G, 𝜃), (6)

where 𝜙𝑚 represents all the involved parameters for modulation. It
adapts the GNNmodel from 𝜃 to 𝜃 based on the context information
𝑐 (G) of the objective graphG, which is extracted by a graph context
encoder. The encoder can be any model, and we implement it with a
GCN followed by a mean pooling operation. Inspired by the gating
method [2], the 𝑙-th layer of the GNN model can be modulated by:

𝛾𝑙 = 𝜎 (MEAN(𝑍 (𝑙)) ⊙𝑊𝑙),
𝜅𝑙 = 𝛾𝑙 ⊙ 𝜎 (MLP(𝑐 (G))) + (I − 𝛾𝑙) ⊙ I,

𝜃 (𝑙) = 𝜅𝑙 ⊙ 𝜃 (𝑙) ,
(7)

where MLP is the multilayer perceptron; MEAN denotes the averag-
ing operation; ⊙ denotes the broadcastable element-wise multipli-
cation; 𝜎 is the sigmoid function;𝑊𝑙 is a learnable gating parameter

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

with the same shape of 𝜃 (𝑙) and I is a matrix of ones. The whole
process learns a scalar 𝜅𝑙 that adaptively shapes the magnitude
of the layer weights to a proper level. The sigmoid gating term 𝛾𝑙
decides whether to exploit the scalar or not. The modulation opera-
tion is applied in each layer of the GNN model and is designed to
be lightweight to prevent overfitting to the synthetic graphs.

The above modulation architecture is co-trained with meta pre-
training. Without loss of generality, we adopt the masked edge
prediction, a widely applicable pretext task, to extract meta-tasks
for GNN pre-training. Specifically, following the task-based meta-
learning (MAML) setup [7], the edges in each synthetic graph are
split into the support and query edge sets to form the support
graph Sspt

𝑡 and the query graph Sqry
𝑡 respectively. The support

graph simulates several link prediction training processes as meta-
training to form a GNN model. Based on it, the query graph is then
employed for meta-testing to predict the existence of the query set
through second-order gradients.

Thus, the overall modulated meta pre-training process is as fol-
lows. For each support graph Sspt

𝑡 , the basic GNN model can be
firstly modulated as 𝜃 spt𝑡 = 𝑓𝜙𝑚 (Sspt

𝑡 , 𝜃). During meta-training, we
simulate training on this support graph with a link prediction task
to update the modulated model for several steps by:

𝜃
spt
𝑡 = 𝜃

spt
𝑡 − 𝜆∇

𝜃
spt
𝑡

𝑓𝜓 (GNN(S
spt
𝑡 ;𝜃 spt𝑡),Sspt

𝑡), (8)

where 𝜆 is the inner learning rate and the labels are the set of sup-
port edges Sspt

𝑡 ; and 𝜃 spt𝑡 serves as a composite parameter to be
integrally updated. Once meta-training is completed, the obtained
meta-trained parameter 𝜃 spt𝑡∗ is applied to predict the edges of a
query graph Sqry

𝑡 to minimize the prediction loss, which serves as
task-level update signals. Thus, we have the following link predic-
tion loss function Lpre for all synthetic graphs:

Lpre =
𝑇∑︁
𝑡=1

𝑓𝜓 (GNN(S
spt
𝑡 ;𝜃 spt𝑡∗),Sqry

𝑡), (9)

where 𝜃 spt𝑡∗ involves the GNN parameter 𝜃 , modulation parameter
𝜙𝑚 , and synthetic {𝜙S𝑡

}. They can be optimized during meta pre-
training and further used to help fine-tune the downstream task.

4.3 Knowledge Transfer for Downstream Tasks
Throughout the fine-tuning process to transfer the pre-trainedmeta-
knowledge into an unseen domain task for target graph G∗, three
key considerations are identified to mitigate the risk of negative
transfer: graph distribution alignment, graph context alignment,
and graph task alignment.

(1) Graph Distribution Alignment. The feature spaces of an
unseen graph may be heterogeneous and unapplicable for the pre-
trained GNN model. Although some feature reduction methods can
be employed to adjust the feature dimensions, they cannot deal with
graph distribution mismatches. To overcome this limit, we regard
the synthetic graphs from pre-training as anchors and propose a
deep neural network (DNN) 𝑔∗ with parameters 𝜙G∗ to transform
the node features so that the downstream graph distribution can be
aligned with that of the synthetic graphs. This goal can be achieved
by reusing the bi-level distribution matching of Eq. (5), treating the
downstream graph as the source and the synthetic graphs as the

target to optimize transformation parameters of 𝑔∗:

L′
dis =

𝑅∑︁
𝑟=0

[𝑓𝜔∗ (𝑃𝑟
𝑔∗ (G∗)) − 𝑓𝜔∗ (𝑃𝑟{S𝑡 })],

where 𝜔∗=argmax
𝜔

𝑅∑︁
𝑟=0

[𝑓𝜔 (𝑃𝑟
𝑔∗ (G∗)) − 𝑓𝜔 (𝑃𝑟{S𝑡 })],

(10)

The distribution alignment is conducted during preprocessing and
the obtained 𝑔∗ is further fine-tuned together with the pre-trained
GNN model for the downstream task.

(2) Graph Context Alignment. A single pre-trained GNN
model can hardly handle graphswith different contexts from diverse
domains. To cope with it, we train a modulation architecture 𝑓𝜙pre

𝑚

to adapt the pre-trained GNN model to the target graph G∗. Thus,
the pre-trained parameters 𝜃pre should be modulated as:

𝜃pre = 𝑓𝜙pre
𝑚

(𝑔∗ (G∗), 𝜃pre). (11)

According to the equation, the alignment can adjust the GNN
model’s representation capability without changing the model defi-
nition and introducing extra inference overhead.

(3) Graph Task Alignment. During fine-tuning, different task
objectives from the pretext may lead to negative knowledge elicita-
tion, therefore it is necessary to align the downstream graph tasks.
Since the proposed multi-domain pre-training is based on the link
prediction task, following the method in [32], we can reshape the
node classification task to resemble link prediction. Firstly, each
class is regarded as a trainable virtual node, initialized with the
mean representation of training nodes labeled with the same class.
These virtual nodes and the target graph jointly act as the model
inputs. In this way, the node classification task can be viewed as
predicting the existence of a link between the unclassified nodes
and the virtual class nodes. Secondly, for the reformulated link pre-
diction task, positive examples involve links between the training
nodes and the classes they belong to, while negative examples are
the rest. Finally, applying the orthogonal constraint on virtual node
embeddings, the classifier executes node classification by querying
the highest probability of link existence between an unclassified
node and every virtual node.

4.4 Overall Process
We present the overall pre-training and fine-tuning processes. Their
pseudo-codes and complexity analysis are shown in Appendix B.

Multi-domain Pre-training. The inputs of the stage are multi-
source graph domains and the initialized parameters {𝜙S𝑡

} for
synthetic graphs, {𝜙G𝑘

} for graph transformation, 𝜃,𝜓 for GNN
model and 𝜙𝑚 for modulation.

Each pre-training iteration in LAMP consists of five steps:
• Sample subgraphs {G𝑘 } from source domains and transform

them with {𝜙G𝑘
}.

• Construct synthetic graphs {S𝑡 } from {𝜙S𝑡
}.

• Calculate knowledge approximation loss Lappr [Eq. (3)] and dis-
tribution matching loss Ldis [Eq. (5)].

• Divide S𝑡 into support Sspt
𝑡 and query Sqry

𝑡 graphs for synthetic
graphs to compute the pre-training loss Lpre [Eq. (9)].

• The parameters are optimized by minimizing the total loss:
argmin

𝜃,𝜓,𝜙𝑚,{𝜙G𝑘 },{𝜙S𝑡 }
L𝑎𝑝𝑝𝑟 + 𝛼L𝑑𝑖𝑠 + 𝛽L𝑝𝑟𝑒 (12)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

where 𝛼, 𝛽 are both hyperparameters to trade off the importance.
The outputs of pre-training are the parameters 𝜃pre,𝜓pre of the

pre-trained GNN model, 𝜙pre𝑚 of the modulation architecture and
the synthetic graphs {S𝑡 }.

Target Domain Fine-tuning. On this stage, given the unseen
domain graph G∗, the pre-trained parameters 𝜃pre for GNN, the
prediction function𝜓pre for pretext task, themodulation parameters
𝜙
pre
𝑚 and the synthetic graphs {S𝑡 }, three alignments are processed
to alleviate negative transfer.
• Match the graph distribution between target graph G∗ and syn-

thetic graphs {S𝑡 } during preprocess to get 𝜙G∗ [Eq. (10)].
• Modulate pre-trained GNN model to get 𝜃pre [Eq. (11)].
• Reshape the downstream task in line with the pretext of𝜓pre.

After these three alignments, the GNN model can be fine-tuned
with 𝜃pre,𝜓pre, 𝜙G∗ on the target unseen domain graph G∗.

5 EVALUATION
5.1 Experimental Settings
Datasets.We evaluate the proposed framework based on four real-
world graphs with massive knowledge from different domains. (1)
Academic (A) [11] is a citation network consisting of papers in-
dexed by MAG [40]; (2) Product (P) [11] is an Amazon product
co-purchasing network. (3) Reddit (R) [9] is a comment graph con-
structed from Reddit. (4) Yelp (Y) [53] is a social network formed
by users and their friendship of the Yelp website. The detailed
information is summarized in Tab. 1. In experiments, we follow
the leave-one-domain-out protocol. Specifically, we choose three
domains as the multi-source domains for pre-training and the re-
maining one as the unseen target domain. For example, PRY-A
denotes PRY for pre-training and A for fine-tuning. We use the
full unlabeled graphs for pre-training and randomly extract ten
different graphs of 2000 nodes from the target domain for testing.

Table 1: Statistics on multi-source domain networks.
Dataset Domain Nodes Edges Features Classes

Academic [A] Citation 169,343 1,166,243 128 40
Product [P] Co-purchase 2,449,029 61,859,140 100 47
Reddit [R] Comment 232,965 11,606,919 602 41
Yelp [Y] Social 716,847 6,977,410 300 100(m)

Baseline Algorithms. We use twelve baselines for comparison,
which include the state-of-the-art from three different categories.
• Graph supervised learning methods. (1) GCN [19], (2) GAT [36],

(3) GIN [48]. They all operate neighborhood aggregation in an
end-to-end manner.

• Graph self-supervised learning methods. (4) EdgePred [12] and (5)
AttrMask [14] randomly masked partial edges or node attributes
and then trained GNNs to predict them. (6) DGI [37] and (7)
GCC [30] leveraged contrastive learning to capture the latent
graph properties. (8) GPT-GNN [11] and (9) L2P-GNN [28]
exploited intentionally designed strategies of generative model
pre-training and learning to pre-training.

• Graph prompt learning methods. (10) GPPT [32], (11) Graph-
Prompt, (12) ProG [33]. They bridge the task gap by aligning
the downstream objectives with those of the pre-training through
designed learnable prompt tokens.

Default settings. In this work, we focus on node-level tasks of
link prediction and node classification for the fine-tuning stage,
with AUC and F1-score as their evaluation indicators. Up to 20%
of the known labels or edges are utilized for training and 10% for
validation. We exploit a two-layer GCN as the GNN backbone, with
the inner product decoder [18] serving as the prediction function
for link prediction and an MLP-based logistic regression classifier
for node classification.We fine-tune all the models for 500 epochs as
the final results, using Adam optimizer with a learning rate of 0.005.
Each experiment is conducted five times, and the mean results are
reported. It’s important to note that graph classification task can
also be reshaped to the pretext task. Due to the page limit, we show
the corresponding results in Appendix F.

Besides, for our proposed LAMP, we use the basic MLP as the
transformation structure {𝜙G𝑘

}. We also choose to sample 𝑇 sub-
graphs from the source domains beforehand and use MLPs, namely
{𝜙S𝑡

}, to recode their node features as the synthetic graph genera-
tion. The number of the synthetic graphs is𝑇 = 10with unified node
feature dimension 𝑑 = 128. We set 𝑅 = 1 for distribution matching.
The step number of prepositive training for the bi-level processes
in Eqs. (3), (5) is set to 10 with a learning rate 𝜂 of 0.005. The steps
for meta training in Eq. (8) is also 10 with a learning rate 𝜆 of 0.01.
The hyper-parameters for the loss function are 𝛼 = 𝛽 = 1. For
baselines, since the graph prompting methods have their own pre-
diction functions, we made no modifications to them. The baseline
algorithms cannot handle graphs with different feature dimensions
in pre-training, thus we use the Autocoder [10] to adjust them to a
fixed dimension (i.e., 128) with minimum information loss.

5.2 Main Results
Training Efficiency. It indicates that the model can be trained
quickly in downstream taskswith the pre-trained parameters, which
corresponds to the fact that the initialized model achieves good
performance with faster convergence and fewer training epochs.
We present results for 10% labels or edges known in Fig. 2.

For link prediction, LAMP stands out as visibly superior to the
baselines. LAMP represented with the purple line starts at a rela-
tively higher value, indicating a narrower gap between the pretext
and the downstream tasks. As training progresses, LAMP shows
a faster convergence. This efficiency dues to meta pre-training,
which guides the model to learn more efficiently. Notably, prompt-
ing methods yield poorer results for two main reasons. Firstly,
general pre-training methods cannot capture common patterns
from multi-source graphs. Secondly, prompting-tuning methods
typically freeze the pre-trained GNN parameters, which is usually
ineffective for an unseen domain graph.

For node classification, LAMP patterns are a little different. In
the beginning, LAMP is close to the other baselines. As training pro-
gresses, the superiority of LAMP becomes clear. This is due to the
successful knowledge extraction from multi-source graphs and the
efforts to minimize the risk of negative transfer. In summary, LAMP
provides GNN models with an effective parameter initialization,
demonstrating better training efficiency.
Final Results. We examine the final performances with 10% and
20% edges or labels known. The results are in Tab. 2.

For link prediction, LAMP consistently outperforms the other
baselines, except for APY-R with 10% known edges. Our solution

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

GIN GCN GAT EdgePred AttrMask DGI GCC GPT-GNN L2P-GNN GPPT GraphPrompt ProG LAMP

0 40 80 120 160 200
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

PRY-A, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

APR-Y, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.5

0.6

0.7

0.8

0.9

A
U

C

APY-R, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.6

0.7

0.8

0.9

A
U

C

ARY-P, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
-s

co
re

PRY-A, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.20

0.25

0.30

0.35

0.40

0.45

0.50

F1
-s

co
re

APR-Y, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
-s

co
re

APY-R, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1
-s

co
re

ARY-P, 10%, Node Classification

Figure 2: The results of continuous epochs for different methods in link prediction and node classification tasks.

Table 2: The final results for different methods with different fractions of known labels.
The final AUC (%) for link prediction The final F1-score (%) for node classification

Methods 10% known edges 20% known edges 10% known labels 20% known labels
PRY-A APR-Y APY-R ARY-P PRY-A APR-Y APY-R ARY-P PRY-A APR-Y APY-R ARY-P PRY-A APR-Y APY-R ARY-P

GCN 83.08 90.81 74.12 80.17 87.90 91.60 79.88 87.05 52.32 51.06 81.42 64.57 62.39 50.26 87.94 71.96
GIN 78.77 88.34 66.93 75.18 83.36 89.14 73.68 78.85 41.29 44.93 68.36 60.13 54.96 44.95 79.93 69.16
GAT 78.79 88.38 71.90 78.61 83.82 88.91 76.70 85.56 49.84 49.81 77.45 64.74 59.89 49.01 84.66 71.70

EdgePred 85.28 91.36 77.25 80.60 89.58 92.10 82.05 87.49 50.62 50.83 81.02 64.15 61.34 50.13 87.22 71.62
AttrMask 84.02 91.14 77.11 79.40 88.60 91.95 81.86 85.90 51.92 50.94 81.09 64.50 62.30 50.20 87.34 72.00

DGI 84.49 91.31 77.10 76.47 88.86 91.94 81.74 83.74 52.76 50.88 81.95 64.79 62.74 50.17 87.99 72.26
GCC 83.08 90.79 73.79 79.60 88.01 91.76 79.64 86.93 52.50 51.09 81.89 65.12 62.67 50.26 88.20 72.33

GPT-GNN 83.50 90.78 74.86 73.32 87.88 91.69 80.03 80.40 51.23 51.06 81.90 64.32 61.69 50.35 87.76 71.72
L2P-GNN 83.46 91.12 75.56 80.56 88.31 91.85 80.95 87.36 51.59 51.01 81.95 64.76 62.00 50.26 87.91 72.04
GPPT 85.24 91.30 77.22 80.78 89.54 92.17 82.04 87.66 49.80 48.15 72.49 63.06 61.42 47.94 83.75 72.14

GraphPrompt 72.11 83.14 67.09 69.64 76.11 85.71 71.06 75.65 14.51 26.09 37.13 25.91 14.38 24.00 44.60 27.39
ProG 64.03 74.70 64.73 57.54 60.44 74.73 61.53 57.41 49.61 38.17 50.00 62.70 60.43 38.54 58.73 70.95
LAMP 85.59 91.49 76.33 83.49 90.34 92.42 82.40 89.81 56.00 50.73 83.68 67.32 63.44 50.38 89.56 74.07

Table 3: The ablation study for the 50-epoch and final results for different dataset settings with
20% known labels. The marks of ↓ and ↑↑mean the decreasing and increasing in performance
respectively compared to the original LAMP with all components.

50-epoch Results

Methods Link Prediction Node Classification
PRY-A APR-Y APY-R ARY-P PRY-A APR-Y APY-R ARY-P

M1 w/o Know. Appr. 88.63(↑↑) 90.51(↓) 77.51(↓) 83.81(↓) 36.53(↓) 46.25(↓) 75.50(↓) 56.65(↓)
w/o Dist. Matching 84.79(↓) 89.81(↓) 74.95(↓) 80.06(↓) 20.15(↓) 39.47(↓) 33.77(↓) 24.07(↓)

M2 w/o Meta Pre-train 86.08(↓) 90.41(↓) 76.36(↓) 80.81(↓) 44.06(↑↑) 46.27(↓) 74.37(↓) 57.77(↓)
w/o Modulation 88.23(↓) 90.40(↓) 76.80(↓) 83.58(↓) 32.58(↓) 43.44(↓) 74.60(↓) 46.47(↓)

M3
w/o Dist Align. 87.53(↓) 89.75(↓) 76.14(↓) 84.15(↓) 25.85(↓) 45.45(↓) 45.52(↓) 52.10(↓)
w/o Cont. Align. 84.95(↓) 89.76(↓) 72.80(↓) 83.13(↓) 21.46(↓) 46.09(↓) 65.75(↓) 58.19(↓)
w/o Task Align. — — — — 20.19(↓) 30.02(↓) 36.42(↓) 34.56(↓)
Complete LAMP 88.47 90.65 77.57 85.05 39.64 46.86 75.54 62.93

Final Results

Methods Link Prediction Node Classification
PRY-A APR-Y APY-R ARY-P PRY-A APR-Y APY-R ARY-P

M1 w/o Know. Appr. 90.06(↓) 92.35(↓) 82.29(↑↑) 89.24(↓) 63.05(↓) 50.25(↓) 89.55(↓) 74.19(↑↑)
w/o Dist. Matching 89.72(↓) 91.96(↓) 81.99(↓) 88.58(↓) 60.64(↓) 50.00(↓) 87.78(↓) 73.53(↓)

M2 w/o Meta Pre-train 89.80(↓) 92.55(↑↑) 81.83(↓) 88.06(↓) 63.68(↑↑) 50.29(↓) 88.74(↓) 73.59(↓)
w/o Modulation. 90.16(↓) 92.34(↓) 81.79(↓) 88.82(↓) 63.67(↑↑) 48.38(↓) 88.91(↓) 72.49(↓)

M3
w/o Dist Align. 89.80(↓) 92.20(↓) 81.73(↓) 89.19(↓) 63.64(↑↑) 49.92(↓) 88.37(↓) 73.79(↓)
w/o Cont. Align. 88.47(↓) 92.21(↓) 79.84(↓) 87.77(↓) 62.05(↓) 49.56(↓) 89.05(↓) 74.40(↑↑)
w/o Task Align. — — — — 61.40(↓) 50.22(↓) 87.94(↓) 71.90(↓)
Complete LAMP 90.34 92.42 82.20 89.81 63.44 50.38 89.56 74.07

α∈ [0.1, 0.5, 1, 2, 3, 4]
β∈ [0.1, 0.5, 1, 2, 3, 4]
d∈ [16, 32, 64, 128, 256, 512]

T∈ [2, 4, 6, 8, 10, 12]
R∈ [0, 1, 2, 3, 4, 5]

0.77

0.79

0.81

0.83

0.85

A
U

C
50-epoch Result, Link Prediction

0.3

0.4

0.5

0.6

0.7

F1
-s

co
re

50-epoch Result, Node Classification

0.87

0.88

0.89

0.90

A
U

C

Final Result, Link Prediction

0.71

0.72

0.73

0.74

0.75

F1
-s

co
re

Final Result, Node Classification

Figure 3: Parameter analysis
for 𝛼, 𝛽, 𝑑,𝑇 , 𝑅 in ARY-P.

generally enhances the capability of GNN models and achieves
significant performance improvements up to 30% in PRY-A, 18%
in APR-Y, 21% in APY-R, and 32% in ARY-P. Compared with the

second-best baselines, the improvement exceeds 2% in the ARY-
P setting. This suggests that using pre-trained knowledge from

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

different graph domains can help adapt a GNN model to an unseen
domain, even though they have heterogeneous semantic contexts.

For node classification, LAMP also consistently outperforms
the baselines to showcase improvements up to 45% in PRY-A, 25%
in APR-Y, 45% in APY-R, and 43% in ARY-P. Compared with the
second-best methods, LAMP has a better performance of about 2%
improvement, except for the cases of APR-Y with 10% known labels,
where GCC and GCN exhibit slightly higher accuracy. However,
when there are 20% known labels in APR-Y, LAMP takes the lead.
None of the baselines excels in both tasks. However, our proposed
LAMP can not only achieve good efficiency but also work well in
various graph learning tasks.

5.3 Ablation Study
We conduct ablation experiments to investigate the effectiveness of
the proposed three modules by removing their subcomponents. We
compare their performances with the full LAMP framework for all
dataset settings with 20% labels or edges known. We present both
the 50-epoch results and the final results in Tab. 3, where M1-M3
represent Synthetic Graph Distillation, Modulated Meta Pre-training
and Knowledge Transfer for Downstream Tasks respectively.

In the table, each module plays a distinct role in multi-source pre-
training. For M1, distribution matching emerges as more crucial, as
its absence leads to a significant drop in performances, especially
in node classification. Therefore, considering distribution match-
ing as walk distributions proves highly meaningful. Knowledge
approximation is generally beneficial but not as critical as other
components. In some cases, it may have a minor impact on final
results, as observed in APY-R for link prediction and ARY-P for
node classification. For M2, the importance of meta-knowledge
surpasses common knowledge since high-level knowledge can be
transferred across datasets. Modulation yields noticeable improve-
ments in model efficiency, particularly in node classification. This
is due to its efforts to consider different graph contexts. For M3, we
find it necessary to mitigate the risk of negative transfer. Graph
distribution alignment is beneficial as a preprocessing operation on
the unseen graph to match its distribution with synthetic graphs.
It gives the target graph a suitable distribution for the pre-trained
GNN model. It also implies diverse knowledge and patterns have
been extracted into the synthetic common graphs and can be ex-
ploited for pre-training. The context and task alignments are both
important since visible declines in LAMP can be observed when
removing either. In summary, all modules are necessary and work
collaboratively to enhance the overall performance.

5.4 Hyperparameter Analysis
In this section, we conduct a hyperparameter analysis on the ARY-P
setting with 20% know labels or edges. We present the 50-epoch
results to illustrate fine-tuning efficiency as well as the final results.
Parameters 𝛼, 𝛽, 𝑑,𝑇 , 𝑅. We first analyze five main hyperparam-
eters, as shown in Fig. 3. The parameters 𝛼, 𝛽 ∈ [0.1, 0.5, 1, 2, 3, 4]
respectively adjust the importance of the distribution matching loss
Ldis and the pre-training loss Lpre in the loss function. When the
values of 𝛼 and 𝛽 are either too small or too large (i.e., smaller than
0.5 and larger than 3), the model efficiency declines. The param-
eter 𝑑 ∈ [16, 32, 64, 128, 256, 512] is the dimension of the synthetic

graphs, thereby influencing the input dimension of the GNN model.
As 𝑑 increases, both model efficiency and final results improve
slightly, attributed to the enhanced model representation ability.
But when 𝑑 reaches 128, the improvements become less noticeable
and may negatively affect the final results in link prediction. The
parameter 𝑇 ∈ [2, 4, 6, 8, 10, 12] is the number of synthetic graphs,
where a larger 𝑇 implies more graphs used for pre-training. Thus,
the increase in 𝑇 leads to improvements in both model efficiency
and final results. But when 𝑇 ≥ 10, model efficiency does not show
further improvement in both link prediction and node classifica-
tion. In addition, when 𝑇 is small, the pre-trained model shows
low robustness, as indicated by the large error bar. The parameter
𝑅 ∈ [0, 1, 2, 3, 4, 5] is the walks considered in the distribution match-
ing. Visibly, the best result is achieved when 𝑅 = 1 and the other
performances are obviously worse. It means that it’s practically
effective to match node and edge distributions merely.
SourceDomain Settings. Experiments were conducted with differ-
ent source domain settings. The results, displayed in Tab. 4, indicate
that different source domain settings impact model efficiency more
than the final results. The influence on the node classification task is
larger than that of link prediction because it faces greater challenges
in leveraging link prediction pre-trained knowledge. Moreover, the
quality of transferable knowledge from different source domain
settings varies. For example, A-P outperforms R-P, Y-P, and RY-P.
Though it is acknowledged that some source domains may be capa-
ble of transferring the most positive knowledge (i.e., A-P), such fact
cannot be known in advance. In general, incorporating more multi-
source domain graphs (i.e., ARY-P) aids in integrating additional
knowledge, resulting in more generalized and robust performances
for unseen domains. In essence, LAMP can be considered as a com-
prehensive method to explore the correlations among different
graph domains.

Table 4: The results for different source domain settings.

Methods Link Prediction Node Classification
50-epoch Final 50-epoch Final

A-P 83.68 89.38 62.35 74.37
R-P 83.34 89.62 45.60 73.96
Y-P 83.19 89.40 56.98 74.04
AR-P 84.81 89.57 61.02 74.35
AY-P 83.80 89.38 60.21 74.17
RY-P 83.14 89.48 48.90 73.76
ARY-P 85.03 89.78 62.93 74.07

6 CONCLUSION
This paper addressed the multi-source GNN pre-training problem
with the difficulties of heterogeneity of feature/label space, mis-
alignment of learning tasks, and negative transfer of knowledge.
We proposed a novel framework called LAMP to generalize latent
knowledge from multi-source domains to pre-train a general GNN
model. It introduced a dual-distillation method to generate syn-
thetic graphs for meta pre-training. A modulation architecture was
proposed to modulate the pre-trained GNN model based on differ-
ent graph contexts, with which the downstream task can be aligned
to the pre-trained task to achieve multi-domain knowledge transfer.
We conducted extensive experiments on four different-scale graph
datasets, which showed that LAMP significantly outperforms the
state-of-the-art graph pre-training methods on various tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,

Yizhou Sun, and Wei Wang. 2019. Unsupervised inductive graph-level represen-
tation learning via graph-graph proximity. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2019). 1988–1994.

[2] Avishek Joey Bose, Ankit Jain, Piero Molino, andWilliam L Hamilton. 2019. Meta-
graph: Few shot link prediction via meta learning. arXiv preprint arXiv:1912.09867
(2019).

[3] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao
Wang, Shumin Han, Ping Luo, Gang Zeng, and Jingdong Wang. 2023. Context
autoencoder for self-supervised representation learning. International Journal of
Computer Vision (IJCV 2023) (2023), 1–16.

[4] Anjan Chowdhury, Sriram Srinivasan, Animesh Mukherjee, Sanjukta Bhowmick,
and Kuntal Ghosh. 2023. Improving Node Classification Accuracy of GNN
through Input and Output Intervention. ACM Transactions on Knowledge Discov-
ery from Data (TKDD 2023) 18, 1 (2023), 1–31.

[5] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2019. Learning dynamic
context graphs for predicting social events. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
2019). 1007–1016.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of International
conference on machine learning (ICML 2017). PMLR, 1126–1135.

[8] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong,
and Qing He. 2020. A survey on knowledge graph-based recommender systems.
IEEE Transactions on Knowledge and Data Engineering (TKDE 2020) 34, 8 (2020),
3549–3568.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems
(NIPS 2017) 30 (2017).

[10] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimension-
ality of data with neural networks. science 313, 5786 (2006), 504–507.

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
(NIPS 2020) 33 (2020), 22118–22133.

[12] WHu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. 2020. Strategies
For Pre-training Graph Neural Networks. In International Conference on Learning
Representations (ICLR 2020).

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD 2020). 1857–1867.

[14] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.
In International Conference on Learning Representations (ICLR 2020).

[15] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,
and Bing Yin. 2022. Condensing graphs via one-step gradient matching. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2022). 720–730.

[16] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil
Shah. 2022. Graph Condensation for Graph Neural Networks. In International
Conference on Learning Representations (ICLR 2022).

[17] Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE transactions on pattern analysis and
machine intelligence (TPAMI 2020) 43, 11 (2020), 4037–4058.

[18] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. In
Bayesian Deep Learning Workshop (NIPS 2016).

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of International Conference on
Learning Representations (ICLR 2017).

[20] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In International Conference on Learning
Representations (ICLR 2019).

[21] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classification using
structural attention. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD 2018). 1666–1674.

[22] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL 2020). 7871–7880.

[23] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019–1031.

[24] Mingkai Lin, Wenzhong Li, Ding Li, Yizhou Chen, and Sanglu Lu. 2022. Resource-
efficient training for large graph convolutional networks with label-centric
cumulative sampling. In Proceedings of the ACM Web Conference (WWW 2022).
1170–1180.

[25] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, ZhaoyuWang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE transactions
on knowledge and data engineering (TKDE 2021) 35, 1 (2021), 857–876.

[26] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.
2022. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge
and Data Engineering (TKDE 2022) 35, 6 (2022), 5879–5900.

[27] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In
Proceedings of the ACM Web Conference (WWW 2023). 417–428.

[28] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-
train graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence (AAAI 2021), Vol. 35. 4276–4284.

[29] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for
learning with graphs. In ICML 2020 workshop "Graph Representation Learning
and Beyond".

[30] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining (KDD 2020). 1150–1160.

[31] Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili. 2022.
Explaining Link Prediction Systems based on Knowledge Graph Embeddings. In
Proceedings of the 2022 International Conference on Management of Data (SIGMOD
2022). 2062–2075.

[32] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. Gppt:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2022). 1717–1727.

[33] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One:
Multi-Task Prompting for Graph Neural Networks. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023).

[34] Zhaoxuan Tan, Zilong Chen, Shangbin Feng, Qingyue Zhang, Qinghua Zheng,
Jundong Li, and Minnan Luo. 2023. KRACL: contrastive learning with graph
context modeling for sparse knowledge graph completion. In Proceedings of the
ACM Web Conference (WWW 2023). 2548–2559.

[35] Ilaria Tiddi and Stefan Schlobach. 2022. Knowledge graphs as tools for explainable
machine learning: A survey. Artificial Intelligence 302 (2022), 103627.

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[37] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep Graph Infomax. In International Conference on
Learning Representations (ICLR 2018).

[38] Cédric Villani. 2009. Optimal transport: old and new. Vol. 338. Springer.
[39] Fuyun Wang, Xingyu Gao, Zhenyu Chen, and Lei Lyu. 2023. Contrastive Multi-

Level Graph Neural Networks for Session-based Recommendation. IEEE Trans-
actions on Multimedia (2023).

[40] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[41] Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng
Ma, Jun Zhu, and Yi Zhong. 2021. Afec: Active forgetting of negative transfer
in continual learning. Advances in Neural Information Processing Systems (NIPS
2021) 34 (2021), 22379–22391.

[42] Qifan Wang, Yinwei Wei, Jianhua Yin, Jianlong Wu, Xuemeng Song, and Liqiang
Nie. 2021. Dualgnn: Dual graph neural network for multimedia recommendation.
IEEE Transactions on Multimedia 25 (2021), 1074–1084.

[43] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.
Dataset distillation. arXiv preprint arXiv:1811.10959 (2018).

[44] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. 2019. Character-
izing and avoiding negative transfer. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR 2019). 11293–11302.

[45] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang,
Lei Cai, Qi Qi, Zhuoning Yuan, Tianbao Yang, et al. 2022. Advanced graph and
sequence neural networks for molecular property prediction and drug discovery.
Bioinformatics 38, 9 (2022), 2579–2586.

[46] Xuemei Wei, Yezheng Liu, Jianshan Sun, Yuanchun Jiang, Qifeng Tang, and Kun
Yuan. 2023. Dual subgraph-based graph neural network for friendship prediction
in location-based social networks. ACM Transactions on Knowledge Discovery
from Data (TKDD 2023) 17, 3 (2023), 1–28.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[47] Baogui Xu, Chengjin Xu, and Bing Su. 2023. Cross-modal graph attention network
for entity alignment. In Proceedings of the 31st ACM International Conference on
Multimedia (MM 2023). 3715–3723.

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions (ICLR 2018).

[49] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao
Yang, and Hanghang Tong. 2023. Kernel Ridge Regression-Based Graph Dataset
Distillation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD 2023). 2850–2861.

[50] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge
graph contrastive learning for recommendation. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2022). 1434–1443.

[51] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems (NIPS 2020) 33 (2020), 5812–5823.

[52] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2023.
Self-supervised learning for recommender systems: A survey. IEEE Transactions
on Knowledge and Data Engineering (TKDE 2023) (2023).

[53] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. GraphSAINT: Graph Sampling Based Inductive LearningMethod.
In Proceedings of International Conference on Learning Representations (ICLR 2019).

[54] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. 2022. Improving social
network embedding via new second-order continuous graph neural networks.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and
data mining (KDD 2022). 2515–2523.

[55] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[56] Ruiqi Zheng, Liang Qu, Bin Cui, Yuhui Shi, and Hongzhi Yin. 2023. Automl for
deep recommender systems: A survey. ACM Transactions on Information Systems
(TOIS 2023) 41, 4 (2023), 1–38.

[57] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan
Zhu, and Shirui Pan. 2023. Structure-free Graph Condensation: From Large-scale
Graphs to Condensed Graph-free Data. Advances in neural information processing
systems (NIPS 2023) (2023).

[58] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

10

