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Abstract

As one of the most popular machine learning models today, graph neural networks
(GNNSs) have attracted intense interest recently, and so does their explainability.
Unfortunately, today’s evaluation frameworks for GNN explainability often rely on
few inadequate synthetic datasets, leading to conclusions of limited scope due to
a lack of complexity in the problem instances. As GNN models are deployed to
more mission-critical applications, we are in dire need for a common evaluation
protocol of explainability methods of GNNs. In this paper, we propose, to our
best knowledge, the first systematic evaluation framework for GNN explainability
GRAPHFRAMEX, considering explainability on three different “user needs”. We
propose a unique metric, the characterization score, which combines the fidelity
measures and classifies explanations based on their quality of being sufficient
or necessary. We scope ourselves to node classification tasks and compare the
most representative techniques in the field of input-level explainability for GNNS.
We found that personalized PageRank has the best performance for synthetic
benchmarks, but gradient-based methods outperform for tasks with complex graph
structure. However, none dominates the others on all evaluation dimensions and
there is always a trade-off. We further apply our evaluation protocol in a case
study for frauds explanation on eBay transaction graphs to reflect the production
environment.

1 Introduction

As machine learning models are being deployed to mission critical applications and are having
increasingly profound impact on our society, interpreting machine learning models has become
crucially important [1, 2]. At the same time, graph neural networks (GNNs) are of growing interest
and are ubiquitous in many learning systems across various areas[3—8]). Due to the complex data
representation and non-linear transformation, explaining decisions made by GNNs is challenging.
The past decade has witnessed the rise of new methods to explain GNN predictions [9-24].

How do these GNN explanation methods compare with each other? How should we evaluate these
GNN explanation methods? These two questions, unfortunately, are still open today. Today’s GNN
explainability methods are often evaluated on the inadequate synthetic datasets introduced by [10],
later referred as type 1 (see AppendixA.6 for the types of synthetic data) - where groundtruth is
available and often on different grounds — as shown in Table 1. Furthermore, they only consider
a small subset of metrics to evaluate their method and this choice is very different from method
to method. Most papers do not consider the aspect of computing time. They also evaluate their
method on an almost accurate GNN model, without considering the influence of GNN accuracy
on explainability. As a result, insights obtained in these different papers often do not reflect their
performance on real-world applications! Most method papers (see upper section of Table 1) have
inconsistent rankings when evaluation the methods on type 1 synthetic datasets or on real datasets.
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Table 1: XAI LITERATURE FOR GNN NODE CLASSIFICATION. "Acc" defines the accuracy
(F1-score) measured with respect to the groundtruth, "Fid+" and "Fid-" refer to the fidelity metrics
as defined in [26] (see Appendix A.4). The column "Time" indicates if the paper has run a
comparative analysis of the computation time of the explainability methods. The final column
"GNN accuracy" shows if the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Use type 1 Synthetic Real Time | GNN Accuracy
syn data** | Acc Fid- Fid+ | Acc Fid- Fid+
Method [9] 2019 LRP v v
Method [10] 2019 GNNE«xplainer v v > 0.90
Method [11] 2020 PGExplainer v v v 0.92 — 1.00
Method [12] 2020 RelEx v v
Method [13] 2020 PGM-Explainer v v v 0.85 — 1.00
Method [14] 2021 RG-Explainer v v
Method [15] 2021 ZORRO v 0.48 — 0.79
Method [16] 2021 SubgraphX 4 4 v 0.86 — 0.99
Method [17] 2021 CF-GNNExplainer v v v > 0.87
Method [18] 2021 RCExplainer v v v v 0.84 — 0.99
Method [19] 2021 Gem 4 vE v
GNNEXxplainer,PGExplainer

T*(‘;‘(‘:;i“;y 21[12)6] 2020 Sub;aphx:Deepfift v VR

. GNN-LRP,Grad-CAM,XGNN
T 51| | S Oeiengmicna || R
TaX(OITiOEI:?ZI)[N] 2022 GNNEXS;?::x’cglE(pr]ainer v

VanillaGrad,IntegratedGrad
Taxonomy [28] 2022 GraphMa.sk,GraphLIME v
(Agarwal et al) GNNE«xplainer,PGExplainer
PGMExplainer

*“Different denomination in the paper, but the same evaluation mechanism as ours.
" Type 1: [10]; Type 2: [25]; Type 3: MUTAG [29], MoleculeNet [30].... See Appendix A.6 for the full synthetic data classification.

Only the taxonomy survey [25] that proposes three novel synthetic benchmarks - type 2 - has
consistent results with real data.

Evaluation Framework. In this paper, we aim at overcoming these limitations and propose GRAPH-
FRAMEX, the first systematic framework for evaluating explainability methods in the context of node
classification. We consider three aspects of users’ needs in our evaluation protocol. Our framework
further distinguishes two types of explanations, according to whether they are necessary or sufficient.
For evaluation, we combine the two fidelity measures, Fid+ and Fid-, that capture the two explanation
types, into one single performance metric: the characterization score. Our evaluation method does
not require groundtruth from synthetic datasets and can be applied to any graph datasets in practice.
This paper is the first to study the relation between accuracy and explainability. We evaluate a variety
of explainability methods on type 1 synthetic datasets of [10] and ten real datasets. We show the
limitations of these specific synthetic datasets. To reflect the production environment, we run a fraud
explanation study for eBay transaction graphs. Because runtime is also important, our analysis further
compares methods on their average mask computation time. This is also the first paper interested in
explaining inaccurate GNN models and the first to investigate the influence of GNN accuracy on the
explainer performance.

Moving Forward. As an early attempt to systematically investigate evaluation of GNN explainability,
this paper also aims to facilitate the assessment of future explainability methods and shed light on
how to build more effective explainability methods that would incorporate the advantages of existing
methods. We have created an online platform for people to compete and compare their method to
a standard leaderboard with our proposed evaluation and a selected set of representative methods.
They also have the possibility to integrate their method to the final leaderboard. It also opens new
doors to create synthetic datasets that better reflect the complexity of real ones, which we will discuss
in Section 5.2.4. Our code is anonymously availalale at https://anonymous.4open.science/r/
GraphFramEx-E054/.


https://anonymous.4open.science/r/GraphFramEx-E054/
https://anonymous.4open.science/r/GraphFramEx-E054/
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2 Related work

Confronted to a rapid increase of XAl methods, researchers have tried to identify a list of properties
desired of explainable systems and developed concrete tools to help compare and evaluate all of the
methods [31, 32]. Following these systematic XAl evaluation reviews, recent studies have proposed to
systematically evaluate the performance of explainability methods for GNNs [25-28]. [25] evaluates
explainability methods on three new benchmarks for which groundtruth is available to alleviate five
pitfalls observed in the widely used type 1 synthetic datasets. But methods are only evaluated with
the accuracy metric. Our framework evaluates explainers regardless of the existence of groundtruth.
The first attempt to construct an evaluation framework without groundtruth explanations is the paper
of Yuan et al. [26]. They evaluate diverse explainability methods on two fidelity scores at different
sparsity levels. But simple baselines such as distance and PageRank and gradient-based methods are
omitted, while we show their superiority in some settings. [27] adopts the same methodology as [26],
but normalizes one of the fidelity scores. Authors of [28] are the first ones to carry out a theoretical
study and derive upper bounds on three evaluation metrics: unfaithfulness, instability and fairness
mismatch. Like [25], we consider stability and fairness to be optional criteria and not general quality
measures. None of the papers studies the relation between accuracy and explainability. Moreover,
they do not consider other mask transformation than sparsity.

3 Problem setup

Let G = (V, €) represent the graph with V = {vy,v2...vy } denoting the node setand € C V x V
as the edge set. Edges may be directed or undirected. The numbers of nodes and edges are denoted
by N and M, respectively. A graph can be described by an adjacency matrix A € {0, 1}V*V  with
a;; = 1if there is an edge connecting node 7 and 7, and a;; = 0 otherwise. In addition, nodes in VV
are associated with d-dimensional features, denoted by X € RAxd,

In the context of node classification, a GNN can be written as a function f : VV — ), which assigns
to nodes in V labels from a finite set )). The GNN model is trained with an objective function
LY x Y — R that computes a cross-entropy loss s = L(y, §j) by comparing the model’s prediction
¢ to a ground-truth label y. To fuse the information of both node features and graph structure in node
representation vectors, GNN models utilize a message passing scheme to aggregate information from
neighboring nodes.

Given a pre-trained classifier f, our objective is to obtain an explanation model. An “explanation” in
the domain of GNNs is a mask or a subgraph of the initial graph, i.e., a set of weighted nodes, edges
and possibly node features. The weights on those graph entities relate to their inherent importance for
explaining the model outcomes. The explainer model usually performs a feature attribution operation
which associates each feature of a computation graph G with a weight or relevance score for the
classifier’s prediction. The computation graph GG might be the initial graph G or a subgraph around
the target node v; since some methods only look at a k-hop neighbourhood to do predictions. We
focus on the contribution of the structural features, namely the edges. To explain each node v, all
the methods compared in this paper generate a mask Mg (&, f, v, ) € RIVIXIVI each element
of which is the importance score of the edges to the prediction class y; of the target node v;. The
more complex methods also generate a mask My #(V, f, vy, ¢;) on the node features (see Table 5 in
Appendix B). At the end, an explanation corresponds to a mask Mg on the edges and sometimes
a mask My r on the node features, that operate on the initial graph to form a subgraph G g with

adjacency matrix Ag = Mg ® A and features Xg = M yr ® X, where ® denotes elementwise

multiplication. We denote by th 5 and th “\¥ the model’s predictions for node v; when taking as

input respectively the explanatory or masked graph G g and its complement or masked-out graph
Gc\ S-

Scope. Our framework only compares post-hoc explainability methods since our focus is on ex-
plaining any GNN model. We restricted our study to input-level methods because there are currently
limited model-level explainability methods [10, 20]. We evaluate both model-aware and model-
agnostic methods in the context of node classification tasks. See Appendix A for the full definitions
and taxonomy.

4 Method

This section presents the three design choices made by the users and the evaluation metrics used to
assess explainers performance.
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4.1 Multi-objectives for explainability

To build GRAPHFRAMEX, we start from the perspective of the data subject. Users design the
framework based on their expectations on the produced explanations. They can make choices on
three dimensions: the explanation focus, the mask nature and the mask transformation strategy.

Aspect 1: the focus of explanation. | (1) enn Training

Some users want to explain why a cer- y_ ~ 7| Groundtruth
tain.decisi.on has beer} returned for a Input graph GNN : S dicﬁon
particular input. In this case, the task

of explaining has a more applied na-

ture: they are interested in the phe- -
nomenon itself and try to reveal find- Input graph  ———1 GNN —’@
ings in the data, i.e. explain the true v A :
labeling of the nodes. The model’s [ (2) Mask generation ](—OMV;{ Target — !
predictions are ignored in the explana- ‘ function | BT
tion process. Others prefer to explain i N p—
how the model works. In this case, Subgraph  ——1 GNN _‘_’W \ score |
they are interested in the GNN model v

behavior and try to explain the logic [ (3) Mask transformation ] |

behind the model, i.e. the predicted v -
labels. These equally complementary Explanation | onn _ Yy

and important reasons demand differ- iodel

ent analysis methods. The choice of

explanation focus determines the ex-  Figure 1: General protocol. The explanation focus is the
planation objective and evaluation. phenomenon or the model. (1) A GNN model learns to
Aspect 2: mask nature: hard or Predict the label § of each node in the input graph. For the
soft mask. Edge masks My are nor- explanation of node labels (true or predicted), we use this
malized so that each weight lies be- Pre-trained model. The explainability method generates a
tween 0 and 1. To convey human- soft mask Mg, which operates on the input graph to return a
intelligible explanation, we can di- Subgraph G's. (2) The goal is to reproduce a target label: y or
rectly operate the initial soft mask, 7. (3) The nzask is transformed t(; output the ﬁ.nallexplanalltory
M ft e 0,1]*M on G¢ and re- subgraph G'. (4) We evaluate G'q by comparing its predicted

soft label to our target.
turn an explanatory subgraph G'¢™”",

where the edge weights reflect the relative importance of edges. But, users might prefer a non-
weighted subgraph G’S“"d as explanation. In this case, once the mask has been transformed (Aspect
3), we convert the mask into a hard mask, M4 € {0,1}M*M by setting every positive values to 1.

Aspect 3: the mask transformation. Because there is no such thing as a "good" size for an
explanation, it is even harder to compare explainability methods. Existing explainability methods
return different sizes of explanations by default. To make them comparable, most papers propose to
fix a sparsity level to apply to all explanations and compare the same-sized explanations [16, 18, 33].
We define three strategies to reduce explanation size: sparsity, threshold and topk (see Appendix B),
which transform the edge mask M into a sparser version M §,. We decide to use the topk strategy
because it is the only strategy that enforces a maximum number £ of edges independently of the size
of the graph and the explainer methodology. This independence property is important as human-
intelligible explanations cannot exceed a certain number of graph entities. Too small explanations
omit important elements and will not be sufficient, while too big explanations contain irrelevant nodes
and edges and will not be necessary.

4.2 Evaluation

Phenomenon Model
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We define multiple dimensions on which we can evaluate explanations. If we have the ground-truth
explanations, we can use the accuracy metric. In most of the cases, ground-truth explanations are
unknown and explanatory subgraphs are evaluated on their contribution to the initial prediction.

Fidelity. To be independent from any ground-truth explanations, we suggest using the fidelity
measures. We extend the definitions in [26] by considering in addition the explanation focus. We
make some adjustments: for the phenomenon focus, the fidelity is measured with respect to the
ground-truth node label y; for the model focus, it is measured with respect to the outcome of the GNN
model 3. In the context of node classification, the indicator function certifies whether the predicted
class of a subgraph corresponds to the desired class defined as the true label y in the phenomenon
focus or the predicted label for the whole graph g in the model focus.

Typology. Considering the large spectrum of possible explanations, we propose to classify explana-
tions in two categories based on their fidelity scores. Each category defines the role of the explanation
in producing the observed outputs: the explanation can be necessary and/or sufficient.

* SUFFICIENT EXPLANATION An explanation is sufficient if it leads by its own to the initial
prediction of the model explanation. Since other configurations in the graph may also lead to the
same prediction, it is possible to have multiple sufficient explanations for the same prediction. A
sufficient explanation has a fid_ score close to 0. We later report (1 — fid_) in our experiments.

* NECESSARY EXPLANATION An explanation is necessary if the model prediction changes when
you remove it from the initial graph. Necessary explanations are similar to counterfactual
explanations [34]. A necessary explanation has a fid score close to 1.

An explanation is a characterization of the prediction if it is both necessary and sufficient. It can
be interpreted as the certificate for a specific class or label. Explainability methods should aim at
returning this type of explanations as they are the most informative and complete.

General performance metrics. A variety of functions exists to combine Fidelity+ and Fidelity-
measures into a single metric on the overall quality of the explanation such as the area under Fid+/(1-
Fid-) curve (AUC). For users interested in only one aspect of an explanation, i.e. necessary or
sufficient, we suggest to use the fidelity scores independently, i.e. Fid- or Fid+, and compare the
performance of explainability methods with Fid+@XK or (1-Fid-) @K metrics.

Characterization score. In this paper, we recommend the characterization score as a global evalua-
tion metric, due to its ability to balance the sufficiency and necessity requirements. This approach
is analogous to combining precision and recall in the Micro-F1 metric. The charact score is the
weighted harmonic mean of Fid+ and 1-Fid- as defined in Equation 1:

charact — wiUJr Jruju__ _ (wy +w) x_fzd+ x (1 fzd_) 0
Fiar T TR wy - (1= fid-) +w_ - fidy
where w.y, w_ € [0, 1] are respectively weights for fid+ ¢, _
and 1 — fid_ and satisfy w, 4+ w_ = 1. In the context of § 0g — fid- o2
explainability, it is important to know that the explanation § =~ — fid-=05
is leading to the prediction, i.e. sufficient, but also essential E 0.6 — fid-=038
for this output, i.e. necessary. As seen in Equation 1 and & 04
Fig. 2, the characterization score with equal weights on ‘g 0.2
Fid+ and (1-Fid-) is low as soon as one of the two terms § 0.0
is low. It reflects the strong simultaneous dependency of © g 0.2 0.4 0.6 0.8 10
the characterization score to both fidelity measures. In Fidelity+
addition, it is possible to vary the weights w, and w_ to Figure 2: Characterization score for
compare explainers more on one aspect rather than the w4 =w_ =0.5

other.

Efficiency. Efficiency relates to the trade-off between performance, assessed by the characterization
score, and computation time of an explanation. A method is very efficient if it quickly generates
explanations that well characterize the GNN predictions. This is an important criteria as users might
want rapid answers to their why-questions.

S5 Results

We evaluate existing methods on their efficiency, characterization power, and type of explanations.
No method is dominating the others in all aspects. We also discuss here the limitations of previous
evaluation protocols.
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5.1 Experimental settings

We describe the setup and implementation details for the explainability procedure. See Appendix B
for more details on the datasets statistics, the methods and the experimental protocol.

Datasets.

» Synthetic datasets We use type 1 synthetic datasets introduced by [10]. We refer the reader to
Appendix A.6 to learn more about the 3 classes of existing synthetic datasets in explainability for
GNNs. Ground truth explanations are available.

* Real datasets We use 10 publicly available datasets to evaluate our framework on real graphs:
the citation network datasets [35], the Facebook Page-Page network dataset [36], the actor-only
induced subgraph of the film-director-actor-writer network [37], the WebKB datasets [37], and
the Wikipedia networks [36]. We use the code accessible in Pytorch geometric.

* eBay We test our evaluation framework on a real-world eBay transaction graph dataset. This
is a binary node classification task where transaction nodes are labeled as legit or fraudulent.
The objective is to explain fraudulent nodes. The eBay graph dataset is a very large sampled
real-world dataset with 289k nodes (208k transaction nodes) and 1% of all nodes (1.48% of
transaction nodes) are fraudulent. This is a typical example of a rare event detection task.

GNN models. By default, we use the graph convolutional networks (GCN) [38]. Besides GCN, we
also evaluate explainability methods on graph attention networks (GAT) [39] and graph isomorphism
networks (GIN) [40]. Results using GAT and GIN models are presented in Appendix C.

Explainers. To explain the decisions made by the GNNs, we adopt different classes of explainers
including structure-based methods, gradient/feature-based methods and perturbation-based methods.
We refer the reader to Appendix A.3 for the full taxonomy and to Appendix B.2 for more details on
the explainability methods. In our experiments, we compare the following methods: Random gives
every edge and node feature a random value between 0 and 1; Distance assigns higher importance
to edges that have lower distance to the target node; PageRank measures the importance of edges
following the personalized PageRank strategy with automatic restart on the target node [41, 42];
Saliency (SA) measures node importance as the weight on every node after computing the gradient of
the output with respect to node features [9]; Integrated Gradient (IG) avoids the saturation problem
of the gradient-based method Saliency by accumulating gradients over the path from a baseline
input (zero-vector) and the input at hand [43]; Grad-CAM is a generalization of class activation
maps (CAM) [44]; Occlusion attributes the importance of an edge as the difference of the model
initial prediction prediction on the graph after removing this edge [25]; GNNExplainer computes
the importance of graph entities (node/edge/node feature) using the mutual information [10]; We
also try Basic GNNExplainer that considers only edge importance; PGExplainer is very similar
to GNNExplainer, but generates explanations only for the graph structure (nodes/edges) using the
reparameterization trick to overcome computation intractability [11]; PGM-Explainer perturbs the
input and uses probabilistic graphical models to find the dependencies between the nodes and the
output [13]; and SubgraphX explores possible explanatory subgraphs with Monte Carlo Tree Search
and assigns them a score using the Shapley value [16].

Protocol. In this work, we focus on node classification tasks and compare local, that is input-level,
explainability methods. We train one of the three GNN models. Once trained, we use the GNN to do
predictions on a testing set. Explanations are then eventually transformed with the topk strategy. We
evaluate the methods with the fidelity measures and the characterization score with equal weights
w4 = w_ = 0.5 in four different settings defined as the combinations of the two possible focus,
phenomenon and model, and mask nature, hard or soft masks.

5.2 Main results
5.2.1 Explainer efficiency and type of explanation on real datasets

The legend of figure 3 shows the overall ranking of each explainability method. We rank them on
their characterization score averaged on all real datasets for explanations of size 10 edges in the four
settings (phenomenon | model, hard / soft mask). Saliency has the highest overall characterization
score. More generally, gradient/feature-based methods are better than perturbation-based methods.

The overall characterization score of the twelve explainers on the real datasets is also evaluated
against their average computation time of an explanatory mask. Left plot of Figure 3 shows that, in
addition to having the best characterization score, Saliency is also the most efficient. In the setting
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where we explain the model with a hard mask, we observe that Occlusion has the best overall score
but is 10* times slower than Saliency.

We compare the methods on the type of explanation they return. On the right plot of Figure 3,
methods scoring high on the x-axis return necessary explanations, while those scoring high on the
y-axis return good sufficient explanations. We observe that Saliency is by far the best one to return
necessary explanations. But, for sufficient explanations, Occlusion, Grad-CAM and PageRank are
better choices. As a general remark, we observe that most of the methods are able to return very good
sufficient explanations as their explanations have a fidelity- score close to 0. But very few generate
necessary explanations: only Saliency, Distance and Occlusion reach a fidelity+ score greater than
0.6 in at least one of the four settings.

CHARACTERIZATION vs TIME TYPE OF EXPLANATION

10 Soft Mask Hard mask 20 Soft Mask Hard mask Explainers
o© " overall ranking
0.8 0.8
. ] L
s

0.6 . . = Zos O Ll . z msa
., = . 2 2 1Y ] 2 © occlusion
S " = L L) &g os = mig
V02 g »* o 02
c o ® : $ pagerank
(=}
5 0.0 0.0 L m gradcam
3 10 10 sufficient .
€ - : © gnnexplainer
S saliency )
5 08 most efficient! 2 08 8o 2 @ pgmexplainer
© o} . " @ :
5 06 = FLa— 3 Zos ) L [ 0 3 #distance

[
S o0a ! il co 3 S necessary 3 s random
o e o > o =1
02 g ® % 2 S o2 g O subgraphx
> : ;
0.0 ° 00 ® basic_gnnexplainer

70.00 025 050 075 1.000.00 025 050 075 1.00
Fidelity+ Fidelity+

"
3

1072 10° 102
Time (s)

1072 10° 102 104
Time (s)

® pgexplainer

Figure 3: Results on real datasets. (left) Performance and computation time. (right) Type of
explanation returned by each explainability method. sa - Saliency. ig - Integrated Gradient.

CHARACTERISATION vs TIME

5.2.2 Explaining wrong predictions

100 CORRECT WRONG ovi:;lllarlgr?liisng
Most of the papers report GNN testing 0'75 -
accuracy greater than 80% and all of - APRRrEenell]| o @ cccuson
them test their explainers on a mixture & w_* . ‘S S % pagerank
of correct and wrong predictions (see ¢~ : l B omdaam
Table 1). But when ignoring this dis- 2 *® ® voesphiner
tinction, they unknowingly take a dif- £ * - Jwednita
ferent focus. When they explain cor- © °” & @ basic_gnnexplainer
rect predictions, they target the true la- 3 ." <. ° %
bel and explain both the phenomenon ~ © °25 = .«e . "moee g, e
and the GNN model. When they ex- ~ °* = . o« SEL}T?O"

m gradien

plain wrong predictions, the predic-
tions by the GNN do not correspond
to the true label and, therefore, they
can only get an insight of the GNN
logic. We decide to study what hap-
pens to our explainers ranking if we separate correct from wrong predictions. Figure 4 shows a general
drop of performance of the explainers when the predictions do not match the true label. So, mixing
wrong and correct nodes will necessarily reduce the scores. We also see that the gradient-based
method Saliency is the only method able to explain the model logic when the predictions are wrong.
This is not surprising as model-aware explainability methods focus on the model’s internal working
and will always explain the logic before the phenomenon. Therefore, all current papers that generate
explanations when the model is not 100% accurate, are naturally biased towards gradient-based
methods. This small study also encourages using Saliency to produce good explanations of a wrong
GNN as it can also serve users to have an easier acceptance of bad models if they can actually explain
them.

Time (s)
Figure 4: Average performance when explaining only cor-
rect (left) or only wrong (right) predictions on 5 real datasets.
sa - Saliency. ig - Integrated Gradient.

Time (s)

5.2.3 Select a pertinent explainability method

Based on the experiments, we outline how the design dimensions of GraphFramEx enables
domain-specific users to quickly find best explanability models for their GNN prediction tasks.
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GraphFramEx finds the most appropriate -

metﬁod according to the 3 aspects depsr():ritl))ed in Cor:red ) - e

section 4.1 and the accuracy level of the trained l

model, and can be shown as a decision tree. Fig- soft - - ~hard= = salency

ure 5 presents one decision tree when we set the l '

mask transformation as the ropk strategy with 10 model--| Focus | -phenomenon

edges (k = 10), for brevity purposes. It guides Sellizmey l l

users to select the optimal method according Saliency

to their multi-objectives and suggest explainers Saliency Saliency

that are the best at returning necessary (red box), Occlusion _ .

sufficient (green box) or both necessary and suf-  GRESAN Qcclusion o

ficient explanations (orange box). Other design PageRank Occlusion Occlusion

considerations such as runtime can also be eas- rad.CAM

ily included based on the experiments. Note that | [[] Necessary PGMExplainer

additional explainability methods can be easily | L] Characterization PageRank
[] Sufficient

incorporated in our evaluation framework and
be considered in the decision tree for general

users Figure 5: GraphFramEx decision tree for a mask

transformation topk = 10.

5.2.4 Further Analysis

Trade-off. As observed in the two previous sections, Saliency seems to outperform the other
methods except when we want sufficient explanations. In this case, Occlusion is the most appropriate
one. We investigate if Saliency dominates the other methods. Figure 6 compares Saliency and
Occlusion, respectively the first and second best methods on each dataset. Even though Saliency
seems to dominate Occlusion to explain both model and phenomenon, we observe that it actually
underperforms for Wisconsin, Actor and Facebook datasets when the focus is the model. We also
observe that Occlusion is better at returning sufficient explanations, while Saliency is more appropriate
for necessary explanations. This trade-off study shows that there is no existing explainability method
that dominates others in all aspects.
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Figure 6: Trade-off between Occlusion and  Figure 7: Performance vs computation time for syn-
Saliency. Relative fid-+ and (1-fid—). thetic data. The explanation is a soft mask, i.e. edges
Positive scores: superiority of Saliency. are weighted by their importance.

Limit of synthetic benchmarks. We further reveal the limitations of evaluating explainability
methods on type 1 synthetic datasets. We show inconsistency between the method rankings on real
and those widely used synthetic datasets [10]. While PageRank returns the most accurate explanations
(right table on Figure 8), and has the best time-performance trade-off and characterization score
(see Figure 7) on synthetic data, this structure-based method is not able to highlight the important
entities of real graphs (see Figure 3). In addition, Saliency has one of the lowest accuracies on every
synthetic dataset, while it is the most optimal method to explain GCNs on real graphs (see Fig. 3).
Method assessment on synthetic datasets eludes the power of gradient-based methods and their ability
to extract decisive graph features when node dependency is not elementary and node features are
meaningful. These examples demonstrate that evaluation on type 1 synthetic datasets gives only poor
informative insight.
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Ground Truth PageRank GNNExplainer SA Explainer BA-Shapes BA-Grid Tree-Cycle Tree-Grid BA-Bottles | CC-ratio
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Figure 8: Accuracy on synthetic data. Explanations are generated to have the same number of edges
than the expected groundtruth motif. (left) Explanatory subgraphs are drawn next to the expected
ground truth. They contain the target node, explanatory nodes and nodes. (right) F1-score
indicates the similarity between the explanatory subgraph and the motif and CC-ratio the connectivity.

5.3 Case study: explaining frauds in the real-world e-commerce graph

We test our systematic evaluation framework on a production use case: explaining fraudulent
transactions in the e-commerce scenario at eBay. In the scope of our research, we only explain correct
predictions'. GNNexplainer is by far the most effective method (see Figure 9). It also returns not only
sufficient explanations like most of the methods, but also necessary explanations. While the edge mask
is directly deduced from the node feature mask in Saliency and Integrated Gradient, GNNExplainer
has the particularity to compute edge and node features importance independently when solving the
optimization problem. This explains the superiority of GNNExplainer in this production case where
node features and edges bring both different insights to understand fraudulent nodes. Overall, we
notice that perturbation-based methods are better than structure-based and gradient-based methods in
this production use case.

CHARACTERISATION vs TIME TYPE OF EXPLANATION Explllame‘zls
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Figure 9: Results on eBay graph to explain correctly predicted fraudulent nodes. Results for the
model focus are omitted as they correspond to the phenomenon. Explanation size is topk = 10. sa
stands for Saliency; ig stands for Intergrated Gradient.

6 Conclusion

In this paper, we propose GRAPHFRAMEX, a systematic evaluation framework for explainability
methods for GNNs. By deliberately choosing methods from all categories, our comparison covers the
full spectrum of input-level explainers for node classification tasks. Taking as model a GCN, we show
the limits of a traditional evaluation on type 1 synthetic data. Our evaluation with the characterization
score allows us to fairly evaluate all sorts of explainability methods in real-world scenarios. With
our trade-off study, we however want to raise awareness that users should not rely on one single
method to explain and trust their decision-making algorithm. Our case study on eBay graph shows
the outstanding performance of GNNExplainer for explaining correctly predicted fraudulent nodes.

GRAPHFRAMEX is intended to help users navigate through the increasing number of explainability
methods for GNNs. We encourage people to evaluate new explainability methods on real data and/or
the 3 synthetic benchmarks [25] - rype 2 synthetic data - as they better reflect real-world complexity.
While our work interprets explanations as positive weights masking the existing graph entities, we
also aim at exploring new definitions that also involve non-adjacent pairs of nodes and assess the
negative impact of edges and node features on the predicted outcomes.

'To circumvent the classification error of the trained GNN (Appendix B)
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