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Abstract1

As one of the most popular machine learning models today, graph neural networks2

(GNNs) have attracted intense interest recently, and so does their explainability.3

Unfortunately, today’s evaluation frameworks for GNN explainability often rely on4

few inadequate synthetic datasets, leading to conclusions of limited scope due to5

a lack of complexity in the problem instances. As GNN models are deployed to6

more mission-critical applications, we are in dire need for a common evaluation7

protocol of explainability methods of GNNs. In this paper, we propose, to our8

best knowledge, the first systematic evaluation framework for GNN explainability9

GRAPHFRAMEX, considering explainability on three different “user needs”. We10

propose a unique metric, the characterization score, which combines the fidelity11

measures and classifies explanations based on their quality of being sufficient12

or necessary. We scope ourselves to node classification tasks and compare the13

most representative techniques in the field of input-level explainability for GNNs.14

We found that personalized PageRank has the best performance for synthetic15

benchmarks, but gradient-based methods outperform for tasks with complex graph16

structure. However, none dominates the others on all evaluation dimensions and17

there is always a trade-off. We further apply our evaluation protocol in a case18

study for frauds explanation on eBay transaction graphs to reflect the production19

environment.20

1 Introduction21

As machine learning models are being deployed to mission critical applications and are having22

increasingly profound impact on our society, interpreting machine learning models has become23

crucially important [1, 2]. At the same time, graph neural networks (GNNs) are of growing interest24

and are ubiquitous in many learning systems across various areas[3–8]). Due to the complex data25

representation and non-linear transformation, explaining decisions made by GNNs is challenging.26

The past decade has witnessed the rise of new methods to explain GNN predictions [9–24].27

How do these GNN explanation methods compare with each other? How should we evaluate these28

GNN explanation methods? These two questions, unfortunately, are still open today. Today’s GNN29

explainability methods are often evaluated on the inadequate synthetic datasets introduced by [10],30

later referred as type 1 (see AppendixA.6 for the types of synthetic data) - where groundtruth is31

available and often on different grounds — as shown in Table 1. Furthermore, they only consider32

a small subset of metrics to evaluate their method and this choice is very different from method33

to method. Most papers do not consider the aspect of computing time. They also evaluate their34

method on an almost accurate GNN model, without considering the influence of GNN accuracy35

on explainability. As a result, insights obtained in these different papers often do not reflect their36

performance on real-world applications! Most method papers (see upper section of Table 1) have37

inconsistent rankings when evaluation the methods on type 1 synthetic datasets or on real datasets.38
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Table 1: XAI LITERATURE FOR GNN NODE CLASSIFICATION. "Acc" defines the accuracy
(F1-score) measured with respect to the groundtruth, "Fid+" and "Fid-" refer to the fidelity metrics
as defined in [26] (see Appendix A.4). The column "Time" indicates if the paper has run a
comparative analysis of the computation time of the explainability methods. The final column
"GNN accuracy" shows if the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Use type 1 Synthetic Real Time GNN Accuracy

syn data** Acc Fid- Fid+ Acc Fid- Fid+

Method [9] 2019 LRP ✓ ✓

Method [10] 2019 GNNExplainer ✓ ✓ > 0.90

Method [11] 2020 PGExplainer ✓ ✓ ✓ 0.92 − 1.00

Method [12] 2020 RelEx ✓ ✓

Method [13] 2020 PGM-Explainer ✓ ✓ ✓ 0.85 − 1.00

Method [14] 2021 RG-Explainer ✓ ✓

Method [15] 2021 ZORRO ✓* 0.48 − 0.79

Method [16] 2021 SubgraphX ✓ ✓ ✓ 0.86 − 0.99

Method [17] 2021 CF-GNNExplainer ✓ ✓ ✓ > 0.87

Method [18] 2021 RCExplainer ✓ ✓ ✓ ✓ 0.84 − 0.99

Method [19] 2021 Gem ✓ ✓* ✓

Taxonomy [26]
(Yuan et al.)

2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

✓ ✓ ✓ ✓

Taxonomy [25]
(Faber et al)

2021
Saliency,Occlusion,IntegratedGrad

GNNExplainer,PGM-Explainer
✓ ✓ 0.81-1.00

Taxonomy [27]
(Li et al)

2022
GraphMask

GNNExplainer,PGExplainer
✓*

Taxonomy [28]
(Agarwal et al)

2022

VanillaGrad,IntegratedGrad
GraphMask,GraphLIME

GNNExplainer,PGExplainer
PGMExplainer

✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.
** Type 1: [10]; Type 2: [25]; Type 3: MUTAG [29], MoleculeNet [30],... See Appendix A.6 for the full synthetic data classification.

Only the taxonomy survey [25] that proposes three novel synthetic benchmarks - type 2 - has39

consistent results with real data.40

Evaluation Framework. In this paper, we aim at overcoming these limitations and propose GRAPH-41

FRAMEX, the first systematic framework for evaluating explainability methods in the context of node42

classification. We consider three aspects of users’ needs in our evaluation protocol. Our framework43

further distinguishes two types of explanations, according to whether they are necessary or sufficient.44

For evaluation, we combine the two fidelity measures, Fid+ and Fid-, that capture the two explanation45

types, into one single performance metric: the characterization score. Our evaluation method does46

not require groundtruth from synthetic datasets and can be applied to any graph datasets in practice.47

This paper is the first to study the relation between accuracy and explainability. We evaluate a variety48

of explainability methods on type 1 synthetic datasets of [10] and ten real datasets. We show the49

limitations of these specific synthetic datasets. To reflect the production environment, we run a fraud50

explanation study for eBay transaction graphs. Because runtime is also important, our analysis further51

compares methods on their average mask computation time. This is also the first paper interested in52

explaining inaccurate GNN models and the first to investigate the influence of GNN accuracy on the53

explainer performance.54

Moving Forward. As an early attempt to systematically investigate evaluation of GNN explainability,55

this paper also aims to facilitate the assessment of future explainability methods and shed light on56

how to build more effective explainability methods that would incorporate the advantages of existing57

methods. We have created an online platform for people to compete and compare their method to58

a standard leaderboard with our proposed evaluation and a selected set of representative methods.59

They also have the possibility to integrate their method to the final leaderboard. It also opens new60

doors to create synthetic datasets that better reflect the complexity of real ones, which we will discuss61

in Section 5.2.4. Our code is anonymously available at https://anonymous.4open.science/r/62

GraphFramEx-E054/.63
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2 Related work64

Confronted to a rapid increase of XAI methods, researchers have tried to identify a list of properties65

desired of explainable systems and developed concrete tools to help compare and evaluate all of the66

methods [31, 32]. Following these systematic XAI evaluation reviews, recent studies have proposed to67

systematically evaluate the performance of explainability methods for GNNs [25–28]. [25] evaluates68

explainability methods on three new benchmarks for which groundtruth is available to alleviate five69

pitfalls observed in the widely used type 1 synthetic datasets. But methods are only evaluated with70

the accuracy metric. Our framework evaluates explainers regardless of the existence of groundtruth.71

The first attempt to construct an evaluation framework without groundtruth explanations is the paper72

of Yuan et al. [26]. They evaluate diverse explainability methods on two fidelity scores at different73

sparsity levels. But simple baselines such as distance and PageRank and gradient-based methods are74

omitted, while we show their superiority in some settings. [27] adopts the same methodology as [26],75

but normalizes one of the fidelity scores. Authors of [28] are the first ones to carry out a theoretical76

study and derive upper bounds on three evaluation metrics: unfaithfulness, instability and fairness77

mismatch. Like [25], we consider stability and fairness to be optional criteria and not general quality78

measures. None of the papers studies the relation between accuracy and explainability. Moreover,79

they do not consider other mask transformation than sparsity.80

3 Problem setup81

Let G = (V, E) represent the graph with V = {v1, v2...vN} denoting the node set and E ⊆ V × V82

as the edge set. Edges may be directed or undirected. The numbers of nodes and edges are denoted83

by N and M , respectively. A graph can be described by an adjacency matrix A ∈ {0, 1}N×N , with84

aij = 1 if there is an edge connecting node i and j, and aij = 0 otherwise. In addition, nodes in V85

are associated with d-dimensional features, denoted by X ∈ RN×d.86

In the context of node classification, a GNN can be written as a function f : V −→ Y , which assigns87

to nodes in V labels from a finite set Y . The GNN model is trained with an objective function88

L : Y ×Y → R that computes a cross-entropy loss s = L(y, ŷ) by comparing the model’s prediction89

ŷ to a ground-truth label y. To fuse the information of both node features and graph structure in node90

representation vectors, GNN models utilize a message passing scheme to aggregate information from91

neighboring nodes.92

Given a pre-trained classifier f , our objective is to obtain an explanation model. An “explanation” in93

the domain of GNNs is a mask or a subgraph of the initial graph, i.e., a set of weighted nodes, edges94

and possibly node features. The weights on those graph entities relate to their inherent importance for95

explaining the model outcomes. The explainer model usually performs a feature attribution operation96

which associates each feature of a computation graph GC with a weight or relevance score for the97

classifier’s prediction. The computation graph GC might be the initial graph G or a subgraph around98

the target node vt since some methods only look at a k-hop neighbourhood to do predictions. We99

focus on the contribution of the structural features, namely the edges. To explain each node vt, all100

the methods compared in this paper generate a mask ME(E , f, vt, yt) ∈ R|V|×|V|, each element101

of which is the importance score of the edges to the prediction class yt of the target node vt. The102

more complex methods also generate a mask MNF (V, f, vt, ct) on the node features (see Table 5 in103

Appendix B). At the end, an explanation corresponds to a mask ME on the edges and sometimes104

a mask MNF on the node features, that operate on the initial graph to form a subgraph GS with105

adjacency matrix AS = ME ⊙A and features XS = MNF ⊙X, where ⊙ denotes elementwise106

multiplication. We denote by yGS
t and y

GC\S
t the model’s predictions for node vt when taking as107

input respectively the explanatory or masked graph GS and its complement or masked-out graph108

GC\S .109

Scope. Our framework only compares post-hoc explainability methods since our focus is on ex-110

plaining any GNN model. We restricted our study to input-level methods because there are currently111

limited model-level explainability methods [10, 20]. We evaluate both model-aware and model-112

agnostic methods in the context of node classification tasks. See Appendix A for the full definitions113

and taxonomy.114

4 Method115

This section presents the three design choices made by the users and the evaluation metrics used to116

assess explainers performance.117
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5.1 Experimental settings217

We describe the setup and implementation details for the explainability procedure. See Appendix B218

for more details on the datasets statistics, the methods and the experimental protocol.219

Datasets.220

• Synthetic datasets We use type 1 synthetic datasets introduced by [10]. We refer the reader to221

Appendix A.6 to learn more about the 3 classes of existing synthetic datasets in explainability for222

GNNs. Ground truth explanations are available.223

• Real datasets We use 10 publicly available datasets to evaluate our framework on real graphs:224

the citation network datasets [35], the Facebook Page-Page network dataset [36], the actor-only225

induced subgraph of the film-director-actor-writer network [37], the WebKB datasets [37], and226

the Wikipedia networks [36]. We use the code accessible in Pytorch geometric.227

• eBay We test our evaluation framework on a real-world eBay transaction graph dataset. This228

is a binary node classification task where transaction nodes are labeled as legit or fraudulent.229

The objective is to explain fraudulent nodes. The eBay graph dataset is a very large sampled230

real-world dataset with 289k nodes (208k transaction nodes) and 1% of all nodes (1.48% of231

transaction nodes) are fraudulent. This is a typical example of a rare event detection task.232

GNN models. By default, we use the graph convolutional networks (GCN) [38]. Besides GCN, we233

also evaluate explainability methods on graph attention networks (GAT) [39] and graph isomorphism234

networks (GIN) [40]. Results using GAT and GIN models are presented in Appendix C.235

Explainers. To explain the decisions made by the GNNs, we adopt different classes of explainers236

including structure-based methods, gradient/feature-based methods and perturbation-based methods.237

We refer the reader to Appendix A.3 for the full taxonomy and to Appendix B.2 for more details on238

the explainability methods. In our experiments, we compare the following methods: Random gives239

every edge and node feature a random value between 0 and 1; Distance assigns higher importance240

to edges that have lower distance to the target node; PageRank measures the importance of edges241

following the personalized PageRank strategy with automatic restart on the target node [41, 42];242

Saliency (SA) measures node importance as the weight on every node after computing the gradient of243

the output with respect to node features [9]; Integrated Gradient (IG) avoids the saturation problem244

of the gradient-based method Saliency by accumulating gradients over the path from a baseline245

input (zero-vector) and the input at hand [43]; Grad-CAM is a generalization of class activation246

maps (CAM) [44]; Occlusion attributes the importance of an edge as the difference of the model247

initial prediction prediction on the graph after removing this edge [25]; GNNExplainer computes248

the importance of graph entities (node/edge/node feature) using the mutual information [10]; We249

also try Basic GNNExplainer that considers only edge importance; PGExplainer is very similar250

to GNNExplainer, but generates explanations only for the graph structure (nodes/edges) using the251

reparameterization trick to overcome computation intractability [11]; PGM-Explainer perturbs the252

input and uses probabilistic graphical models to find the dependencies between the nodes and the253

output [13]; and SubgraphX explores possible explanatory subgraphs with Monte Carlo Tree Search254

and assigns them a score using the Shapley value [16].255

Protocol. In this work, we focus on node classification tasks and compare local, that is input-level,256

explainability methods. We train one of the three GNN models. Once trained, we use the GNN to do257

predictions on a testing set. Explanations are then eventually transformed with the topk strategy. We258

evaluate the methods with the fidelity measures and the characterization score with equal weights259

w+ = w− = 0.5 in four different settings defined as the combinations of the two possible focus,260

phenomenon and model, and mask nature, hard or soft masks.261

5.2 Main results262

5.2.1 Explainer efficiency and type of explanation on real datasets263

The legend of figure 3 shows the overall ranking of each explainability method. We rank them on264

their characterization score averaged on all real datasets for explanations of size 10 edges in the four265

settings (phenomenon / model, hard / soft mask). Saliency has the highest overall characterization266

score. More generally, gradient/feature-based methods are better than perturbation-based methods.267

The overall characterization score of the twelve explainers on the real datasets is also evaluated268

against their average computation time of an explanatory mask. Left plot of Figure 3 shows that, in269

addition to having the best characterization score, Saliency is also the most efficient. In the setting270
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