
1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Scalable Multi-Source Pre-training for Graph Neural Networks

(Appendix)

A PRELIMINARIES FOR PRE-TRAINING
A.1 Conventional GNN Pretraining
In conventional GNN pre-training approaches, the key idea is to
utilize easily accessible information to encode the intrinsic graph
information through self-supervised tasks. Then, the pre-trained
GNN can serve as a good initialization for various downstream
applications. Formally, let Gpre = (𝑋pre, 𝐴pre) denote the graph for
self-supervised pre-training, and 𝑌 pre represents the labels corre-
sponding to the self-supervised objective. The conventional pre-
training process can be described as:

𝜃pre,𝜓pre = arg min
𝜃,𝜓

𝑓
pre
𝜓

(GNN(Gpre;𝜃 ), 𝑌 pre). (13)

In the equation, 𝑓 pre
𝜓

is the prediction function for pre-training and
𝜃,𝜓 are the parameters to be optimized in the self-supervised task.
The downstream graph used to fine-tune the pre-trained model is
typically defined as a new task involving a graph Gfin and labels
𝑌fin. The conventional fine-tuning process is thus described as:

𝜃fin,𝜓 ′fin = arg min
𝜃,𝜓 ′

𝑓 fin
𝜓 ′ (GNN(Gfin;𝜃 init), 𝑌fin),

s.t. 𝜃 init = 𝜃pre, Gfin ≃ Gpre,

(14)

where the parameters 𝜃pre of the pre-trained GNN model act as
the initialized parameters for the GNN model in downstream tasks.
Typically, the downstream graph Gfin and the pre-training graph
Gpre are from the same or closely related domains. Given the fact
that the downstream tasks often differ from the pre-training tasks,
a new prediction function 𝑓 fin

𝜓 ′ with parameter 𝜓 ′ needs to be re-
trained during fine-tuning. Note that graph prompt-tuning methods
[27, 32] are designed to bridge the gap between pre-training and
fine-tuning by reshaping the training objective with 𝑓𝜓 ′ = 𝑓𝜓 .

A.2 Proposed Multi-Source Pre-training
Different from the conventional single-domain pre-training, our
proposed multi-domain pre-training can extract diverse transfer-
able knowledge and effectively transfer it to the downstream tasks
in an unseen domain. Specifically in this work, we use {G𝑘 |𝑘 =

1, 2, · · · , 𝐾} to represent 𝐾 subgraphs sampled from multi-source
domains, which are heterogeneous in feature and label spaces. Ad-
ditionally, a target graph represented by G∗ for the downstream
tasks is from another distinct unseen domain. We formulate the
general multi-domain pre-training process as:

𝜃pre,𝜓pre,Φpre=arg min
𝜃,𝜓,Φ

𝑓
pre
𝜓

(GNN({Gpre
𝑘

};𝜃,Φ), {𝑌 pre
𝑘

}) . (15)

The equation is similar to Eq. (13) but the GNN model is pre-
trained on multi-source domains, and additional parameters Φ are
introduced to assist the pre-training process (i.e., the parameters

introduced in the LAMP framework). Corresponding to this, the
fine-tuning process in the downstream task can be described as:

𝜃fin,𝜓 ′fin = arg min
𝜃,𝜓 ′

𝑓 fin
𝜓 ′ (GNN(Gfin

∗ ;𝜃 init), 𝑌fin
∗ ),

s.t. 𝜃 init = ℎ(𝜃pre,𝜓pre,Φpre,Gfin
∗ ),

(16)

where the downstream task is unspecified and originated from a
distinct domain rather than the multi-source domains regarding
{G𝑘 }. Furthermore, the initialized parameter 𝜃 init is designed to be
determined by ℎ(·), which takes into account all parameters in the
pre-training process and the downstream graph.

Compared to the conventional pre-training process, the proposed
multi-source pre-training has two major differences:

(1) Uniform GNN model: It can integrate diverse effective
knowledge and patterns to form a uniform GNN model through
co-training on various multi-source domain graphs.

(2) Better generalization: It can generalize the pre-trained
knowledge to an unseen graph domain, which can be adapted to
various graphs without accessible pre-training data.

A.3 Important Notations
The important notations introduced in the main content of the
paper are summarized in Tab. 5.

Table 5: Notations

Notation Description
G = (𝑋,𝐴) The undirected graph with 𝑁 nodes
{𝑍 (𝑙 ) } The outputs of the GNN layers

𝜃 = {𝜃 (𝑙 ) } The parameters to be learned for the GNN model
𝐿 The number of GNN layers
𝜓 The parameters for the prediction function 𝑓𝜓

{G𝑘 },G∗ Graphs from the multi-source and target domains
{𝜙G𝑘

}, 𝜙G∗ The parameters for the transform function {𝑔𝑘 }, 𝑔∗
{S𝑡 } The set of synthetic graphs
{𝜙S𝑡

} The parameters to identify synthetic graphs
𝐾,𝑇 The numbers of the source domains and synthetic graphs
𝑑 The feature dimension of the homogeneous synthetic graphs
𝑃𝑟G The 𝑟 -walk empirical distribution for graph G
𝑅 The total walks considered for distribution matching
𝜔 The parameter for Wasserstein Discriminator 𝑓𝜔
𝜙𝑚 The parameters for modulation operation 𝑓𝜙𝑚
𝑐 (G) The graph context

𝜃 = {𝜃 (𝑙 ) } The GNN parameters after modulation

1



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

B ALGORITHMS AND COMPLEXITY
ANALYSIS

Multi-domain Pre-training. Given a set of multi-source domains,
the multi-domain pre-training process transforms the graphs from
these diverse domains through {𝑔𝑘 } and distills them into a set of
synthetic graphs {S𝑡 } so that meta-knowledge can be extracted
to pre-train a GNN model (𝜃,𝜓 ). A modulation architecture 𝜙𝑚 is
also co-training to adapt the GNN parameters. During pre-training,
the synthetic graphs are used to pre-train an effective GNN model
and the modulation architecture. The outputs are the parameters
𝜃pre,𝜓pre, 𝜙

pre
𝑚 and the synthetic graphs {S𝑡 }.

The overall process of pre-training is shown in Alg. 1. Assume
that 𝑛𝑘 , 𝑛𝑡 and𝑚𝑘 ,𝑚𝑡 are the average scales for nodes and edges
corresponding to the sampled graphs {G𝑘 } and synthetic graphs
{S𝑡 }. During each iteration for pre-training, in Line 3, LAMP firstly
samples subgraphs {G𝑘 } from source domains and transforms them,
the complexity of which is𝑂 (𝐾𝑛𝑘 +𝐾𝑛𝑘𝑑2). Then in Line 4, LAMP
constructs synthetic graphs {S𝑡 } from {𝜙S𝑡

}, the complexity of
which is𝑂 (𝑇𝑛𝑡𝑑2)when usingMLPs for synthetic graph generation.
In Line 5, knowledge approximation lossLappr is calculated, costing
𝑂 (𝐿𝑑 (𝐾𝑚𝑘 +𝑇𝑚𝑡 ) +𝐿𝑑2 (𝐾𝑛𝑘 +𝑇𝑛𝑡 )) when a 𝐿-layer GCN serving
as the backbone. In Line 6, the complexity of computing distribution
matching lossLdis is𝑂 (𝑅𝑑 (𝐾𝑚𝑘 +𝑇𝑚𝑡 ) +𝑅𝑑2 (𝐾𝑛𝑘 +𝑇𝑛𝑡 )). Lines 7-
10 divide synthetic graphs into support Sspt

𝑡 and query Sqry
𝑡 graphs

to calculate pre-training loss Lpre, which needs a time complexity
of𝑂 (𝐿𝑑𝑇𝑚𝑡 +𝐿𝑑2𝑇𝑛𝑡 ). To sum up, the overall complexity of the pre-
training process is𝑂 (𝑑 (𝑅+𝐿) (𝐾𝑚𝑘 +𝑇𝑚𝑡 ) +𝑑2 (𝑅+𝐿) (𝐾𝑛𝑘 +𝑇𝑛𝑡 )),
where 𝑛𝑘 , 𝑛𝑡 and𝑚𝑘 ,𝑚𝑡 are usually small.

Algorithm 1 Pre-training Process for LAMP

Input: Multi-source domain graphs {G𝑘 }; Unified node feature
dimensions 𝑑 for 𝑇 synthetic graphs; Loss hyperparameters 𝛼, 𝛽
Output: Pre-trained parameters 𝜃pre,𝜓pre for GNN model and
𝜙
pre
𝑚 for modulation; The synthetic graphs {𝜙S𝑡

}
1: Initialize parameters {𝜙S𝑡

}, {𝜙G𝑘
}, 𝜃,𝜓, 𝜙𝑚

2: while not converged do
3: Sample subgraphs {G𝑘 } from source domains and transform

them with {𝜙G𝑘
}.

4: Construct synthetic graphs {S𝑡 } from {𝜙S𝑡
}

5: Calculate knowledge approximation loss Lappr [Eq. (3)]
6: Calculate distribution matching loss Ldis [Eq. (5)]
7: for S𝑡 ∈ {S𝑡 } do
8: Divide S𝑡 into support Sspt

𝑡 and query Sqry
𝑡 graphs

9: end for
10: Calculate pre-training loss Lpre [Eq. (9)]
11: L = Lappr + 𝛼Ldis + 𝛽Lpre
12: Backpropagate L to update {𝜙S𝑡

}, {𝜙G𝑘
}, 𝜃,𝜓, 𝜙𝑚

13: end while
14: return 𝜃pre,𝜓pre, 𝜙

pre
𝑚 ; Synthetic graphs {S𝑡 }

Target Domain Fine-tuning. On this stage, we train the transfor-
mation function 𝑔∗ to match the distribution of the unseen target
graphG∗ with the synthetic graphs {S𝑡 }. Thenwemodulate the pre-
trained GNN model 𝜃pre with the modulation architecture 𝜙pre𝑚 . By

Algorithm 2 Fine-tuneing Process for LAMP
Input: The unseen domain graph G∗; The pre-trained parameters
𝜃pre for GNN; The prediction function for pretext𝜓pre; The
modulation parameters 𝜙pre𝑚 ; Synthetic graphs {S𝑡 }
Output: A well trained GNN model
1: Match the graph distribution to get 𝜙G∗ by L′

dis [Eq. (10)]
2: Modulate pre-trained GNN as 𝜃pre [Eq. (11)]
3: Reshape the downstream task to match𝜓pre

4: Fine-tune GNN model with 𝜃pre,𝜓pre, 𝜙G∗ on G∗
5: return Fine-tuned GNN model

reshaping the downstream task𝜓fin in the form of the pre-trained
task𝜓pre, the GNN model can be fine-tuned.

The fine-tuning process is shown in Alg. 2. It’s worth noting
that the complexity of the distribution alignment procedure is
𝑂 (𝑅𝑑 (𝑚∗ + 𝑇𝑚𝑡 ) + 𝑅𝑑2 (𝑛∗ + 𝑇𝑛𝑡 )) where 𝑛∗ and 𝑚∗ are the av-
erage scales for nodes and edges corresponding to the target graph
G∗. Such alignment can be processed during preprocessing. What’s
more, the context and task alignments adjust the GNN model’s
representation capability without changing the model definition.
Therefore, LAMP does not introduce extra visible overhead during
the model fine-tuning stage.

C FURTHER DESCRIPTIONS OF DATASETS
AND BASELINES

The experiments are implemented in PyTorch with Python 3.6.8,
executed on a system featuring an Intel Xeon E5-2620 v2 2.10GHz
CPU, GeForce RTX 2070 8G GPU, and 64GB memory on a 64-bit
CentOS Linux 7.2. We provide further details of the datasets and
baselines.

C.1 Datasets
• Product [P] [11]: Product is anAmazon product co-purchasing

network fromOpenGraph Benchmark (OGB). Nodes represent
products sold on Amazon, and edges between two products
indicate that the products are purchased together.

• Yelp [Y] [53]: The Yelp dataset is a social network, extracted
from the data of businesses, users and reviews provided on
the open challenge website Yelp. The node means user and the
edge is the friendship.

• Reddit [R] [9]: This is a comment network constructed from
Reddit, a large online discussion forum. 50 large communities
have been sampled to build a post-to-post graph, connecting
posts if the same user comments on both.

• Academic [A] [11]: Academic is a citation network consisting
of papers indexed by MAG [40]. Each node is a paper and each
edge indicates that one paper cites another one.

These networks are from different graph domains. Academic
and Product are from Open Graph Benchmark (OGB), and the node
labels for Yelp are multi-label.

C.2 Baselines
(1) Graph supervised learning methods.

2



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

0 50 100 150 200 250 300
Pre-training Epochs

0
5

10
15
20
25
30
35
40

Lo
ss

Pre-training Loss for PRY-A

appr dis pre

0 50 100 150 200 250 300
Pre-training Epochs

0
5

10
15
20
25
30
35
40

Lo
ss

Pre-training Loss for APR-Y

appr dis pre

0 50 100 150 200 250 300
Pre-training Epochs

0
5

10
15
20
25
30
35
40

Lo
ss

Pre-training Loss for APY-R

appr dis pre

0 50 100 150 200 250 300
Pre-training Epochs

0
5

10
15
20
25
30
35
40

Lo
ss

Pre-training Loss for ARY-P

appr dis pre

Figure 4: The results of continuous epochs for different loss functions during pre-training.

• GCN [19]: GCN resorted to weighted average-based neighbor-
hood aggregation to receive messages from the neighboring
nodes for node representation learning in an end-to-end man-
ner.

• GAT [36]: GAT also used neighborhood aggregation for node
representation learning in an end-to-end manner. At the same
time, it assigned different weights to neighbors according to a
self-attention operation.

• GIN [48]: GIN employed a sum-based aggregator, which is
more powerful in expressing the graph structures.

(2) Graph self-supervised learning methods.

• EdgePred [12]: EdgePred randomly masked partial edges and
then trained GNNs to reconstruct them.

• AttrMask [14]: AttrMask randomly masked partial node at-
tributes and then trained GNNs to predict them.

• DGI [37]: DGI capitalized on a self-supervised method for
pre-training, which is based on the concept of mutual informa-
tion (MI). It maximized the MI between the local augmented
instances and the global representation.

• GCC [30]: GCC leveraged contrastive learning to capture the
universal network topological properties across multiple net-
works. Since it doesn’t consider node properties, we assemble
it with a GCN model during fine-tuning.

• GPT-GNN [11]: GPT-GNNutilized generativemodel pre-training
and derived an autoregressive framework to perform recon-
struction on given graphs.

• L2P-GNN [28]: L2P-GNN simulated the fine-tuning step dur-
ing pre-training to enable the pre-trained models to learn to
fine-tune for the downstream tasks.

(3) Graph prompt learning methods

• GPPT [32]: GPPT pre-trained a GNN model based on the link
prediction task, and employed a learnable prompt to reformu-
late the downstream node classification task into the same
format as link prediction.

• GraphPrompt [27]: GraphPrompt employed a learnable prompt
to assist a downstream task in locating the most relevant
knowledge from pretext.

• ProG [33]: ProG unified the format of graph prompts and used
meta-learning to learn a better prompt initialization.

D PRE-TRAINING LOSS ANALYSIS
In this section, we investigate the loss functions associated with
the pre-training stage of our proposed framework, LAMP. The tra-
jectories over successive epochs for distinct loss functions, denoted
as Lappr,Ldis and Lpre, are illustrated in Fig. 4. The figures show

that each of these three loss functions experiences a gradual de-
crease, reaching a relatively low level finally. This suggests that the
pre-training stage of LAMP can successfully converge, yielding an
efficacious pre-trained GNN model.

Notably, both Lappr and Lpre exhibit rapid declines, reaching
convergence within the initial 50 epochs of the pre-training process.
Conversely, Ldis initially manifests as notably high, indicative of
prominent distribution divergences between source and synthetic
graphs. However, as the pre-training advances, Ldis gradually di-
minishes, eventually aligning with the same levels observed for
Lappr and Lpre. In summary, the results demonstrate that LAMP
can not only produce a set of homogeneous synthetic graphs to
facilitate the effective distillation of generalized knowledge from
multi-source graphs, but also pre-train an effective GNN model
with the derived meta knowledge.

E GENERALIZATION ABILITY FOR
PRE-TRAINED DOMAINS

Here, we investigate the effectiveness of our proposed LAMP frame-
work when the target domain is drawn from the multi-source do-
mains. It is essential to emphasize that LAMP is specifically designed
for handling unseen target domains, which is a more challenging
scenario than this. Therefore, we pre-train GNN models based on
four datasets (i.e., APRY) and fine-tune them in the tasks from one
of the four domains (i.e., A, P, R, or Y). We also evaluate LAMP and
the baselines from the perspectives of training efficiency and final
results in node classification and link prediction tasks.
Training Efficiency. The results of training efficiency with 10%
labels or edges known are shown in Fig. 5. Notably, the performance
of LAMP, depicted by the purple line, consistently outperforms the
baseline methods. These findings conform to the results observed in
the context of unseen domains, as illustrated in Fig. 2. This consis-
tency not only underscores the efficacy of LAMP in addressing tasks
involving diverse domains but also highlights its remarkable gener-
alization capability and robustness when subjected to pre-training
on multi-source graph domains. A comparison with the outcomes
presented in Fig. 2 reveals that most baselines, particularly those
associated with self-supervised methods such as AttrMask and
DGI, demonstrate improved performance. This improvement can
be attributed to the fact that the domains they operate on have
been encountered during pre-training. However, it is noteworthy
that their performances fall short of that achieved by LAMP. This
disparity arises due to the limitations of these methods in han-
dling heterogeneous distributions and negative transfer, which the
comprehensive approach of LAMP can effectively address.

3



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

EdgePred AttrMask DGI GCC GPT-GNN L2P-GNN GPPT GraphPrompt ProG LAMP

0 40 80 120 160 200
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

Academic, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

Yelp, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.5

0.6

0.7

0.8

0.9

A
U

C

Reddit, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.6

0.7

0.8

0.9

A
U

C

Product, 10%, Link Prediction

0 40 80 120 160 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
-s

co
re

Academic, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.20

0.25

0.30

0.35

0.40

0.45

0.50
F1

-s
co

re
Yelp, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
-s

co
re

Reddit, 10%, Node Classification

0 40 80 120 160 200
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1
-s

co
re

product, 10%, Node Classification

Figure 5: The results of continuous epochs for different methods in link prediction and node classification tasks.

Table 6: The final results for different methods with different fractions of known labels.

The final AUC (%) for link prediction The final F1-score (%) for node classification

Methods
10% known edges 20% known edges 10% known labels 20% known labels

Acadmemic Yelp Reddit Product Acadmemic Yelp Reddit Product Acadmemic Yelp Reddit Product Acadmemic Yelp Reddit Product
EdgePred 84.82 91.60 77.09 80.49 89.35 92.24 81.96 87.18 55.13 49.82 81.97 64.39 64.36 49.52 88.01 71.85
AttrMask 85.18 91.82 77.12 82.94 89.36 92.31 81.49 88.55 55.77 49.94 81.76 64.45 64.81 49.59 87.79 71.79

DGI 84.85 91.45 77.48 81.81 89.68 92.06 82.49 88.21 57.42 49.68 81.83 64.98 65.53 49.43 87.81 72.19
GCC 83.08 90.79 73.79 79.60 88.01 91.76 79.64 86.93 52.49 51.09 81.92 65.11 62.67 50.26 88.16 72.35

GPT-GNN 83.40 90.93 74.56 77.77 87.65 91.73 79.84 84.18 51.02 50.92 81.52 64.60 61.41 50.25 87.33 72.00
L2P-GNN 83.50 91.19 74.86 80.21 89.23 92.15 81.82 87.37 51.86 50.99 82.17 64.96 60.43 49.98 82.15 70.92
GPPT 84.56 91.52 77.09 80.72 88.37 91.92 80.31 87.21 48.99 50.44 70.24 62.57 61.93 50.25 87.88 72.23

GraphPrompt 73.05 84.93 69.69 71.90 75.53 85.76 73.18 77.52 15.44 26.09 25.19 14.73 16.61 24.00 27.93 14.91
ProG 63.33 74.23 63.47 56.70 59.91 74.52 60.62 56.49 48.27 31.70 45.26 52.20 56.43 31.58 52.68 63.97
LAMP 85.38 91.43 76.30 83.31 90.26 92.36 82.24 89.78 59.64 50.75 83.74 67.08 66.76 50.36 89.71 74.18

Final Results. The final results with 10% and 20% labels or edges
known are shown in Tab. 6. Across most scenarios, LAMP consis-
tently outperforms the baseline methods, showcasing its superior
performances, except for Yelp and Reddit with 10% edges known in
link prediction, Reddit with 20% edges known in link prediction,
and Yelp with 10% labels known for node classification. Notably,
the performance differences between LAMP and the second-best
method frequently exceed 2%, underscoring the notable advantages
of LAMP. Similar to the analysis of training efficiency, it is evident
that the baselines can leverage pre-trained domain knowledge to
some extent, leading to improved performances. However, the chal-
lenges associated with heterogeneous distributions and negative
transfer remain limiting factors for these methods. In summary,
whether dealing with pre-trained or previously unseen domains,
LAMP consistently demonstrates its capacity to handle both sce-
narios, yielding superior performance outcomes.

F RESULTS FOR GRAPH CLASSIFICATION
This section presents the results when the downstream task is
graph classification. For the task alignment of graph classification,

we utilize a virtualized graph node that establishes unidirectional
links with all existing nodes within a graph to derive the graph
representation. Similar to the node classification task, we reshape
the graph classification task as the pretext task by predicting the
links between graph nodes and labeled nodes.

In this way, we pre-train GCN models based on four datasets
introduced in the main experiments (i.e., APRY). Subsequently, we
fine-tune these models on graph classification tasks sourced from
the domain of molecular informatics. Specifically, we select four
datasets, DHFR, BZR, COX2, and PROTEIN-full, from TUDatasets
[29], a well-established benchmark for graph classification. We al-
locate 10 to 20 labeled graphs for training during experimentation,
reserving the remaining graphs for testing. The performances of
LAMP and the baseline methods are visualized in Fig. 6 and summa-
rized in Tab. 7. It is important to note that GPPT is excluded from
the baseline methods as it is not applicable to graph-level tasks.

Fig. 6 illustrates the training efficiency of the methods in the
graph classification task. A notable observation is the distinct curve
patterns compared to those observed in node classification and link
prediction tasks. Generally, with the exception of dataset DHFR,

4



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Scalable Multi-Source Pre-training for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

GIN GCN GAT EdgePred AttrMask DGI GCC GPT-GNN L2P-GNN GraphPrompt ProG LAMP

0 20 40 60 80
Epochs

0.45

0.50

0.55

0.60

0.65

F1
-s

co
re

DHFR, 10, Graph Classification

0 20 40 60 80
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
-s

co
re

COX2, 10, Graph Classification

0 20 40 60 80
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

BZR, 10, Graph Classification

0 20 40 60 80
Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

F1
-s

co
re

PROTEINS_full, 10, Graph Classification

0 20 40 60 80
Epochs

0.45

0.50

0.55

0.60

0.65

F1
-s

co
re

DHFR, 20, Graph Classification

0 20 40 60 80
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
-s

co
re

COX2, 20, Graph Classification

0 20 40 60 80
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

BZR, 20, Graph Classification

0 20 40 60 80
Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

F1
-s

co
re

PROTEINS_full, 20, Graph Classification

Figure 6: The results of continuous epochs for different methods in graph classification tasks.

the curves of LAMP in the other three datasets start at a lower
level compared to the baselines. However, as the number of epochs
increases to 20, the curves rise rapidly, resulting in significantly
improved performances compared to the baselines. However, as the
number of training graphs increases, the superiority of LAMP tends
to weaken. In the case of DHFR, LAMP demonstrates promising
performance with the pre-trained model from the beginning, with
slight further improvement observed as training progresses. This
suggests that LAMP effectively transfers positive knowledge to the
target unseen domain, outperforming the baselines noticeably.

Tab. 7 presents the final results for the downstream graph clas-
sification tasks. The results indicate that LAMP achieves improve-
ments of up to 1% in DHFR, 4.5% in BZR, 4.3% in COX2, and 2.4%
in PROTEIN-full compared to the corresponding second-best base-
line. Furthermore, when training graphs are scarce, LAMP notably
outperforms other baselines, underscoring its ability to transfer
effective knowledge across different domains and tasks with better
capability of generalization.

Table 7: The final results for different methods with different
numbers of known labels.

Methods 10 known labels 20 known labels
DHFR BZR COX2 PROT. DHFR BZR COX2 PROT.

GCN 61.25 70.82 77.52 54.48 60.42 81.22 78.05 62.36
GIN 58.90 77.86 76.89 54.90 60.00 81.62 77.06 61.55
GAT 60.51 65.46 77.81 55.79 62.05 73.10 76.76 64.27

EdgePred 57.81 80.51 75.11 55.06 59.94 85.07 73.59 63.03
AttrMask 60.21 79.49 72.26 54.78 61.87 84.67 70.95 62.53

DGI 57.60 78.96 74.67 55.01 60.03 85.88 75.49 62.46
GCC 57.02 69.92 56.01 55.13 57.37 74.09 59.75 62.26

GPT-GNN 55.70 80.23 70.88 55.49 56.78 84.49 70.32 62.80
L2P-GNN 56.68 76.42 74.79 54.56 58.31 84.58 75.29 62.16

GraphPrompt 56.58 55.41 65.09 58.16 60.08 63.88 63.09 63.40
ProG 61.43 82.31 77.66 49.71 60.44 83.71 79.03 62.82
LAMP 62.43 86.76 82.19 60.54 62.58 89.45 82.92 64.83

5


