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A Background and foundational concepts499

A.1 Interpretability, explainability and transparency500

There is a general misunderstanding of the terms explainability and interpretability. While inter-501

pretability is the common term in the philosophical literature, the scientific community prefers the502

term explainability. For this reason, we will only make use of terms that come from the same503

etymology as “explain”. An explanation is the process (and its product) aiming at making some-504

thing intelligible through the provision of structured information. Thus, the word explanation can505

be misleading as it refers to both the method and the result. Note that, for practical reasons, we506

explicitly use the term "method" to designate the method ("explainability method" or "explanation507

method") and the term "explanation" to describe the result of this method. As opposed to general508

explanations, scientific explanations answer only why-questions, where premises are always followed509

by a deduction. This does not mean that the explanation is unique: we often observe the existence510

of a large space of alternatives for the same question. Therefore, explanations need to take into511

consideration the social aspect of the process. Explainability of machine learning models has recently512

become a top-priority in AI, where it is often abbreviated as explainable Artificial Intelligence (xAI)513

or interpretable Machine Learning (iML). We adopt the first initialism here to stay as general as514

possible.515

A.2 GNN models and explanation quality516

There are several variants of GNNs (graph convolutional networks (GCNs) [38], graph attention517

networks (GATs) [39], graph isomorphism networks (GINs) [40]), and they differ in their aggregation518

strategy. In this paper, we restrict our evaluation framework to methods that explain GCNs. We tested519

our framework on the simple GCN architecture proposed by [38]. Some papers [16, 21, 22, 24, 26,520

45, 46] have tested their method for different GNN models and report their results for each one. To521

rigorously measure the robustness of explainers to the change of GNN model, the authors of [47]522

define the consistency metric. It measures how accuracy varies across different hyperparameters of523

a model or model architectures. When comparing explanations for different GNNs, those papers524

tackle the question: does the performance of an explainability method depend on our initial choice of525

the GNN architecture? In the scope of this paper, we only want to raise awareness on the potential526

importance of the GNN model on the generated explanations.527

A.3 Taxonomy of explainability methods for GNNs528

Even if close in meaning, the definitions presented in this section are not to be confused with the ones529

introduced in [1] and [48].530

Input-level/Local vs Model-level/Global explanations. An input-level or example-level or even531

local explanation identifies features in a given input that are important for its prediction. In contrast,532

model-level or global explanations are input-independent: they investigate what input graph patterns533

can lead to a certain GNN prediction without respect to any specific input example. They explain the534

general behavior of the model.535

Intrinsic explanations vs Post-hoc explanations. Intrinsic explanations are produced for models536

that are self-understandable like linear regression and decision trees. No external method is required537

to explain their outcomes. Post-hoc explanations are brought up for models with higher complexity538

like neural networks, including GNNs, that do not presume any knowledge of the inner-workings or539

type of model at hand. In this case, an external method called explainability method is required to540

bring some clarity.541

Model-aware vs model-agnostic explanations. Among post-hoc explanations, we have model-542

aware explanations and model-agnostic explanations. Model-aware methods look inside the model to543

extract information. They directly study the model parameters to reveal the relationships between544

the features in the input space and the output predictions. Model-agnostic explanations consider the545

model as a black-box. To infer what elements are important in the input, they perturb the input and546

study the changes in the output.547
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the focus choice. Equations A.4 detail the mathematical expressions of the different fidelity scores.555

The fidelity scores (+/-) can be expressed either with probabilities (fidprob+/−) or indicator functions556

(fidacc+/−). While fidprob+/− metrics are more appropriate for evaluating explanations in the context of557

regression tasks because they are only based on the predicted probabilities, fidacc+/− metrics use the558

indicator function and are more suitable for classification problems. In this paper, we convey our559

results with the fidelity metrics that use the indicator function and are more suitable for classification560

problems.561

A.5 Accuracy measure and the concept of groundtruth562

The accuracy metric is based on the assumption that we actually know the groundtruth explanation.563

In current synthetic datasets, node labels are defined based on their position in the graph. Therefore,564

the groundtruth explanations are artificially built and interpreted as the motifs which the nodes belong565

to. We are critical towards this method of assigning explanations as it is an a posteriori assignment566

and is only based on the labeling procedure. How we, humans, synthetically build and explain the567

node labels is not necessary the right explanation of the GNN model logic. The GNN might put568

its attention on different graph entities than the ones of the human-intelligible substructures. For569

this reason, we claim here that accuracy is not the right evaluation metric as it is limited to datasets570

where we have ground-truth explanations and in these very rare cases, we strongly question their571

"ground-truth" quality.572

A.6 Classification of synthetic datasets573

The term synthetic is widely used but its definition is not always clear. Synthetic refers here to data574

for which we have groudtruth explanations available. But, the procedure to generate the synthetic575

data and its groundtruth explanations differ. We have identified three origins of groudtruth:576

• Type 1 synthetic data The true explanation is artificially defined by humans while they construct577

the graphs and can be identified as the nodes in the k-hop neighborhood of the target node.578

Such simple explanations can be easily discovered with nearest neighbor search or personalized579

PageRank. For instance, in the BA-house dataset, the motif house is the expected explanation.580

These synthetic datasets have been introduced in [10] and are now widely used as benchmarks to581

evaluate new explainability methods.582

• Type 2 synthetic data The true explanation is also defined during the construction of the datasets.583

But, this time, it is more complex than the simple target node neighbourhood. Type 2 synthetic584

datasets correspond to the three benchmarks introduced in [25]. They have been created to585

overcome the 5 pitfalls encountered in type 1 synthetic datasets.586

• Type 3 synthetic data The true explanation finds its origin in scientific experiments, human obser-587

vations or human intuitions. Type 3 synthetic data often reflect biological and chemical problems,588

where particular substructures can predict properties for molecules, as in the MUTAG [29] or the589

MoleculeNet [30] datasets (HIV, BACE, BBBP, Tox21, QM7), or predict properties of proteins,590

as in the Enzymes dataset [29].591

In this paper, we tested explainability methods on type 1 synthetic datasets to highlight their limitation592

in a rigorous evaluation of explainers. In addition, type 1 and type 3 are the most common families593

of synthetic data in recent papers [9–14, 16, 16–19, 26]. We have not tested the methods on type 3594

synthetic datasets since they are made for graph classification and regression tasks.595

A.7 Mask transformation strategies596

Sparsity. Sparsity is defined as the minimum percentage X of edges to remove from the initial graph.597

The sparsity strategy consists in keeping only edges which belong to the (100-X)% highest values598

in the mask. A sparsity of 70% or 0.7 means that we keep at least 30% of the edges in the mask.599

Some very sparse explainability methods might return sparser explanations with even less edges.600

But, we have the assurance that explanations cannot be bigger. Note that the size of the explanation601

is dependent on the size of the graph: if we change the dataset, the number of edges contained in602

the transformed masks will be different. Thus, for the sparsity strategy, the size of the explanation603

depends on the dataset.604
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Datasets BA-House BA-Grid Tree-Cycle Tree-Grid BA-Bottle

Base Type BA graph BA graph Tree Tree BA graph

Size 300 nodes 300 nodes height 8 height 8 300 nodes

Motif Type house grid cycle grid bottle

Size 5 nodes 9 nodes 6 nodes 9 nodes 5 nodes
Number 80 80 60 80 80

# Features constant constant constant constant constant
# Classes 4 2 2 2 4

Table 2: Synthetic datasets statistics

Datasets Cora CiteSeer PubMed Chameleon Squirrel Actor Facebook Cornell Texas Wisconsin

# Nodes 2708 3327 19717 2277 5201 7600 22470 183 183 251
# Edges 5429 4732 44338 36101 217073 33544 171002 295 309 499

# Features 1433 3703 500 2325 2089 931 4714 1703 1703 1703
# Classes 7 6 3 5 5 5 4 5 5 5

Table 3: Real datasets statistics

Threshold. Threshold is a value between 0 and 1 that defines the lowest value for edge importance.The605

threshold strategy consists in keeping the edges whose value in the mask is greater than the threshold.606

For a threshold τ ∈ [0, 1], we keep only values in the mask greater than τ . This leads to explanations607

of different sizes among the explainability methods, since some methods might value edges high608

while other methods give to their most important edges values below 0.5. Thus, for the threshold609

strategy, the size of the explanation depends on the method.610

Topk. Topk is the number of edges in the explanatory subgraph. The topk strategy only keeps the top611

k highest values in the mask. This strategy always returns explanations with a similar absolute size612

whatever the dataset and the method. We also define the directed topk strategy and the undirected topk613

strategy. While the first one keeps the top k directed edges, the second one avoids double counting614

of node-to-node connections and returns explanations with k connections, i.e. the explanation is an615

undirected subgraph of k edges.616

B Experimental details617

B.1 Datasets618

Details on how the synthetic datasets were constructed can be found in Table 2. Table 3 presents the619

structural properties of the real datasets. eBay graph characteristics are detailed in Table 4.620

Synthetic datasets. We use type 1 synthetic datasets introduced in [10] (see Appendix A.6), which621

are widely used in the xAI litterature [9–14, 16, 16–19, 26]. We follow the code2 of Vu et al. [13] to622

create the synthetic datasets. In these datasets, each input graph is a combination of a base graph and623

a set of motifs. Diverse motifs (house, cycle, grid, bottle) are plugged in on a base graph (Barabasi624

graph or tree). Nodes are labeled based on their position in the graph: they receive a label 0 if they625

are in the base graph and a non-zero label if they belong to a motif. For house and bottle, the position626

in the motif is also important. For grid and cycle, we only look if the node belongs to the shape. The627

ground-truth label of each node on a motif is determined based on its role in the motif. As the labels628

are determined based on the motif’s structure, the explanation for the role’s prediction of a node are629

the nodes in the same motif. Thus, the ground-truth explanation in these datasets are the nodes in the630

same motif as the target.631

Citation datasets. We consider three citation network datasets: Citeseer, Cora and Pubmed[49]. The632

datasets contain sparse bag-of-words feature vectors for each document and a list of citation links633

2https://github.com/vunhatminh/PGMExplainer/tree/master/PGM_Node/Generate_XA_Data
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Dataset # Nodes # Txn Nodes # Edges # Features # Classes # Positive label Train/Val/Test split

eBay 288853 207749 1225808 114 2 3081 (1.48% of txns) 0.75/0.15/0.1

Table 4: eBay graph statistics

between documents. Citation links are treated as (undirected) edges. Each document has a class label.634

For training, we only use 20 labels per class, but all feature vectors.635

Facebook. This dataset is a page-page graph of verified Facebook sites. Nodes correspond to official636

Facebook pages, links to mutual edges between sites. Node features are extracted from the site637

descriptions. The task is multi-class classification of the site category.638

Wikipedia network. Chameleon and squirrel are two page-page networks on specific topics in639

Wikipedia. In those datasets, nodes represent web pages and edges are mutual links between pages.640

And node features correspond to several informative nouns in the Wikipedia pages. We classify the641

nodes into five categories in terms of the number of the average monthly traffic of the web page.642

Actor co-occurrence network. This dataset is the actor-only induced subgraph of the film-director-643

actor-writer network. Each node corresponds to an actor, and the edge between two nodes denotes644

co-occurrence on the same Wikipedia page. Node features correspond to some keywords in the645

Wikipedia pages. Nodes are classified into five categories in terms of words on the actor’s Wikipedia.646

WebKB. WebKB1 is a web page dataset collected from computer science departments of various647

universities by Carnegie Mellon University. We use the three subdatasets of it, Cornell, Texas, and648

Wisconsin, where nodes represent web pages, and edges are hyperlinks between them. Node features649

are the bag-of-words representation of web pages. The web pages are manually classified into the650

five categories, student, project, course, staff, and faculty.651

eBay. We conducted a case study on a real-world dataset with collaboration with the eBay Risk652

Team. We construct a bipartite graph with 2 different kinds of nodes: transaction nodes (txn), which653

are what we want to predict as targets, and entity nodes, which are unique assets including buyer654

account, payment tokens, email, IP address, and shipping address, acting like a linkage medium to655

connect txns together. If a txn has relation with an entity, we put an edge between these two nodes.656

Two different txns will be linked to the same entity node if they are sharing the same entity, e.g. the657

same shipping address is used in the two txns. Each txn is labeled as legit or fraudulent, and carries658

features provided by eBay risk system. These features include the information of transaction itself659

and expert-designed features extracted from its neighbors such as user and email information. For660

the entity nodes, the feature vectors are filled with zero value. Our source data is sampled from661

e-commerce history transaction logs. To ensure the connectivity of the graph, we first sample some662

seed txns within certain period of time, and then expand 3 hop neighbors from these seeds, and at663

each hop, no more than 32 neighbors are picked. Then we collect all involved nodes. The final664

graph has a size of 288,853 nodes (includes 207,749 txn nodes) and 1,225,808 edges. Among the txn665

nodes, 3,081 are labeled as fraudulent. Each txn node has 114 features. The graph we are using is the666

same with eBay-small graph in paper xFraud [50]. The desensitization version data is available for667

legitimate, non-commercial usage after submitting the application 3. According to our experience,668

user based features usually contribute more, and payment tokens are usually a stronger evidence of669

fraud propagation among other entities. For example, a transaction with large user behavior change670

may be caused by account takeover attack, and a transaction using a payment token which has been671

used in other proved fraudulent purchases are more likely to be malicious.672

B.2 Explainability methods673

Model-aware. Gradient-based methods compute the gradients of target prediction with respect to674

input features by back-propagation. Features-based methods map the hidden features to the input675

space via interpolation to measure important scores. Decomposition methods measure the importance676

of input features by distributing the prediction scores to the input space in a back-propagation manner.677

3https://github.com/eBay/xFraud
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Model-agnostic. Perturbation-based methods use masking strategy in the input space to perturb678

the input. Surrogate models use node/edge dropping, BFS sampling and node feature perturbation.679

Counterfactual methods generate counterfactual explanations by searching for a close possible world680

using adversarial perturbation techniques [51].681

Explainer Model-aware/agnostic Target Type Flow

SA Model-aware N/E Gradient Backward
IG Model-aware N/E Gradient Backward
Grad-CAM Model-aware N Gradient Backward

Occlusion Model-agnostic N/E Perturbation Forward
GNNExplainer Model-agnostic N/E/NF Perturbation Forward
PGExplainer Model-agnostic N/E Perturbation Forward
PGM-Explainer Model-agnostic N/E Perturbation Forward
SubgraphX Model-agnostic N/E Perturbation Forward

PageRank Model-agnostic N Baseline -
Distance Model-agnostic N Baseline -

Table 5: Explainability methods tested in the context of our evaluation framework.

B.3 GNN training682

For all datasets, we use Adam optimizer [52]. The graph convolution network (GCN) has 2 or 3683

layers with 16, 20 or 32 units. We eventually apply regularization on the weights with a weight decay684

factor of 0.05 or 0.005. We also apply dropout for some datasets. We indicate all parameters for each685

family of datasets. For synthetic datasets and for Facebook dataset, we use a 0.8/0.15/0.1 train/val/test686

split. For the Planetoid datasets, we use the default split: 140/500/1000 for Cora, 120/500/1000687

for CiteSeer and 60/500/1000 for PubMed. We use the default train/val/test split for all other real688

datasets, namely 0.48/0.32/0.2. We further describe the model accuracy, F1-score, precision and689

recall for synthetic and real datasets.690

B.4 Protocol691

For each dataset, we first train a graph convolution network (GCN) as introduced by Kipf and Welling692

[38]. For synthetic datasets, we use the version implemented by Rex Ying 4 [10]. For real datasets,693

we use the original GCN implementation from Kipf 5. We use the trained model to do predictions of694

node targets of a testing set. We test twelve explainability methods on the synthetic and real datasets.695

We select 100 testing nodes which label we want to explain. We run each experiment on 5 different696

seeds and present the average results. All computations were run on ETH Zurich internal clusters:697

4https://github.com/RexYing/gnn-model-explainer
5https://github.com/tkipf/gcn

Datasets Syn WebKB Citat., Wiki eBay

Faceb., Actor

layers 3 2 2 2

hidden dim 20 32 16 32
epochs 1000 400 200 500

learning rate 0.001 0.001 0.01 0.001

weight decay 5 · 10−3 5 · 10−3 5 · 10−4 5 · 10−4

dropout 0 0.2 0.5 0.5

Table 6: GNN model and training parameters

Datasets BA BA Tree Tree BA
House Grid Cycle Grid Bottle

accuracy 0.986 1 1 0.895 1

F1-score 0.976 1 1 0.897 1
recall 0.979 1 1 0.87 1
precision 0.972 1 1 0.925 1

Table 7: GNN testing accuracy
on synthetic datasets
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Table 9: XAI LITERATURE FOR GNN GRAPH CLASSIFICATION. Acc defines the accuracy
(AUC, F1-score) measured with respect to the groundtruth, Fid+ and Fid- refer to the fidelity
metrics as defined in [26]. "Time" indicates if the paper has run a comparative analysis of the
computation time of the explainability methods. The final column "GNN accuracy" shows if
the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Target Synthetic Real Time GNN Accuracy

Acc Fid- Fid+ Acc Fid- Fid+

Method[9] 2019 LRP E ✓ ✓

Method[11] 2020 PGExplainer E ✓ ✓ 0.92 - 1.00

Method[12] 2020 RelEx E ✓

Method[13] 2020 PGM-Explainer E ✓ 0.85-1.00

Method[20] 2020 XGNN E ✓* ✓*

Method[21] 2021 GNN-LRP E ✓* ✓* ✓* ✓* 0.77-0.95

Method[22] 2021 Causal Screening E ✓* ✓ 0.64 - 0.98

Method[16] 2021 SubgraphX E ✓ ✓ ✓ 0.86-0.99

Method[23] 2021 Refine E ✓ ✓* ✓ ✓* ✓ 0.60-1.00

Method[14] 2021 RG-Explainer E ✓ ✓

Method[19] 2021 Gem E ✓* ✓

Taxonomy[24] 2019 CG,EB,c-EB
CAM,Grad-CAM

E ✓ 0.88-0.99

Taxonomy[26] 2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

E ✓ ✓ ✓ ✓ ✓ ✓ 0.44-0.91

Taxonomy [28] 2022
VanillaGrad,IntergratedGrad

GNNExplainer,PGMExplainer
E ✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.
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