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(Appendix)

A PRELIMINARIES FOR PRE-TRAINING
A.1 Conventional GNN Pretraining

In conventional GNN pre-training approaches, the key idea is to
utilize easily accessible information to encode the intrinsic graph
information through self-supervised tasks. Then, the pre-trained
GNN can serve as a good initialization for various downstream
applications. Formally, let GP™® = (XP'€¢, AP*¢) denote the graph for
self-supervised pre-training, and YP™ represents the labels corre-
sponding to the self-supervised objective. The conventional pre-
training process can be described as:

P P = arg min f‘;‘e(GNN(gPre; 0), YP®). (13)
0.y

In the equation, fpre is the prediction function for pre-training and
0,1 are the parameters to be optimized in the self-supervised task.
The downstream graph used to fine-tune the pre-trained model is
typically defined as a new task involving a graph Gt and labels
Yfin The conventional fine-tuning process is thus described as:

eﬁn, l//Iﬁl’l = arg minfl/fl,n(GNN(gﬁn; Ginit), Yﬁn),
oy (19)

st Qwnit — gpre gﬁn ~ gPre

where the parameters OP™ of the pre-trained GNN model act as
the initialized parameters for the GNN model in downstream tasks.
Typically, the downstream graph G and the pre-training graph
GP'€ are from the same or closely related domains. Given the fact
that the downstream tasks often differ from the pre-training tasks,
a new prediction function f fin with parameter ¥’ needs to be re-
trained during fine-tuning. Note that graph prompt-tuning methods
[27, 32] are designed to bridge the gap between pre-training and
fine-tuning by reshaping the training objective with fy, = fy.

A.2 Proposed Multi-Source Pre-training

Different from the conventional single-domain pre-training, our
proposed multi-domain pre-training can extract diverse transfer-
able knowledge and effectively transfer it to the downstream tasks
in an unseen domain. Specifically in this work, we use {G|k =
1,2,---,K} to represent K subgraphs sampled from multi-source
domains, which are heterogeneous in feature and label spaces. Ad-
ditionally, a target graph represented by G. for the downstream
tasks is from another distinct unseen domain. We formulate the
general multi-domain pre-training process as:

gPe, /P PPe=arg min fl/f/’“’ (GNN({G} “}:6,0),{Y}"}). (15)
The equation is similar to Eq. (13) but the GNN model is pre-
trained on multi-source domains, and additional parameters ¢ are
introduced to assist the pre-training process (i.e., the parameters

introduced in the LAMP framework). Corresponding to this, the
fine-tuning process in the downstream task can be described as:

gﬁn’ l,//,ﬁn = arg mlnfﬁn(GW(gfn, einit), Yfln),
0.y’ (16)
st ginit — h(epre’ wpre, q)pre, gfm)’

where the downstream task is unspecified and originated from a
distinct domain rather than the multi-source domains regarding
{Gy}. Furthermore, the initialized parameter 6™ is designed to be
determined by h(-), which takes into account all parameters in the
pre-training process and the downstream graph.

Compared to the conventional pre-training process, the proposed
multi-source pre-training has two major differences:

(1) Uniform GNN model: It can integrate diverse effective
knowledge and patterns to form a uniform GNN model through
co-training on various multi-source domain graphs.

(2) Better generalization: It can generalize the pre-trained
knowledge to an unseen graph domain, which can be adapted to
various graphs without accessible pre-training data.

A.3 Important Notations

The important notations introduced in the main content of the
paper are summarized in Tab. 5.

Table 5: Notations

Notation Description
G = (X, A) The undirected graph with N nodes
{Z(D}  The outputs of the GNN layers
6={6"} The parameters to be learned for the GNN model
L The number of GNN layers
13 The parameters for the prediction function fy

{Gr}, G~ Graphs from the multi-source and target domains
{¢G, }. ¢g. The parameters for the transform function {gy}, g«
{8} The set of synthetic graphs
{¢s,}  The parameters to identify synthetic graphs
K, T The numbers of the source domains and synthetic graphs
d The feature dimension of the homogeneous synthetic graphs

Prg The r-walk empirical distribution for graph G

R The total walks considered for distribution matching
® The parameter for Wasserstein Discriminator f,
Om The parameters for modulation operation fg .

¢(G)  The graph context
6= {é(l)} The GNN parameters after modulation
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B ALGORITHMS AND COMPLEXITY
ANALYSIS

Multi-domain Pre-training. Given a set of multi-source domains,
the multi-domain pre-training process transforms the graphs from
these diverse domains through {gx} and distills them into a set of
synthetic graphs {S;} so that meta-knowledge can be extracted
to pre-train a GNN model (6, /). A modulation architecture ¢y, is
also co-training to adapt the GNN parameters. During pre-training,
the synthetic graphs are used to pre-train an effective GNN model
and the modulation architecture. The outputs are the parameters
oPre, yPre, g0 and the synthetic graphs {S;}.

The overall process of pre-training is shown in Alg. 1. Assume
that ng, n; and mg, m; are the average scales for nodes and edges
corresponding to the sampled graphs {Gy } and synthetic graphs
{S:}. During each iteration for pre-training, in Line 3, LAMP firstly
samples subgraphs {Gy } from source domains and transforms them,
the complexity of which is O(Kny + Knid?). Then in Line 4, LAMP
constructs synthetic graphs {S;} from {¢g, }, the complexity of
which is O(Tn;d?) when using MLPs for synthetic graph generation.
InLine 5, knowledge approximation loss Lappy is calculated, costing
O(Ld(Kmy +Tmy) +Ld?(Kny +Tn;)) when a L-layer GCN serving
as the backbone. In Line 6, the complexity of computing distribution
matching loss Lg;s is O(Rd(Kmy +Tm;)+Rd? (Kny+Tn;)). Lines 7-
10 divide synthetic graphs into support StSpt and query S?ry graphs
to calculate pre-training loss Lpre, which needs a time complexity
of O(LdTm;+Ld*Tn;). To sum up, the overall complexity of the pre-
training process is O(d(R+L) (Kmy +Tm;)+d?(R+L)(Kng +Tny)),
where ng, n; and my, m; are usually small.

Algorithm 1 Pre-training Process for LAMP

Input: Multi-source domain graphs {Gy }; Unified node feature
dimensions d for T synthetic graphs; Loss hyperparameters «, 8
Output: Pre-trained parameters 6P, /P*¢ for GNN model and
¢P,€ for modulation; The synthetic graphs {¢ S, )

1: Initialize parameters {¢s, }, {¢ g, }, 0, ¥, dm

2: while not converged do

3. Sample subgraphs {Gy } from source domains and transform
them with {¢g, }.
Construct synthetic graphs {S;} from {¢g, }
Calculate knowledge approximation loss Lappr [Eq. (3)]
Calculate distribution matching loss Lg;s [Eq. (5)]
for S; € {S;} do

Divide S; into support StSpt and query S?ry graphs
end for
10:  Calculate pre-training loss Lpre [Eq. (9)]
11: L= -Eappr + Uf.ﬁdis + ﬁ-ﬁpre
122 Backpropagate L to update {¢s, }, {¢g, }. 0. ¢, dm
13: end while
14: return 6P, yPe 4P Synthetic graphs {S;}

R~ A

Target Domain Fine-tuning. On this stage, we train the transfor-
mation function g, to match the distribution of the unseen target
graph G- with the synthetic graphs {S; }. Then we modulate the pre-
trained GNN model #P® with the modulation architecture ¢5,°. By

Anon.

Algorithm 2 Fine-tuneing Process for LAMP

Input: The unseen domain graph G.; The pre-trained parameters
OP™¢ for GNN; The prediction function for pretext /P™¢; The
modulation parameters ¢b,*; Synthetic graphs {S;}
Output: A well trained GNN model
1: Match the graph distribution to get ¢, by L(,:lis [Eq. (10)]
: Modulate pre-trained GNN as gpre [Eq. (11)]
: Reshape the downstream task to match /P
. Fine-tune GNN model with 6Pre, y/Pre, $g. on G
: return Fine-tuned GNN model

[ N

reshaping the downstream task yf in the form of the pre-trained
task /P, the GNN model can be fine-tuned.

The fine-tuning process is shown in Alg. 2. It’s worth noting
that the complexity of the distribution alignment procedure is
O(Rd(ms« + Tmy) + Rd?(n« + Tny)) where n, and m, are the av-
erage scales for nodes and edges corresponding to the target graph
G+. Such alignment can be processed during preprocessing. What'’s
more, the context and task alignments adjust the GNN model’s
representation capability without changing the model definition.
Therefore, LAMP does not introduce extra visible overhead during
the model fine-tuning stage.

C FURTHER DESCRIPTIONS OF DATASETS
AND BASELINES

The experiments are implemented in PyTorch with Python 3.6.8,
executed on a system featuring an Intel Xeon E5-2620 v2 2.10GHz
CPU, GeForce RTX 2070 8G GPU, and 64GB memory on a 64-bit
CentOS Linux 7.2. We provide further details of the datasets and
baselines.

C.1 Datasets

e Product [P] [11]: Productis an Amazon product co-purchasing
network from Open Graph Benchmark (OGB). Nodes represent
products sold on Amazon, and edges between two products
indicate that the products are purchased together.

o Yelp [Y] [53]: The Yelp dataset is a social network, extracted
from the data of businesses, users and reviews provided on
the open challenge website Yelp. The node means user and the
edge is the friendship.

e Reddit [R] [9]: This is a comment network constructed from
Reddit, a large online discussion forum. 50 large communities
have been sampled to build a post-to-post graph, connecting
posts if the same user comments on both.

o Academic [A] [11]: Academic is a citation network consisting
of papers indexed by MAG [40]. Each node is a paper and each
edge indicates that one paper cites another one.

These networks are from different graph domains. Academic
and Product are from Open Graph Benchmark (OGB), and the node
labels for Yelp are multi-label.

C.2 Baselines
(1) Graph supervised learning methods.
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Figure 4: The results of continuous epochs for different loss functions during pre-training,.

e GCN [19]: GCN resorted to weighted average-based neighbor-
hood aggregation to receive messages from the neighboring
nodes for node representation learning in an end-to-end man-
ner.

e GAT [36]: GAT also used neighborhood aggregation for node
representation learning in an end-to-end manner. At the same
time, it assigned different weights to neighbors according to a
self-attention operation.

e GIN [48]: GIN employed a sum-based aggregator, which is
more powerful in expressing the graph structures.

(2) Graph self-supervised learning methods.

o EdgePred [12]: EdgePred randomly masked partial edges and
then trained GNNs to reconstruct them.

o AttrMask [14]: AttrMask randomly masked partial node at-
tributes and then trained GNNs to predict them.

e DGI [37]: DGI capitalized on a self-supervised method for
pre-training, which is based on the concept of mutual informa-
tion (MI). It maximized the MI between the local augmented
instances and the global representation.

e GCC [30]: GCC leveraged contrastive learning to capture the
universal network topological properties across multiple net-
works. Since it doesn’t consider node properties, we assemble
it with a GCN model during fine-tuning.

e GPT-GNN [11]: GPT-GNN utilized generative model pre-training

and derived an autoregressive framework to perform recon-
struction on given graphs.

e L2P-GNN [28]: L2P-GNN simulated the fine-tuning step dur-
ing pre-training to enable the pre-trained models to learn to
fine-tune for the downstream tasks.

(3) Graph prompt learning methods

e GPPT [32]: GPPT pre-trained a GNN model based on the link
prediction task, and employed a learnable prompt to reformu-
late the downstream node classification task into the same
format as link prediction.

e GraphPrompt [27]: GraphPrompt employed a learnable prompt
to assist a downstream task in locating the most relevant
knowledge from pretext.

o ProG [33]: ProG unified the format of graph prompts and used
meta-learning to learn a better prompt initialization.

D PRE-TRAINING LOSS ANALYSIS

In this section, we investigate the loss functions associated with
the pre-training stage of our proposed framework, LAMP. The tra-
jectories over successive epochs for distinct loss functions, denoted
as Lappr, Lais and Lpre, are illustrated in Fig. 4. The figures show

that each of these three loss functions experiences a gradual de-
crease, reaching a relatively low level finally. This suggests that the
pre-training stage of LAMP can successfully converge, yielding an
efficacious pre-trained GNN model.

Notably, both Lappr and Lpre exhibit rapid declines, reaching
convergence within the initial 50 epochs of the pre-training process.
Conversely, Lg;s initially manifests as notably high, indicative of
prominent distribution divergences between source and synthetic
graphs. However, as the pre-training advances, Lg;s gradually di-
minishes, eventually aligning with the same levels observed for
Lappr and Lpre. In summary, the results demonstrate that LAMP
can not only produce a set of homogeneous synthetic graphs to
facilitate the effective distillation of generalized knowledge from
multi-source graphs, but also pre-train an effective GNN model
with the derived meta knowledge.

E GENERALIZATION ABILITY FOR
PRE-TRAINED DOMAINS

Here, we investigate the effectiveness of our proposed LAMP frame-
work when the target domain is drawn from the multi-source do-
mains. It is essential to emphasize that LAMP is specifically designed
for handling unseen target domains, which is a more challenging
scenario than this. Therefore, we pre-train GNN models based on
four datasets (i.e., APRY) and fine-tune them in the tasks from one
of the four domains (i.e., A, P, R, or Y). We also evaluate LAMP and
the baselines from the perspectives of training efficiency and final
results in node classification and link prediction tasks.

Training Efficiency. The results of training efficiency with 10%
labels or edges known are shown in Fig. 5. Notably, the performance
of LAMP, depicted by the purple line, consistently outperforms the
baseline methods. These findings conform to the results observed in
the context of unseen domains, as illustrated in Fig. 2. This consis-
tency not only underscores the efficacy of LAMP in addressing tasks
involving diverse domains but also highlights its remarkable gener-
alization capability and robustness when subjected to pre-training
on multi-source graph domains. A comparison with the outcomes
presented in Fig. 2 reveals that most baselines, particularly those
associated with self-supervised methods such as AttrMask and
DGI, demonstrate improved performance. This improvement can
be attributed to the fact that the domains they operate on have
been encountered during pre-training. However, it is noteworthy
that their performances fall short of that achieved by LAMP. This
disparity arises due to the limitations of these methods in han-
dling heterogeneous distributions and negative transfer, which the
comprehensive approach of LAMP can effectively address.
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Figure 5: The results of continuous epochs for different methods in link prediction and node classification tasks.

Table 6: The final results for different methods with different fractions of known labels.

The final AUC (%) for link prediction The final F1-score (%) for node classification
Methods 10% known edges 20% known edges 10% known labels 20% known labels
Acadmemic Yelp Reddit Product|Acadmemic Yelp Reddit Product|Acadmemic Yelp Reddit Product|Acadmemic Yelp Reddit Product

EdgePred 84.82 91.60 77.09 80.49 89.35 92.24 8196 87.18 55.13 49.82 81.97 64.39 64.36 49.52 88.01 71.85
AttrMask 85.18 91.82 77.12 82.94 89.36 92.31 81.49 88.55 55.77 4994 81.76  64.45 64.81 49.59 87.79 71.79
DGI 84.85 9145 77.48 81.81 89.68 92.06 82.49 88.21 57.42 49.68 81.83 64.98 65.53 4943 87.81 72.19
GCC 83.08 90.79 73.79  79.60 88.01 91.76 79.64 86.93 52.49 51.09 81.92 65.11 62.67 50.26 88.16 72.35
GPT-GNN 83.40 90.93 74.56 77.77 87.65 91.73 79.84 84.18 51.02 50.92 81.52 64.60 61.41 50.25 87.33 72.00
L2P-GNN 83.50 91.19 7486 80.21 89.23 92.15 81.82 87.37 51.86 50.99 82.17 64.96 60.43 49.98 82.15 70.92
GPPT 84.56 91.52 77.09 80.72 88.37 91.92 8031 87.21 48.99 50.44 70.24 62.57 61.93 50.25 87.88 72.23
GraphPrompt 73.05 84.93 69.69 71.90 75.53 85.76 73.18 77.52 15.44 26.09 2519 14.73 16.61 24.00 27.93 1491
ProG 63.33 74.23 63.47 56.70 59.91 74.52 60.62  56.49 48.27 31.70 4526 52.20 56.43 31.58 52.68 63.97
LAMP 85.38 91.43 7630 83.31 90.26 92.36 82.24 89.78 59.64 50.75 83.74 67.08 66.76 50.36 89.71 74.18

Final Results. The final results with 10% and 20% labels or edges
known are shown in Tab. 6. Across most scenarios, LAMP consis-
tently outperforms the baseline methods, showcasing its superior
performances, except for Yelp and Reddit with 10% edges known in
link prediction, Reddit with 20% edges known in link prediction,
and Yelp with 10% labels known for node classification. Notably,
the performance differences between LAMP and the second-best
method frequently exceed 2%, underscoring the notable advantages
of LAMP. Similar to the analysis of training efficiency, it is evident
that the baselines can leverage pre-trained domain knowledge to
some extent, leading to improved performances. However, the chal-
lenges associated with heterogeneous distributions and negative
transfer remain limiting factors for these methods. In summary,
whether dealing with pre-trained or previously unseen domains,
LAMP consistently demonstrates its capacity to handle both sce-
narios, yielding superior performance outcomes.

F RESULTS FOR GRAPH CLASSIFICATION

This section presents the results when the downstream task is
graph classification. For the task alignment of graph classification,

we utilize a virtualized graph node that establishes unidirectional
links with all existing nodes within a graph to derive the graph
representation. Similar to the node classification task, we reshape
the graph classification task as the pretext task by predicting the
links between graph nodes and labeled nodes.

In this way, we pre-train GCN models based on four datasets
introduced in the main experiments (i.e., APRY). Subsequently, we
fine-tune these models on graph classification tasks sourced from
the domain of molecular informatics. Specifically, we select four
datasets, DHFR, BZR, COX2, and PROTEIN-full, from TUDatasets
[29], a well-established benchmark for graph classification. We al-
locate 10 to 20 labeled graphs for training during experimentation,
reserving the remaining graphs for testing. The performances of
LAMP and the baseline methods are visualized in Fig. 6 and summa-
rized in Tab. 7. It is important to note that GPPT is excluded from
the baseline methods as it is not applicable to graph-level tasks.

Fig. 6 illustrates the training efficiency of the methods in the
graph classification task. A notable observation is the distinct curve
patterns compared to those observed in node classification and link
prediction tasks. Generally, with the exception of dataset DHFR,
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1697 outperforms other baselines, underscoring its ability to transfer o

50 . . . . 718
106 effective knowledge across different domains and tasks with better e
1661 e . . 1719

capability of generalization.
1662 1720
13 Table 7: The final results for different methods with different 17
1664 1722
numbers of known labels.
1665 1723
1666 1724
10 known labels 20 known labels
1667 Methods 1725
Loss DHFR BZR COX2 PROT.|DHFR BZR COX2 PROT. 126
. GCN 61.25 70.82 77.52 54.48 | 60.42 81.22 78.05 62.36 o7
1669 1
GIN 58.90 77.86 76.89 54.90 | 60.00 81.62 77.06 61.55
1670 728
0 GAT 60.51 65.46 77.81 55.79 | 62.05 73.10 76.76 64.27 !
1671 1729
EdgePred 57.81 80.51 75.11 55.06 | 59.94 85.07 73.59 63.03
1072 AttrMask | 60.21 79.49 7226 54.78 | 61.87 84.67 70.95 62.53 1730
1673 DGI 57.60 78.96 74.67 55.01 | 60.03 85.88 7549 62.46 1731
1674 GCC 57.02 69.92 56.01 55.13 | 57.37 74.09 59.75 62.26 1732
1675 GPT-GNN | 55.70 80.23 70.88 55.49 | 56.78 84.49 70.32 62.80 1733
1676 L2P-GNN | 56.68 76.42 74.79 54.56 | 58.31 84.58 75.29 62.16 1734
1677 GraphPrompt | 56.58 55.41 65.09 58.16 | 60.08 63.88 63.09 63.40 1735
1678 ProG 61.43 8231 77.66 49.71 | 60.44 83.71 79.03 62.82 1736
1679 LAMP 62.43 86.76 82.19 60.54 | 62.58 89.45 82.92 64.83 1737
1680 1738
1681 1739

1682 5 1740



