
A Defining Markov locality and relating it to p-locality

To gain intuition for how p-locality functions, we will introduce another notion of locality, called
Markov locality, which will use the language of Markov blankets. We will prove that under relatively
relaxed conditions p-locality and Markov locality are equivalent. This will allow us to relate the
notion of locality to various graph structures commonly used to represent probability distributions,
and will be a key step in proving Properties 2.1 and 2.2.

We start by defining the Markov boundary, M(X,S), of a random variable X contained in a set of
random variables S, as a minimal set such that p(X|S) = p(X|M(X,S)). The Markov boundary
defines a minimal set of variables such that, conditioned on these variables, conditioning on no
additional random variables in S changes the probability of X [39]. Similarly, we define the Markov
blanket, M(X,S) for X in S as any set of variables such that conditioning on M(X,S), makes
X conditionally independent from all other variables [39]. In this way, the Markov boundary is a
Markov blanket but not all blankets are boundaries.
Definition A.1. Markov locality: Given probability distribution p(Z) and function f : RNX+NΘ →
RNΘ , the update function f(Z) is Markov-local with respect to the distribution p over Z if and only
if ∀ k:

∃ Z ∈ Ω s.t.
∂fk(Z)

∂Zi
̸= 0 ⇒ Zi ∈ M(Θk,Z). (A.1)

Markov locality requires that the set of variables used in the parameter update fk(Z) is a subset of
the Markov boundary of the parameter itself. A Markov boundary can be thought of as the set of
variables that ‘locally’ communicate with the parameter Θk, thus providing a natural measure of
locality.

Importantly, for Markov-locality to be of use, we would like the Markov boundaries of random
variables in the model of interest to be unique. Without this requirement there will be ambiguity,
for a given p, in terms of which updates are considered local and which are not. To guarantee
this, we ask that the conditional independence relationships implied by p satisfy four properties,
commonly referred to as graphoid properties [39, 40]. A sufficient condition for these to hold is that
the distribution have a strictly positive density (see Appendix for more details B). With this, and some
mild regularity assumptions, we can prove the following equivalence between Markov locality and
p-locality:
Theorem A.1. Assume all quantities are as in A.1, that the conditional independence relationships
implied by p(Z) satisfy the four graphoid properties given in Section B, and that mild regularity
assumptions are satisfied by the joint distribution (see Section C.1). Then Equation 2 holds if and
only if Equation A.1 also holds.

Proof. This proof relies on Lemma A.1, proved below.

We wish to prove Eq. 2 ⇐⇒ Eq. A.1. It suffices to show the following:

Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2
]
̸= 0 ⇐⇒ Zi ∈ M(Θk,Z) (A.2)

Using the contrapositive for the left and right implications separately shows that Equation A.2 is
equivalent to

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 ⇐⇒ Zi /∈ M(Θk,Z), (A.3)

which means that it suffices to prove Equation A.3 for the proof. Observe that

Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2
]
= 0 ⇐⇒ ∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω, (A.4)

which follows from the regularity assumptions. From here, the proof follows by Lemma A.1.

14



Lemma A.1. Let X, Θ, Z, k and i, and p be defined as in Theorem A.1. Then

∂ log p(Zi|Z ̸=i)

∂Zk
= 0 ∀ Z ∈ Ω ⇐⇒ Zi /∈ M(Zk,Z) (A.5)

Proof. First, observe that

∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω

⇐⇒ ∂p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω (A.6)

by the chain rule. By applying the fundamental theorem of calculus to this derivative, which we can
do by the assumption of differentiability on R, we find that p(Zi|Z ̸=i) is constant w.r.t. Zk on Ω so
that

p(Zi|Z ̸=i) = p(Zi|Z̸=i)

∫
R
p(Zk|Z ̸={i,k})dZk (A.7)

=

∫
R
p(Zi,Zk|Z̸={i,k})dZk = p(Zi|Z ̸={i,k}) (A.8)

where we have also used that a probability distribution integrates to 1, and that p(Zk|Z̸={i,k}) will
be equal to zero outside Ω. Because Z ∈ Ω is arbitrary, from the above Zi is independent of
Zk given the other random variables in Z. Using Lemma B.1 (which we can do by assumption
of the graphoid properties), we see that if ∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω, by Eq. A.6 - A.8,

Zi /∈ M(Zk,Z). Conversely, if we start with the assumption that Zi /∈ M(Zk,Z), we immediately
get Zk /∈ M(Zi,Z), by Lemma B.1, and see that p(Zi|Z ̸=i) must not be a function of Zk for all Z;
thus, the derivative w.r.t. Zk is equal to zero for Z ∈ Ω. Applying Equation A.6 completes the proof.

B Notes on Probabilistic Graphical Models

In this section we compile several properties, definitions, and results on Markov boundaries and
Probabilistic Graphical Models (PGMs) that underlie Theorem A.1, and Properties 2.1 and 2.2. We
begin by setting up notation. Let us assume that we have a joint probability distribution, P , over a set
of random variables S, and that W , X , Y , Z ⊂ S, and U , V , T ∈ S. We use X ⊥⊥ Y |Z to mean
that the set of random variables X is independent of the set Y given set Z, and assume that the reader
is familiar with the notion of a directed graph, an undirected graph, and graph separation. If a set X
contains only a single random variable U then we abuse notation and write U in place of X .

The following four properties–known as the graphoid properties (or axioms–see e.g. [39, 40])–are
useful for getting well-behaved Markov boundaries and in assigning graphical representation to
probability distributions:

Definition B.1. Pseudo-graphoid properties:

• Symmetry: X ⊥⊥ Y |Z =⇒ Y ⊥⊥ X|Z

• Decomposition: X ⊥⊥ Y,W |Z =⇒ X ⊥⊥ Y |Z & X ⊥⊥ W |Z

• Weak union: X ⊥⊥ Y,W |Z =⇒ X ⊥⊥ Y |W,Z

• Intersection: X ⊥⊥ Y |Z,W & X ⊥⊥ W |Z, Y =⇒ X ⊥⊥ Y,W |Z

15



Importantly, it is known that these properties are satisfied when we have a density p that is strictly
positive w.r.t. to its base product measure [40]. Here, measure is used in a measure theoretic sense;
e.g. we have assumed throughout the paper that the base measure is simply a product of a multi-
dimensional Lebesgue measure over Rk1 , for some k1, and a counting measure over Nk2 or some
subset of Nk2 , for some k2. Roughly speaking, this positivity property means that there are no purely
deterministic relationships between variables.

The key result that we use to guarantee that the Markov boundaries we discuss in the paper are
well-defined is given in [39]. We state a paraphrased and shortened version below for completeness:

Theorem B.1. Theorem 4, Chapter 3 in [39]: every P with conditional independence relations
satisfying the four pseudo-graphoid properties has a unique Markov boundary for each X .

We now add two more simple results on Markov boundaries, used in the proof of Theorem A.1:

Lemma B.1. If P has conditional independence relations satisfying the four pseudo-graphoid
properties we have:

• for every U, V ∈ S, U ∈ M(V, S) ⇐⇒ V ∈ M(U, S)

• for every U ∈ S, M(U, S) is contained in every Markov blanket of U .

These follow simply from the graphoid properties so we omit the proof.

Lastly, we make specific what we mean when we say that a graph is an undirected or directed
graphical model for a distribution.

Definition B.2. Let G be an undirected graph where each node corresponds to a random variable in
S. We say that G is an Undirected Graph (UG) for P if whenever X and Y are separated by Z in G,
X ⊥⊥ Y |Z is true under P . Note that this corresponds to the notion of I-map in [39].

Definition B.3. Let Gd be a directed graph with each vertex corresponding to a random variable in S.
We say that Gd is a Directed Graph for P if the variable under P corresponding to any node in the
graph is conditionally independent of all variables corresponding to nodes that are non-descendants
given the variables corresponding to parents. This is equivalent to Gd satisfying the Markov condition
described in Definition 1.9 of [41].

C Proofs for p-locality properties

For the first two properties we assume the requirements of Theorem A.1 are satisfied. For all
properties except 2.3, 2.4, and 2.8 we assume p satisfies mild regularity constraints (see Section C.1).

Property 2.1 Assume Gd is a Directed Acyclic Graph (DAG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is not a
parent, co-parent, or child of Θk in Gd, then f is not p-local.

Proof. By Theorem A.1 we get that ∂fk(Z)
∂Zi

can only be non-zero on the unique Markov boundary
of Zi if it is p-local. By the definition of a DAG, the parents, co-parents, and children of Zi form a
Markov blanket for it (see e.g. [41] Th. 2.13). By Lemma B.1 the boundary is included in all Markov
blankets so ∂fk(Z)

∂Zi
can only be non-zero on some subset of the parents, co-parents, and children of

Zi.

Property 2.2 Assume that G defines an Undirected Graph (UG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is
not a neighbour of Θk in G, then f is not p-local.

Proof. As above, by Theorem A.1 we get that ∂fk(Z)
∂Zi

can only be non-zero on the unique Markov
boundary of Zi if it is p-local. A UG for a distribution is an I-map for it, and conditioning on the
neighbours in an I-map renders a node independent from the other nodes in the graph by definition–
thus the neighbours form a Markov blanket. By Lemma B.1 the Markov boundary is included in
every blanket so ∂fk(Z)

∂Zi
can only be non-zero on some subset of the neighbours in the UG.

16



Property 2.3 For any function b(Z) : RNX+NΘ → RNΘ defined such that bk(Z) =
hk(fk(Z), gk(Z)), where f and g are p-local and hk is differentiable, b(Z) is also p-local.

Proof. Suppose that ∂bk(Z)
∂Xi

̸= 0. We need to show that Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2]
̸= 0. Knowing that

∂bk(Z)
∂Xi

̸= 0, we have:
∂hk(Z)

∂fk

∂fk(Z)

∂Zi
+

∂hk(Z)

∂gk

∂gk(Z)

∂Xi
̸= 0. (C.1)

This implies that either ∂fk(Z)
∂Zi

̸= 0 or ∂gk(Z)
∂Zi

̸= 0 (or both). No matter which is true, by virtue of the
p-locality of f and g, we have the consequence:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
̸= 0, (C.2)

which concludes our proof. This demonstrates that p-local functions can be more or less arbitrarily
combined without the combination losing the p-local property.

Property 2.4 For any function f(·) : RNX+NΘ → RNΘ , there exists a probability distribution p(Z)
such that the random variable f(Z) with Z ∼ p(Z) is p-local.

Proof. We can prove this property by construction. Take p({Xi :
∂f(X)
∂Xi

̸= 0}|Θ) = N (ΘTΘ, I),
i.e. the distribution of every variable contained within f has mean parameter dependence on all Θ
variables. The probability distributions for all other variables Z are otherwise unconstrained. Then
for all i such that ∂f(X)

∂Xi
̸= 0, we have:

Ep

[(
∂ log p(Xi|X ̸=i,Θ)

∂Θk

)2
]
= Ep

[(
∂ log p(Xi|Θ)

∂Θk

)2
]

(C.3)

= Ep

[(
− ∂

∂Θk

(Xi −ΘTΘ)2

2

)2
]

(C.4)

= Ep

[
2
(
(Xi −ΘTΘ)Θk

)2]
(C.5)

= 4Ep(Θ)

[
Θ2

kEp(Xi|Θ)

[(
Xi −ΘTΘ

)2]]
(C.6)

= 4Ep(Θ)

[
Θ2

k

]
̸= 0. (C.7)

Property 2.5 The derivative of the log joint distribution ∂ log p(X,Θ)
∂Θ is p-local.

Here, it’s more useful to work with the equivalent (contrapositive) requirement for p-locality, i.e., we
need to show ∀k, i:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 ⇒ ∂2 log p(X,Θ)

∂Zi∂Θk
= 0. (C.8)

Proof. First, we see that:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.9)

⇒ ∂ log p(Zi|Z ̸=i)

∂Θk
= 0 (C.10)

⇒ ∂2 log p(Zi|Z ̸=i)

∂Zi∂Θk
= 0, (C.11)

17



where the first implication follows from the fact that the Fisher Information integral is effectively a
weighted sum of elements, each of which is ≥ 0. If the function on the right were nonzero for some
Z, then the Fisher Information would also be nonzero. Assuming that log p has differentiable partial
derivatives, we can interchange the order of differentiation, giving:

⇒∂2 log p(Zi|Z̸=i)

∂Θk∂Zi
= 0 (C.12)

⇒ ∂

∂Θk

[
∂

∂Zi
[log p(Zi|Z̸=i) + log p(Z ̸=i)]

]
= 0 (C.13)

⇒ ∂

∂Θk

[
∂

∂Zi
[log p(Z)]

]
= 0 (C.14)

⇒∂2 log p(Z)

∂Zi∂Θk
= 0, (C.15)

which concludes the proof.

Property 2.6 For a probability distribution given by p(Z) = 1
Z exp (−E(Z)), the expression

∂
∂ΘE(Z) is p-local.

Proof. The proof is almost identical to the proof for Property 2.5. From Property 2.5, we have that:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.16)

⇒ ∂2 log p(Z)

∂Zi∂Θk
= 0. (C.17)

Using our definition of p, we have:

⇒ −∂2 (E(Z) + logZ)

∂Zi∂Θk
= 0 (C.18)

⇒ ∂2E(Z)

∂Zi∂Θk
= 0, (C.19)

which concludes the proof.

Property 2.7 If the marginal parameter distribution factorizes as p(Θ) =
∏

k p(Θk), i.e. the
parameters are independent from one another, then the score function ∂ log p(X|Θ)

∂Θ is p-local.

Proof. Again, we make heavy use of Property 2.5, which states:

Ep

[(
∂ log p(Zi|Z̸=i,Θ)

∂Θk

)2
]
= 0 ⇒ ∂2 log p(Z)

∂Zi∂Θk
= 0. (C.20)

It is important to note that the left-hand equation only holds true if Zi ̸= Θk: under p-locality, an
update equation for parameter Θk can always include its own value. So for the remainder of the
proof we will assume that Zi ̸= Θk. Now, log(p(X|Θ)) = log p(Z)− log p(Θ). We also have:

∂2 log p(Θ)

∂Zi∂Θk
=

∂2
∑

k log p(Θk)

∂Zi∂Θk
= 0, (C.21)

where for the last equality we have used the assumption that Zi ̸= Θk. These two equations
collectively imply:

⇒ ∂2 log p(X|Θ)

∂Zi∂Θk
=

∂2 log p(Z)− log p(Θ)

∂Zi∂Θk
= 0, (C.22)

which concludes the proof.

18



Property 2.8 For a mixture distribution p12(Z, γ) = p1(Z)
γp2(Z)

1−γp(γ) for some binary variable
γ ∈ {0, 1} with nonzero probabilities, if f(Z) is p1-local (or equivalently p2-local), then f(Z) is
p12-local.

Proof. We again work with the contrapositive definition of p-locality, observing that:

Ep12(Z,γ)

[(
∂ log p12(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.23)

⇒
∑

k∈{0,1}

p(γ = k)Epk(Z)

[(
∂ log pk(Zi|Z ̸=i)

∂Θk

)2
]
= 0 (C.24)

⇒ Ep1(X;Θ)

[(
∂ log p1(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.25)

⇒ fk(X)

∂Zi
= 0, (C.26)

where the third implication follows from the fact that if the sum of two nonnegative quantities is zero,
then both quantities are zero, and the final implication holds from the p1-locality of f(Z).

C.1 Regularity of Joint distribution

For several of these properties we enforce mild regularity constraints on the density. This is because
we want the integral of the squared score being equal to zero to imply that the score itself is equal
to zero. A sufficient condition for this is that the joint density function and partial derivatives w.r.t.
Θk ∀k are, for every fixed value of Z’s discrete elements, continuous functions of Z’s continuous
elements.

D Locality for a linear continuous Boltzmann machine

Consider the following example of a simplified linear recurrent neuron model with synaptic weight
matrices W. The joint distribution is given by:

p(r,W) =
1

Z
e−E(r,W) (D.1)

E(r,W) =

(
1

2τ
∥r∥22 −

1

2
rTWr+

1

2
∥W∥22

)
/σ2 (D.2)

=

 1

2τ

∑
i

r2i −
1

2

∑
ij

Wijrirj +
1

2

∑
ij

W2
ij

 /σ2, (D.3)

where W is assumed to be a symmetric matrix. To see why this probability distribution is relevant for
neuroscience, we first note that E is a linear, continuous analog of the Hopfield energy function, which
is also used for discrete-valued Boltzmann machines. There are two critical differences between
this probability distribution and the linear feedforward network explored in Section 2.4: first, this
distribution corresponds to the undirected graphical model shown in Figure 1c, as opposed to the
DAG shown in Figure 1a; second, the marginal distribution is not a free parameter that we can choose
with convenient factorization properties if we want our joint distribution to give us a version of
p-locality that corresponds with our concept of biological locality. For undirected graphical models,
one typically is required to define the joint distribution first, and compute conditional distributions
explicitly through Bayes theorem or approximate through some form of MCMC sampling. In our
case, we can see that p(r|W) corresponds to the steady-state distribution of a stochastic differential
equation using E to perform Langevin sampling:

19



dri = −
[
∇ri(t)E(ri(t),W)σ2

]
dt+ σdBi(t) (D.4)

=

−1

τ
ri(t) +

∑
j

Wijrj(t)

 dt+ σdBi(t), (D.5)

where here Bi(t) corresponds to uncorrelated Brownian noise injected into the system. These
stochastic sampling dynamics correspond to a noisy linear recurrent network. Therefore, p(r|W)
corresponds to the steady-state stimulus response distribution of a linear recurrent network.

Let’s ask: for which neural indices k can we have ∂
∂rk

fWij
(r) ̸= 0 so that the function f is still

p-local? For f to remain p-local, we would need Ep

[(
∂ log p(rk|r̸=k,W)

∂Wij

)2]
̸= 0. For the definition

of p-locality to conform to our intuitions about biological locality, we would expect the only allowable
variables to be the pre- and postsynaptic neurons ri and rj—we will show that including any other
variable will violate p-locality. To see why, suppose k ̸= i, j. Note that we can decompose E as:

E(r,W) = Ek + E̸=k (D.6)

Ek =

 1

2τ
r2k − 1

2

∑
j

Wkjrkrj −
1

2

∑
j

Wjkrjrk

 /σ2 (D.7)

E̸=k =

 1

2τ

∑
i ̸=k

r2i −
1

2

∑
ij ̸=k

Wijrirj +
1

2

∑
ij

W2
ij

 /σ2. (D.8)

Under this decomposition, Ek has no dependency on Wij , and E ̸=k has no dependency on rk. Now
we’re in a position to demonstrate that for any choice of k such that k ̸= i, j, fWij

(r) cannot be
p-local.

p(rk|r̸=k,W) =
p(r|W)

p(r̸=k,W)
(D.9)

=
p(r|W)∫
p(r,W)drk

(D.10)

=
e−E∫
e−Edrk

(D.11)

=
e−(Ek+E ̸=k)

e−E ̸=k
∫
e−(Ek)drk

(D.12)

=
e−(Ek)∫
e−(Ek)drk

(D.13)

⇒ ∂

∂Wij
log p(rk|r̸=k,W) = 0 (D.14)

⇒ Ep

[(
∂ log p(rk|r̸=k,W)

∂Wij

)2
]
= 0. (D.15)

Because the conditional distribution has no dependency on Wij , then the Fisher Information is also
0, which concludes the demonstration: fWij is not p-local if it is a function of rk for k ̸= i, j. Of
course, this decomposition of E = Ek + E̸=k would not be possible if k = i or j. To summarize, for
our simple example, any parameter update for Wij that depends on the activity of any neuron rk
that is not the pre- or postsynaptic neuron (k ̸= i, j) cannot be p-local. Alternatively, since this is
an undirected graphical model, we can also inspect its corresponding graph (summarized in Figure
1c.). To verify that the graph in Figure 1c. corresponds to our network, observe that our probability

20



distribution factorizes according the cliques of the graph [42] as follows:

p(r,W) =
1

Z
∏
i

ϕ(ri)
∏
ij

ϕ(Wij)
∏
ij

ϕ(ri, rj ,Wij) (D.16)

ϕ(ri) = exp

(
1

2τσ2
r2i

)
(D.17)

ϕ(Wij = exp

(
1

2σ2
W2

ij

)
(D.18)

ϕ(ri, rj ,Wij) = exp

(
− 1

2σ2
Wijrirj

)
. (D.19)

Looking at the graph, we can verify by inspection that the only neighbors of Wij are ri and rj ,
which confirms our detailed analysis by Property 2.2.

E Proofs of p-locality properties of normative plasticity algorithms

E.1 REINFORCE

Theorem E.1. If p(Θ) =
∏

k p(Θk), the REINFORCE estimator given by AR(p(R,X|Θ)) is
Rp-local.

Proof. The REINFORCE derivation proceeds as follows: suppose that we have some probabilistic
formulation of a neural network and incoming sensory stimuli p(X|Θ) and some probabilistic reward
function p(R|X) dependent on the stimuli and neural responses. We want to maximize expected
reward:

E[R] =

∫
Rp(R|X)p(X|Θ)dXdR. (E.1)

If we want to modify our parameters Θ in order to improve performance, we take steps in an
approximation of the direction of the gradient of the objective E[R].

∂

∂Θ
E[R] =

∂

∂Θ

∫
Rp(R|X)p(X|Θ)dXdR (E.2)

=

∫
Rp(R|X)

∂

∂Θ
p(X|Θ)dXdR (E.3)

=

∫
Rp(R|X)

∂

∂Θ
elog p(X|Θ)dXdR (E.4)

=

∫
Rp(R|X)

[
∂

∂Θ
log p(X|Θ)

]
p(X|Θ)dXdR (E.5)

≈ 1

K

K∑
k=1

R(k) ∂

∂Θ
log p(X(k)|Θ), (E.6)

where in this last step we have employed a Monte Carlo approximation of the expectation, where
R(k) and X(k) ∼ p(R,X). This update function: f(R,Z) = R × ∂

∂Θ log p(X|Θ) is not p-local
because we have ∂f(R,Z)/∂R ̸= 0, while ∂

∂Θp(R|X) = 0. However, as we know, this update is the
product of a score function with a marginal parameter distribution that we have assumed factorizes,
which we know to be p-local by Property 2.7, with a scalar reward R. In this case, one could
postulate that reward information is projected broadly to many synapses in the neural network via a
neuromodulatory pathway (Figure 2a). We see that f(R,X) = h(R, g(X)) if we take h(a, b) = a×b
and g(X) = ∂

∂Θ log p(X|Θ); we further see that g is p-local, and hence f(R,X) is by Definition
2.3 Rp-local.

21



This might seem contrived, because any function is Sp-local for some sufficiently broad choice of
S. However, we have shown here that the REINFORCE algorithm is Rp-local for any choice of
p with a marginal parameter distribution that factorizes (an easy constraint to satisfy for directed
graphical model architectures). This means that we can make any of a huge variety of neural network
or probabilistic model choices and still have the REINFORCE algorithm obey the same notion of
locality, without having to modify our definition post-hoc.

E.2 Maximum Likelihood Estimation (MLE)

MLE is a highly popular machine learning method and the fundamental basis for several subsequent
normative plasticity algorithms. This algorithm involves fitting a model, pm(X|Θ), to an empirical
data distribution, pd(X).
Theorem E.2. If p(Θ) =

∏
k p(Θk), the MLE update given by AMLE(pm(X|Θ), pd(X)) is pm-

local.

Proof. We proceed by first deriving the MLE update function. The objective function for maximum
likelihood estimation is given by the KL divergence between an empirical data distribution, pd(X)
and a probabilistic model of the data pm(X|Θ). We have:

KL[pd(X)||pm(X|Θ)] = −
∫

log

(
pm(X|Θ)

pd(X)

)
pd(X)dX. (E.7)

We want to minimize this objective function, which we do by gradient descent:

AMLE(p(X), pm(X)) ∝ ∂

∂Θ

∫
log

(
pm(X|Θ)

pd(X)

)
pd(X)dX (E.8)

=

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX (E.9)

≈ 1

K

K∑
k=0

∂

∂Θ
log (pm(Xk|Θ)) , (E.10)

where Xk ∼ pd(X), and in the last approximate equality we have used a Monte Carlo sampling
integral approximation. This update exclusively contains the score function of pm, so by Property
2.7, the update is pm-local.

E.3 Generalized EM (GEM)

MLE estimation runs into difficulties when attempting to fit latent variable models, (e.g. when
pm(Xo) =

∫
pm(Xo,Xh)dXh), where Xh are latent variables within the model distribution that

‘explain’ observed data Xo. Latent variable models are extraordinarily powerful, and appear in
computational neuroscience in a variety of forms, including but not limited to factor analysis, hidden
Markov models, and Kalman Filters [43]; for these models, we will take X = [Xo,Xh]. Instead of
performing explicit MLE, when fitting latent variable models one usually resorts to some variant of
the Expectation-Maximization (EM) algorithm [44]. Here, we show that a particular variant of the
EM algorithm, called Generalized EM (GEM) [45], is pm-local in the same way as MLE.

GEM gains computational benefits by substituting (by any of a variety of methods) an approximate
posterior distribution pd(Xh|Xo) for the true, but typically intractable, model posterior pm(Xh|Xo)
via minimizing a variational free energy [45]. However, GEM is not just a convenient model-fitting
algorithm: in subsequent sections, we will show that the pm-locality of GEM explains why several
popular normative plasticity algorithms produce biologically plausible updates.
Theorem E.3. If p(Θ) =

∏
k p(Θk), the GEM update given by AGEM (pm(X|Θ), pd(X)) is

pm-local.

Proof. Rather than minimize KL[pd(Xo)||pm(Xo|Θ)], the GEM algorithm minimizes an upper
bound (the variational free energy). Taking X = [Xo,Xh]:

KL[pd(Xo)||pm(Xo|Θ)] ≥ KL[pd(Xo)||pm(Xo|Θ)] + Epd(Xo) [KL[pd(Xh|Xo)||pm(Xh|Xo,Θ)]]

= KL[pd(X)||pm(X|Θ)], (E.11)

22



where the inequality follows from the positivity of the KL divergence. Here, pd(Xh|X) is an
approximate inference distribution. Different choices of how this distribution is selected/optimized
can produce very different learning algorithms, with varying degrees of biological plausibility.
Obviously, the loss is minimized with respect to pd(Xh|X) if pd(Xh|X) = pm(Xh|X,Θ0) (where
Θ0 = Θ prior to optimization wrt Θ). This choice corresponds to GEM [45]. For now, we will not
concern ourselves with how pd(Xh|X) is selected–instead, we will focus on the locality properties
of gradient updates of this loss with respect to Θm.

Having packaged hidden and observed variables together (X = [Xo,Xh]), our derivation proceeds
exactly the same as for MLE:

AGEM (pm(X|Θ), pd(X)) ∝ − ∂

∂Θ
KL[pd(X)||pm(X|Θ)]

=
∂

∂Θ

∫
log

(
pm(X|Θ)

pd(X)

)
pd(X)dX

=

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX

≈ 1

K

K∑
k=0

∂

∂Θ
log (pm(Xh,X|Θ)) , (E.12)

where as with the MLE update, Xk ∼ pm(X|Θ). This update is pm-local for the same reason that
the MLE update is.

E.4 Predictive Coding (PC)

As an additional note, if one takes the approximate posterior pd(Xh|Xo) to be given by:

pd(Xh|Xo) = argmin
pd(Xh|Xo)

KL[pd(X)||pm(X|Θ)] s.t. pd(Xh|Xo) ∼ δ(X̄h(Xo)), (E.13)

where δ(·) indicates a Dirac delta distribution and X̄h(Xo) indicates a set of observation-dependent
mean parameters, then we recover the predictive coding family of algorithms [35]. Typically, in this
context for a given observed stimulus Xo, pd(Xh|Xo) ∼ δ(X̄h(Xo)) is estimated by reparameteriza-
tion and gradient descent with respect to X̄h(Xo) (a mean parameter that is observation-dependent),
which—for clever choices of pm—loosely resembles the dynamics of a recurrent neural network
relaxing to a stimulus-conditioned equilibrium state [33]. After estimating X̄h(Xo), parameters Θ
are updated as in GEM. Therefore, the derivation above also applies to predictive coding algorithms,
which are consequently also pm-local.
Theorem E.4. If p(Θ) =

∏
k p(Θk), the PC update given by APC(pm(X|Θ), pd(X)) is pm-local.

E.5 Wake-Sleep

Unlike the previous three examples, which only require sampling from the pd distribution and only
calculate parameter updates according to the pm distribution, the Wake-Sleep algorithm parameterizes
both distributions and jointly samples from a mixture of the two distributions across its ‘wake’ and
‘sleep’ phases. As we will see, this will mean that the Wake-Sleep algorithm will end up being
γpmd-local, where γ is the binary variable that controls whether the system is in its ‘wake’ or ‘sleep’
phase.

Theorem E.5. If p(Θ,Θ(d)) =
(∏

k p(Θk)
)(∏

k p(Θ
(d)
k )
)
, the Wake-Sleep es-

timator given by AWS(pm(X|Θ), pd(X|Θ(d))) is γpmd-local, where pmd =
Mix

(
pm(X|Θ), pd(X|Θ(d))

)
p(Θ,Θ(d)).

Proof. Our updates use a similar loss to the GEM algorithm, namely we take:

AWS(pm(X|Θ), pd(X|Θ(d))) =
[
∆ΘWS ,∆Θ

(d)
WS

]
, (E.14)

where ∆ΘWS is given by:

23



∆ΘWS ∝ − ∂

∂Θ
KL[pd(X|Θ(d))||pm(X|Θ)]

≈ 2

K

K∑
k=0

γk
∂

∂Θ
log (pm(Xh,X|Θ)) . (E.15)

Here, γk, X ∼ pmd(X, γ|Θ,Θ(d)), whereas for GEM, we sampled only from pd. Because each
term of this update is 0 if γk ̸= 1, this update is still an unbiased estimate of the gradient [46] and
is effectively equivalent to the GEM update, except that it allows the system to alternate between
sampling from pm and pd. This alternation is useful because it will allow also calculating parameter
updates for ∆Θ(d). For Θ(d), we optimize the reverse KL-divergence4; by a directly analogous
derivation to Eq. E.12, the update is given by:

∆Θ
(d)
WS ∝ − ∂

∂Θ(d)
KL[pm(X|Θ)||pd(X|Θ(d))]

≈ 2

K

K∑
k=0

(1− γk)
∂

∂Θ(d)
log
(
pd(X|Θ(d))

)
. (E.16)

Now, these updates contain the score function for both pm and pd, as well as the scalar mixture
variable γ. As a consequence, both updates are γpmd-local, via Properties 2.7 and 2.8 (slightly more
precisely, ∆Θ is γpm-local, and ∆Θ(d) is γpd-local).

E.6 Impression Learning (IL)

The impression learning parameter update [23] is closely related to the Wake-Sleep parameter
update, and is consequently also γpmd-local. What distinguishes IL from WS is the use of rapid
alternations in the gating signal γt within a single trial with T time steps. Here, X = [X0, ...,XT ],
γ = [γ0, ..., γt] and pmd(X|γ,Θ) =

∏T
t=0 pd(Xt|Xt−1,Θ)γtpm(Xt|Xt−1,Θ)1−γ is a mixture

distribution in which γt alternates between 0 and 1, sampling from either pm or pd at the time step t,
respectively.

Theorem E.6. If p(Θ) =
∏

k p(Θk), the impression learning estimator given by
AIL(pm(X|Θ), pd(X|Θ)) is γpmd-local, where pmd = Mix

(
pm(X|Θ), pd(X|Θ(d))

)
p(Θ).

Proof. Similar to WS, the update is given by:

∆ΘIL ∝
∫ [ T∑

t=0

∂

∂Θ
[(1− γt) log pd(Xt|Xt−1,Θ) + γtpm(Xt|Xt−1,Θ)]

]
pmd(X|γ,Θ)dX

(E.17)

≈
T∑

t=0

(1− γt)
∂

∂Θ
log pd(Xt|Xt−1,Θ) + γt

∂

∂Θ
pm(Xt|Xt−1,Θ), (E.18)

where in this last equality, X ∼ pmd(X), and we are performing a single-sample gradient approxima-
tion. It is worth noting that unlike in the Wake-Sleep algorithm, here γt is not a constant throughout
time. Instead, γt alternates between 0 and 1 with ‘phase duration’ K, i.e. γt+1 = 1 − γt if
mod (t,K) = 0, and γt+1 = γt otherwise. The IL update is the score function of pmd(X|1− γ,Θ),
which has identical dependencies to the score function of pmd(X|γ,Θ) (only a change from
γ → 1− γ has occurred). Therefore, if p(Θ) =

∏
k p(Θk), this parameter update is γpmd-local by

Property 2.7.

4A rigorous discussion of why this optimization process is sensible is beyond the scope of this manuscript.
See [22, 47] for more detail.

24



E.7 Contrastive Divergence for Boltzmann machines (CD)

While the GEM learning update is provably pm-local, it is also predicated on the assumption that the
parameter marginal distribution factorizes as p(Θ) =

∏
k p(Θk), which as we note in Appendix D

can be difficult to ensure for even simple undirected graphical models. An extension of the GEM
algorithm, we can show that the CD algorithm is γpmd-local (as opposed to just pm-local) under less
restrictive assumptions. The cost of this is that CD learning usually requires costly MCMC sampling
from both the posterior distribution pm(Xh|Xo,Θ) and the full joint distribution pm(Xh,Xo|Θ).

Theorem E.7. The CD update given by ACD(pm(X|Θ), pd(X)) is γpmd-local, where pmd =
Mix (pm(X|Θ), pd(X)) p(Θ).

As mentioned above, for GEM the most natural choice for pd(Xh|X) is given by pm(Xh|X,Θ0).
As we demonstrated, parameter updates calculated according to this rule will be γpmd-local, but there
are two important caveats. First, for GEM to produce biologically plausible updates, we still need a
biological system that can sample from pm(Xh|X,Θ0). Second, it is important to remember that
we are only guaranteed that the score function is guaranteed to be p-local if the marginal parameter
probability distribution factorizes as p(Θ) =

∏
k p(Θk). For a DAG, it may be difficult to satisfy the

first condition without approximation (given by the Wake-Sleep algorithm, for instance), whereas
for an UG, it may be difficult to satisfy the second condition, as we saw in Section D. To make our
update γpmd-local for an undirected graphical model like the Boltzmann machine, we will require an
extra step that we outline here to use the energy function Property 2.6 rather than the score function
Property 2.7.

Having committed to working with an undirected graphical model, instead of sticking to the original
GEM update, here we break apart the probability distribution as:

ACD(pm(X|Θ), pd(X)) =

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX (E.19)

=

∫
∂

∂Θ
[log (E(X,Θ))− logZ(Θ)] pd(X)dX (E.20)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX− ∂

∂Θ
logZ(Θ) (E.21)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX− 1

Z(Θ)

∫
∂

∂Θ
e−

E(X,Θ)

σ2 dX (E.22)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX+

1

Z(Θ)

∫
∂

∂Θ
E(X,Θ)e−E(X,Θ)dX

(E.23)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX+

∫
∂

∂Θ
E(X,Θ)pm(X|Θ)dX

(E.24)

≈ 2

K

K∑
k=0

(−1)γk
∂

∂Θ
E(Xk,Θ), (E.25)

where Xk is sampled from pmd. Now, by Property 2.6 and Property 2.8, this update is γpmd-local.
This is the Boltzmann machine learning algorithm [26], where the clamped and unclamped phases are
alternated between stochastically [46]; for our previous linear Boltzmann example, in which X = r
and Θ = W, the derivative of the energy function (Eq. D.3) with respect to a parameter Wij is rirj ,
demonstrating that updates correspond to two phases of updates: one in which ro is clamped to a
data distribution given by pd(ro) for some ro ⊆ r and Hebbian updates are positive, contrasted with
an unclamped phase in which updates are negative. Note that for this model approximate sampling
from a posterior distribution pm(r̸=o|ro,W)pd(r0) is no more difficult than sampling from the joint
distribution: one simply holds ro fixed to an environmental data sample and performs Langevin
sampling on all other variables.

25



E.8 Equilibrium Propagation (EP)

Though the derivation and setup of the equilibrium propagation algorithm [27] is very different from
Contrastive Divergence, the functional form of the derived update is very similar. While equilibrium
propagation typically operates on deterministic networks, here we will provide our derivation for the
stochastic version with an energy function defining a joint distribution over Θ and X (as in Section
D), which is somewhat more straightforward to fit into the p-locality framework.

Suppose that we have a probabilistic energy-based model whose energy function is given by:

E(Z, ϵ) = E0(Z) + ϵL(Z), (E.26)

where ϵ ∈ {0, β}, where β ≪ 1, where L(Z) is the loss function that the parameter updates are
optimizing. This can be thought of as a ‘soft-clamped’ system, in which nonzero ϵ pushes the system
towards slightly better performance. Intuitively, the EP parameter update attempts to change network
dynamics so that the unclamped system is nudged towards the slightly better performing soft-clamped
system. Then we have the following theorem:

Theorem E.8. The EP update given by AEP (p(X|Θ, γ)) is γpmd-local, where pmd =
Mix (p(X|Θ, ϵ = β), p(X|Θ, ϵ = 0)) p(Θ).

The parameter update for equilibrium propagation is given by:

∆ΘEP ∝ − 1

β

[
Eϵ=β

∂E(Z, ϵ)

∂Θ
− Eϵ=0

∂E(Z, ϵ)

∂Θ

]
(E.27)

≈ 2

β

K∑
k=0

(−1)ϵk/β
∂E(Zk, ϵk)

∂Θ
, (E.28)

where for the final equality we are using a sampling-based approximation in which we are sampling
from Xk ∼ p(X|Θ, ϵk), and ϵk/β ∼ Bernoulli(0.5). This is almost identical to the Contrastive
Divergence update, except that rather than clamping neural activities to a target output, they are
slightly biased towards better performance. Because this is the combination of the derivative of
the energy function with a mixture variable γ = ϵk/β, by Properties 2.6 and 2.8, this update is
γpmd-local where pmd = Mix (p(X|Θ, ϵ = β), p(X|Θ, ϵ = 0)) p(Θ).

E.9 Winner-take-all STDP

While Contrastive Divergence uses MCMC sampling to approximate the GEM update, Nessler et
al. [48] use a particular generative model for which the posterior can be analytically calculated and
resembles a simple winner-take-all neural circuit. Then, the authors derive their STDP parameter
update as an approximation to the GEM algorithm. Because of this, one might imagine that the
derived STDP update may, like the GEM algorithm, be pm-local. We will see below that this is the
case.

First, we define the generative model pm used in the paper:

pm(r, s|W) =
1

Z
e−E(r,s,W) (E.29)

E(r, s,W) = −

 N∑
i=0

riWi0 +

N∑
i=0

Ns∑
j=0

riWijsj

 , (E.30)

where Z is the normalizing constant and the r and s vectors contain binary random variables.
Furthermore, in the network only one neuron r is assumed to fire at any given time (ri ̸= 0 ⇔ rk =
0 ∀k ̸= i). The inference distribution, conditioned on a stimulus s can be calculated as follows:

pm(r|s,W) =
exp

(∑N
i=0 riWi0 +

∑N
i=0

∑Ns

j=0 riWijsj

)
∑N

i=0 exp
(
Wi0 +

∑Ns

j=0 Wijsj

) . (E.31)

26



This probability distribution can be interpreted as a kind of winner-take-all computation, dominated
by the neuron with the greatest input current [48]. Samples from this distribution are used to compute
the weight updates:

∆Wij ∝ ri
(
csie

−Wij − 1
)

(E.32)

∆Wi0 ∝ rie
−Wi0 − 1, (E.33)

where c is a positive constant. We now prove the following theorem assessing the p-locality of this
distribution:

Theorem E.9. The STDP update given by ASTDP (p(X|Θ)) is γpm-local.

Proof. To see this, we first note that the gradient of the energy function E(r, s,W) with respect to
the parameters is pm-local by Property 2.6. Therefore, any variables contained within this will also
be permissible under pm-locality.

For Wij , we have:
∂E(r, s,W)

∂Wij
= −risj , (E.34)

so that we know ri and sj are permissible for ∆Wij under pm-locality; further, the value of a
parameter itself, Wij , is always allowed under pm-locality. These are the only variables on which
∆Wij depends, so this update is pm-local.

For Wi0, we have:
∂E(r, s,W)

∂Wi0
= −ri, (E.35)

so that we know ri is permissible for ∆Wi0. By the same reasoning, this update is also pm-local.
Since all updates are therefore pm-local, we may conclude that the full algorithm is pm-local.
However, this proof does not have the same level of generality as for the previous algorithms, because
the algorithm is only defined for a single winner-take-all network model.

E.10 Backpropagation

Theorem E.10. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. 3 (with X = r and Θ = W),
the BP update for W(l)

ij with a loss L(r), given by ABP (p(r|W),L(r)) is e(l)i p-local, where e
(l)
i =

dL
dr̄i

. Similarly, the updates for feedback alignment, weight mirror, and Burstprop are ê
(l)
i p-local,

where ê
(l)
i is given by their respective gradient approximations.

Proof. As a first step, for clarity purposes we will demonstrate that backpropagation [28], is not
p-local with respect to the simple feedforward neural network architecture we outlined above;
we will subsequently demonstrate that it and its approximations do satisfy a particular notion of
Sp-locality. For a scalar loss function L(rL) and a single parameter W(l)

ij , the backpropagation
gradient is given by the negative gradient of the loss with respect to the parameter of choice, using
the reparameterization trick [25, 24] to take for a single sample of {r(l)}l=0:L the mean (noiseless)
mapping from r(l−1) → r(l) to be r̄(l) = h(W(l)r(l−1)), so that by Eq. 5, we have r(l) = r̄(l)+ση(l).
By the chain rule, gradient descent gives:

∆W
(l)
ij ∝ −dL(r(L))

dr̄(L)

(
L∏

k=l

dr̄(k)(r(k−1))

dr̄(k−1)

)
dr̄(l)(W

(l)
ij )

dW
(l)
ij

. (E.36)

Based on our analysis in Section 2.4, this update function is clearly not p-local, because the update
depends on firing rates r(k) for k > l. However, while backpropagation is not in general p-local, any
algorithm can be Sp-local: for example, if we take S = Z, then by Definition 2.3, any parameter
update can contain any variable in the graphical model p(Z). Taking S = Z is inherently vacuous:
Sp-locality is only conceptually useful if we can cleanly reduce the number of variables included
in S for a broad set of biologically relevant neural architectures. Fortunately, for backpropagation

27



operating on a feedforward neural network governed by Equation 5, we do not need to include every
variable in the network. By Equation E.36, we see for our example feedforward neural network that:

∆W
(l)
ij ∝ − dL

dr̄
(l)
i

dr̄
(l)
i

dW
(l)
ij

, (E.37)

where dL
dr̄

(l)
i

= dL(r(L))
dr̄(L)

(∏L
k=l+2

dr̄(k)(r(k−1))
dr̄(k−1)

)
dr̄(l+1)(r(l))

dr̄
(l)
i

is the derivative of the global loss func-

tion with respect to the individual mean neuron activation r̄
(l)
i . Interestingly, dr̄

(l)
i

dW
(l)
ij

—the derivative

of the mean parameter for neuron ri—is a function of only the parents of r(l), which are therefore
the coparents of W(l)

ij . To verify that this particular component of the weight update is p-local, we
can compare its dependencies to the score function, which is in this case p-local by Property 2.7. As
noted in Section 2.4, the score function is given by:

∂ log p(r|s,W)

∂W
(l)
ij

=

(
r
(l)
i − h(V

(l)
i )
)

σ2
h′(V

(l)
i )r

(l−1)
j , (E.38)

where V
(l)
i = W

(l)
i: r

(l−1). Because the score function is p-local, any variables that it depends on

are permissible for p-local updates. The score function depends on r
(l)
i and r(l−1), whereas dr̄

(l)
i

dW
(l)
ij

depends only on r(l−1). It follows that this function is also p-local.

As we already discussed, dL
dr̄

(l)
i

is not p-local because it depends on neurons downstream of r(l)i .

However, if we define an auxiliary random variable e
(l)
i = dL

dr̄
(l)
i

, we see that because it multiplies

e
(l)
i with a p-local function, W(l)

ij is e(l)i p-local.

Importantly, this does not mean that backpropagation is biologically plausible: this notion of locality
provides no clues as to how e

(l)
i could be calculated or approximated in the brain, and an explicit

calculation of gradients could not be possible due to the weight transport problem [20]. There are
many recent models that account for how e

(l)
i could be approximated by an approximate credit

assignment signal ê(l)i involving either random feedback synapses that project errors backwards
through the network (feedback alignment [29]) or feedback synapses that dynamically adjust through
local synaptic mechanisms so that ê(l)i provides an unbiased approximation (e.g. weight mirror
or Kolen-Pollack alignment [30], and BurstProp [31]). Each of these algorithms decomposes into
a nonlocal feedback term ê

(l)
i and a p-local term in exactly the same way, and are consequently

ê
(l)
i p-local.

E.11 Real Time Recurrent Learning (RTRL)

Consider an autonomous recurrent neural network whose directed acyclic graphical model is provided
by the following equations (we will ignore stimulus-dependence for notational simplicity):

p(r|W) = p(r(0))

T∏
t=1

N∏
i=1

p(ri(t)|r(t− 1),W) (E.39)

p(ri(t)|ri(t− 1),W) ∼ N (h(Wi:r(t− 1)), σ2), (E.40)

where p(r(0)) corresponds to some initial distribution of activity states. This probability distribution
of firing rates corresponds to the following neural sampling dynamics:

r(t) = h(Wr(t− 1)) + ση, (E.41)

where η ∼ N (0, 1). For this model, we have the following theorem:
Theorem E.11. If p(Θ) =

∏
k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and Θ = W),

the RTRL update for Wij with a loss L(r(T )), given by ARTRL(p(r|W),L(r)) is eJp-local, where
e = ∂L(r(T )

∂r̄(T ) , and J = {J(t) = ∂r̄(t,r)
∂r̄(t−1,r)}.

28



Proof. The directed graphical model corresponding to these dynamics is depicted in Figure 1b: as
with backpropagation, we will use the score function for our graphical model to identify permissible
variables. For a single synapse, the score function is given by:

∂ log p(r|W)

∂Wij
=

T∑
t=1

∂ log p(ri(t)|r(t− 1),W)

∂Wij
(E.42)

=

T∑
t=1

(ri(t)− h(Vi(t)))

σ2
h′(Vi(t))rj(t− 1), (E.43)

where Vi(t) = Wi:r(t− 1). Thus p-local parameter updates for Wij may include Wi:, ri(t) and
{rk(t− 1) : Wik ̸= 0} ∀t. We will now compare these allowed variables to the RTRL update. As
with backpropagation, we take r̄(t, r) = h(Wr(t − 1)), so that r(t) = r̄(t, r) + ση. The RTRL
update minimizes a loss L(r(T )) via the chain rule [49, 21]:

∆Wij ∝
∂L(r(T ))
∂r̄(T )

∂r̄(T, r)

∂Wij
(E.44)

∂r̄(t, r)

∂Wij
=

∂r̄(t, r)

∂r̄(t− 1, r)

∂r̄(t− 1, r)

∂Wij
+ g(r(t− 1)) (E.45)

g(r(t− 1))k =

{
h′(Vi(t))rj(t− 1) if i = k

0 otherwise.
(E.46)

this second equation provides a recursive update equation which can be stored online as a trial
progresses. The g(r(t− 1)) term is p-local, because it appears in Eq. E.43. However, ∂r̄(t,r)

∂r̄(t−1,r) , an
N ×N Jacobian matrix, is not p-local, since it depends on all neurons in the network r(t − 1) as
well as all parameters W—neurons that do not directly synapse onto neuron ri and weights Wkl for
k ̸= i are excluded from p-local updates by Property 2.1 according to the DAG defined by Eq. E.39.
Furthermore, as we have seen with backpropagation, in general the credit assignment signal ∂L(r(T ))

∂r̄(T )

is not p-local. Therefore, to characterize the Sp-locality of RTRL, we will have to proceed similarly
to backpropagation, and define auxiliary variables to include in the set S.

As with backpropagation, we define the auxiliary random variable e = ∂L(r(T ))
∂r̄(T ) . Because we have

found the Jacobians to also violate p-locality, we will also define the set of auxiliary variables
J = {J(t) = ∂r̄(t,r)

∂r̄(t−1,r)}. With these auxiliary variables, we can see that ∂r̄(t,r)
∂Wij

is Jp-local ∀t, and
consequently, the RTRL update is eJp-local.

This is, of course, not biologically plausible in any way. The set J allows the parameters to have
access to the state of the entire network, at all time points, even from neurons that do not have any
direct connections to the neuron whose synapse is being updated. Further, the entire error vector
e is required to compute the update. This is even less plausible than backpropagation, which only
required access to ei. However, the RTRL update is an important baseline for analyzing the locality
properties of other learning algorithms that are constructed as approximations of it, namely e-prop
and RFLO.

E.12 e-prop

Theorem E.12. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and
Θ = W), the e-prop update for Wij with a loss L(r(T )), given by Aep(p(r|W),L(r)) is eip-local,
where ei =

∂L(r(T )
∂r̄i(T ) .

Proof. For e-prop [37], we will also consider networks constructed according to Eq. E.39. The
update is almost identical to the RTRL update, but several terms will be discarded, allowing the
update to be eip-local, as opposed to the eJp-local update given by RTRL. The update is as follows:

29



∆Wij ∝
∂L(r(T ))
∂r̄i(T )

∂r̃i(T, r)

∂Wij
(E.47)

∂r̃i(t, r)

∂Wij
= h′(Vi(t))Wii

∂r̃i(t− 1, r)

∂Wij
+ h′(Vi(t))rj(t− 1). (E.48)

This update combines the neuron-specific credit assignment signal ei with a local ‘eligibility trace’
∂r̃i(t,r)
∂Wij

which performs approximate credit assignment by filtering and summing coactivity between
neuron i and neuron j across timesteps. It is worth noting that the particular functional form of this
eligibility trace is determined by our simplified RNN dynamics (Eq. E.39), which causes coactivity
from previous timesteps to decay exponentially in proportion to the magnitude of the autapse Wii—
alternative neural network dynamics using continuous-time dynamics, or adaptive neural firing
thresholds may alter the functional form of the eligibility trace [37], but do not fundamentally alter
the p-locality properties of the update. Now, we only need to show that the eligibility trace is p-local.

As with RTRL, we can observe that h′(Vi(t)) and rj(t− 1) both appear in the score function for
our RNN (Eq. E.43) for all timesteps, as does Wii ⊂ Wi:. Because the score function is p-local,
we know that these variables are all allowed under p-locality. The eligibility trace only depends on
these terms, from both the current time step and, recursively, from previous timesteps. Therefore, the
eligibility trace is p-local. The e-prop update is a multiplication between ei and the eligibility trace,
so by Def. 2.3 the update is eip-local.

E.13 Random feedback local online learning (RFLO)

The RFLO update [36] is nearly identical to the e-prop update, except we replace ei with an
approximate credit assignment signal êi (which replaces symmetric feedback weights with random
connections, similar to Feedback Alignment).

The update is given by:

∆Wij ∝ êi
∂r̃i(T, r)

∂Wij
(E.49)

∂r̃i(t, r)

∂Wij
= h′(Vi(t))Wii

∂r̃i(t− 1, r)

∂Wij
+ h′(Vi(t))rj(t− 1). (E.50)

Following exactly the same reasoning as with e-prop, we may show that this update is êip-local.

Theorem E.13. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and Θ = W),
the RFLO update for Wij with a loss L(r(T )), given by ARFLO(p(r|W),L(r)) is êip-local, where
ei =

∂L(r(T )
∂r̄i(T ) .

E.14 Feedback-based Online Local Learning Of Weights (FOLLOW)

The FOLLOW algorithm [50] is defined in terms of a particular continuous-time LIF circuit with
postsynaptic potential kernels. For simplicity, we will focus our analysis on a linear version of the
same circuit, disregarding the dynamic postsynaptic potentials and input stimuli. Disregarding these
features does not affect the p-locality properties of the FOLLOW algorithm, but it would certainly
degrade its performance on tasks.

The network dynamics are given by:

r(t+∆t) = h(r(t), e(t)) + ση (E.51)

= (1− ∆t

τ
)r(t) +

1

τ

(
Wr(t) + kWfbe(t)

)
∆t+ ση, (E.52)

where Wfb is an N ×No random feedback weight matrix, k is a positive constant, and e(t) is an
No-dimensional error feedback vector delivered at every timestep, with No the number of output
dimensions. Because we are in continuous time, we will assume that η ∼ N (0,∆t).

30



Similar to RTRL, we can write the probability distribution for the network as:

p(r|e,W) = p(r(0))
∏
t

N∏
i=1

p(ri(t+∆t)|r(t), e(t),W) (E.53)

p(ri(t+∆t)|r(t), e(t),W) ∼ N (h(r(t), e(t)), σ2∆t), (E.54)

where p(r(0)) is some initial distribution of firing rates. Further, we can assume that the distribution
of errors at timestep t+∆t has any arbitrary distribution p(e(t+∆t)|r(t)).
The update for weight Wij is given by:

∆Wij(t) ∝
(
Wfb

i: e(t)
)
rj(t). (E.55)

Therefore, only the postsynaptic error current and presynaptic input are necessary to update the
weights for a given synapse in this type of network. Below, we will show that this update is p-local.
Theorem E.14. If p(Θ) =

∏
k p(Θk) and p(X|Θ) is defined by Eq. E.53 (with X = {r, e} and

Θ = W), the FOLLOW update for Wij , given by AFW (p(r, e|W)) is p-local.

Proof. To see that this is true, we need only show that the variables included in ∆Wij are subsets of
the variables included in the score function ∂ log p(r,e|W)

∂Wij
. These variables are permissible for p-local

updates by Property 2.7. The score function is given by:

∂ log p(r, e|W)

∂Wij
=
∑
t

∂ log p(r(t+∆t)|r(t), e(t),W)

∂Wij
+
∑
t

∂ log p(e(t+∆t)|r(t))
∂Wij

(E.56)

=
∑
t

∂ log p(ri(t+∆t)|r(t), e(t),W)

∂Wij
(E.57)

=
∑
t

(
ri(t+∆t)− ri(t) +

∆t
τ

(
−ri(t) +Wi:r(t) + kWfb

i: e(t)
))

∆tσ2
rj(t).

(E.58)

Therefore, for weight ∆Wij , the permissible variables include: ri(t) ∀t, any rk(t) such that Wik ̸= 0

(∀t), any ek(t) such that Wfb
ik ̸= 0 (∀t), and the parameters Wi: and Wfb

i: . The parameter update
requires only rj(t) and Wfb

i: e(t), which is a subset of these permissible variables. Therefore, the
update is p-local.

F p-locality does not guarantee biological plausibility

It is very important to clarify the exact relationship between p-locality and biological plausibility.
Except for some network-wide variables that a theoretician may decide to allow through a particular
choice of Sp-locality, we have generally shown that p-locality is overly permissive, in that a particular
choice of p may allow parameter updates to include variables that an individual synapse may not
have access to. Furthermore, p-locality does not restrict the network architecture defined by p to
be biologically plausible. The best way to interpret p-locality is as follows: if p(X,Θ) defines a
biologically plausible architecture and an algorithm A is p(X,Θ)-local, then the parameter update
provided by A(p(X,Θ)) will be biologically plausible. There are many network architecture and
parameter update combinations that may be biologically plausible without being proven p-local (e.g.
explicit approximations to backpropagation [29, 30, 31]), as there are many combinations that are
p-local without being biologically plausible. Below, we will show two important instances in which
p-locality does not properly diagnose a combination of network architecture and parameter update as
biologically implausible.

F.1 Locality and architectural plausibility

The first example is pervasive in neural network models of the brain: networks frequently violate
Dale’s law, which states that neurons in a neural network are (for the most part [51]) either excitatory

31



(outgoing weights are positive) or inhibitory (outgoing weights are negative), but not both. In fact, in
the simple network example we have provided (Section 2.4), neural firing rates are not constrained
to be strictly positive, and outgoing synaptic weights are not sign-constrained. For this biologically
implausible architecture, p-locality defines which variables are allowed to be included in individual
parameter updates in a way that is sensible (allowing only variables involving the postsynaptic firing
rate and the firing rates of all pre-synaptic neurons), but it says nothing about the aforementioned
implausibilities of the network architecture. Similarly, the linear Boltzmann machine example
provided in Appendix D does not constrain firing rates to be positive, and requires symmetric weights
(Wij = Wji), which could not satisfy Dale’s law while allowing connections between an inhibitory
neuron i and an excitatory neuron j (Wij > 0 while Wji < 0 ⇒ Wij ̸= Wji).

These examples illustrate an important fact: p-locality focuses on the plausibility of updates given an
architecture that has been predetermined to be acceptable. However, it is worth noting that if we were
to impose these additional constraints for the proposed networks, the accepted variables determined
by p-locality would not change.

F.2 Parameterizing probabilities with neural networks

Another important caveat when working with p-locality is that the random variables Z have to
correspond to the relevant biophysical quantities of interest, e.g. neural firing rates X and synaptic
weights Θ. If this is not the case, then p-locality can easily defy standard notions of biological
plausibility. For instance, if we define a probability distribution in terms of a 3-layer neural network:

p(X|Θ) ∼ N (r̄2(r̄1(r̄0(Θ))), σ2), (F.1)

Then the score function of this distribution is given by:

∂p(X|Θ)

∂Θ
=

d log p(X|Θ)

dr̄2
dr̄(2)

dr̄(1)
dr̄(1)

dr̄(0)
dr̄(0)

dΘ
. (F.2)

This equation depends on X, which is the output of the network, even though Θ parameterizes r̄(0).
Therefore, if the random variables had been defined in as in Section 2.4, then this update would not
be p-local. However, because it is the derivative of the score function, for any independent marginal
p(Θ), it is p-local for this choice of random variables. Therefore, it is important when working
with an algorithm such as Wake-Sleep or REINFORCE, that one chooses a conditional probability
distribution p(X|Θ) that captures biologically plausible dependencies. When this is not done, as in
[52, 53], the resulting updates have no correspondence to synaptic plasticity rules.

Note that this fact does not undermine the utility of p-locality as a concept. Our proofs for algorithms
in Appendix E apply for any p(X|Θ), as long as p(Θ) factorizes to

∏
i p(Θi). Therefore, algorithms

that have universal p-local properties will respect the variable dependencies implied by p(X|Θ)
whether this distribution is plausible or not, which means that the algorithms will respect variable
dependencies for all plausible network architectures.

32


