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DIFFUSION PREFERENCE ALIGNMENT VIA RELATIVE
TEXT-IMAGE CONTRAST
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Figure 1: Diff-contrast represents a novel approach that aligns Text-to-Image models with
human preferences by optimizing diffusion model sampling steps and applying contrastive
weighting to similar prompt-image pairs. As demonstrated by the samples above, the Diff-
contrast fine-tuned SDXL-1.0 model successfully generates images that closely align with human
preferences. The list of prompts is provided in the Appendix.

ABSTRACT

Aligning large language models with human preferences has emerged as a crit-
ical focus in language modeling research. Yet, integrating preference learning
into Text-to-Image (T2I) generative models is still relatively uncharted territory.
The Diffusion-DPO technique made initial strides by employing pairwise pref-
erence learning in diffusion models tailored for specific text prompts. However,
Diffusion-DPO overlooks the valuable information that can be derived from the
contrast between images with related prompts, which could further enhance the
quality of text-to-image (T2I) generation. We introduce Diff-contrast, a new
method designed to align diffusion-based T2I models with human preferences
more effectively by optimizing relative preferences. This approach leverages both
prompt-image pairs with identical prompts and those with semantically related
content across various modalities. Furthermore, we have developed a new evalu-
ation metric, style alignment, aimed at overcoming the challenges of high costs,
low reproducibility, and limited interpretability prevalent in current evaluations of
human preference alignment. Our findings demonstrate that Diff-contrast outper-
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forms established methods such as Supervised Fine-Tuning and Diffusion-DPO
in tuning Stable Diffusion versions 1.5 and XL-1.0, achieving superior results in
both automated evaluations of human preferences and style alignment.

1 INTRODUCTION

Diffusion-based Text-to-Image (T2I) models have become the gold standard in image generative
technologies. These models are typically pre-trained on extensive web datasets. However, this one-
stage training approach may generate images that do not align with human preferences. In contrast,
Large Language Models (LLMs) have seen significant advancements in producing outputs that cater
to human preferences, primarily through a two-stage training process involving pre-training on web
datasets followed by fine-tuning on preference data (Rafailov et al., 2023; Yin et al., 2024; Chen
et al., 2024). Extending this preference fine-tuning approach to T2I models (Wallace et al., 2024)
presents opportunities to tailor image generation models to cater to diverse user preferences, en-
hancing their utility and relevance.

Recent research has concentrated on refining diffusion-based T2I models to better reflect human
preferences, such as aesthetics and text-image alignment, through Reinforcement Learning from
Human Feedback (RLHF) (Black et al., 2024; Clark et al., 2024; Fan et al., 2024; Lee et al., 2023;
Prabhudesai et al., 2023; Xu et al., 2024). This process typically involves pretraining a reward model
to represent specific human preferences and then optimizing the diffusion models to maximize the
reward of generated images. However, developing a robust reward model that accurately mirrors hu-
man preferences is challenging and computationally expensive. Over-optimizing the reward model
often leads to significant issues of model collapse (Prabhudesai et al., 2023; Lee et al., 2023).

Diffusion-DPO (Wallace et al., 2024) and incorporates Direct Preference Optimization (DPO)
(Rafailov et al., 2023) into the preference learning framework of T2I diffusion models. DPO in
LLMs focuses on contrasting chosen and rejected responses, bypassing the need for training addi-
tional reward models. However, DPO may not fully capture the nuances of human learning, which
benefits from analyzing both successful examples and relevant failures (Dahlin et al., 2018). D3PO
Yang et al. (2024) incorporates the DPO framework in online setting by sampling preference pairs
from the T2I model. However, the on-the-fly perference generation incurs extra computing cost.

Relative Preference Optimization (RPO) (Yin et al., 2024) proposes a learning method akin to human
learning, where insights are derived from contrasting both identical and similar questions. RPO
contrasts all chosen and rejected responses within a mini-batch, weighting each pair according to
the similarity of their prompts. This contrastive preference learning approach has shown convincing
improvements in aligning human preferences in LLMs compared to other baseline methods. Further
discussions on related works can be found in Appendix B.

In this paper, we aim to design an alignment algorithm for text-to-image (T2I) models that ef-
fectively leverages the information contained in data with non-identical prompts. By contrasting
images generated from non-identical prompts, Diff-contrast can help the model discern overarching
patterns in color, lighting effects, and composition that align more closely with human preferences
(Palmer et al., 2013). However, designing such a contrastive alignment algorithm for T2I diffusion
models presents several significant challenges. Firstly, the log density of the final generated images
is implicit and challenging to quantify in diffusion models because it involves integrating out all
intermediate steps. Additionally, T2I diffusion models are inherently multi-modal, involving input
prompts and output images in different modalities, which complicates the measurement of similarity
between these multi-modal input-output pairs.

To overcome these challenges, we have 1) derived the Diff-contrast loss for diffusion models, sim-
plifying it to apply relative preference alignment across each timestep, and 2) implemented the CLIP
(Radford et al., 2021) encoder to project prompts and images into the same embedding space. This
allows for the accurate measurement of similarity between multi-modal prompt-image pairs. Our
experiments, as illustrated in Figure 2, validate our approach, demonstrating that learning prefer-
ences across non-identical prompts significantly enhances the alignment of generated images with
human preferences in T2I models.

Moreover, our experiments highlight several shortcomings in the current evaluation metrics for
human preference alignment. Traditional approaches like Diffusion-DPO rely on human evaluators,
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Figure 2: Sample images from Diff-contrast-SDXL The prompts used to generate the images are:
“A fantasy-themed portrait of a female elf with golden hair and violet eyes, her attire shimmering
with iridescent colors, set in an enchanted forest. 8K, best quality, fine details.”, “A rebellious
teenage boy with spiked, vibrant red hair, riding a futuristic motorcycle through neon-lit city streets,
headphones around his neck blaring electronic music. Best quality, fine details”, “A young male
mage with silver hair and mysterious blue eyes, wearing an intricate robe, casting spells with a
glowing crystal staff in a dark enchanted forest. Best quality, fine details.”, and “The image features
an ancient Chinese landscape with a mountain, waterfalls, willow trees, and arch bridges set against
a blue background.”,”A mysterious priestess in a flowing, ethereal gown, communicating with spirits
in a sacred grove, her eyes glowing when she invokes ancient spells. Best quality, fine details.”

which not only incur substantial costs but also lead to results that are difficult to reproduce. While
various reward models, such as HPSv2 (Wu et al., 2023), Pick Score (Kirstain et al., 2023), and
ImageReward (Xu et al., 2024), have been pretrained on datasets labeled by humans to represent
human preferences, the minimal variance in their reward scores often understates the differences in
images as perceived by human preferences, complicating the assessment of whether a preference
learning algorithm genuinely enhances alignment, as illustrated in Table 1.

To more effectively and reliably evaluate preference learning algorithms, we introduce a novel task
called Style Alignment and have developed dedicated datasets for this purpose. This task aims
to align the outputs of T2I models with specific styles, such as Van Gogh or sketch, identified as
preferred samples within the dataset. We then measure the success of preference learning methods
based on how closely the images generated by the fine-tuned model match these preferred styles.

We conduct empirical evaluations of Diff-contrast on state-of-the-art T2I models, including Sta-
ble Diffusion 1.5 (Rombach et al., 2022a) (SD1.5) and XL-1.0 (Podell et al., 2023b) (SDXL), and
compare it with leading image preference alignment methods. Our experimental results show that
Diff-contrast outperforms baseline methods in both human preference alignment and style alignment
tasks by clear margins.

Our main contributions are summarized as follows:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• We introduce a simplified step-wise denoising alignment loss and multi-modal re-
weighting factors for improved effectiveness.

• We introduce Style Alignment, a new evaluation task for image preference learning that is
less costly than using human labelers and yields more reproducible and interpretable results
compared to traditional human preference reward models.

• Diff-contrast outperforms existing preference learning baselines across both automated
evaluations of human preference and style alignment tasks.

2 DIFF-CONTRAST

In this section, we introduce Diff-contrast, a new diffusion-based preference learning algorithm that
addresses the two challenges mentioned above. In LLM, πθ(y |x) is readily estimated through
next-token prediction, given a specific response y to a prompt x. However, diffusion models
approximate the probability of generating an image by reversing the forward diffusion process,
πθ(y0:T |x) = π(yT )

∏t=1
t=T−1 πθ(yt|yt+1,x). To ease notation, we denote πθ(yt|yt+1,x) as

πθ(yt |yt+1) when there is no ambiguity. Integrating out all intermediate steps yt |yt+1 for all
t < T is not feasible in practice due to the huge computational cost. Hence, we propose Diff-
contrast and perform preference optimization at each diffusion reversing step. Following Ethayarajh
et al. (2024) and Yin et al. (2024), we define the step-wise reward function for diffusion models as

r(yw
t |yw

t+1) = β log
πθ(y

w
t |yw

t+1)

πref(yw
t |yw

t+1)
(1)

where β is the regularization hyper-parameter as in Wallace et al. (2024) and Rafailov et al. (2023).
Then, we define the Diff-contrast loss at each reverse diffusion step t as:

LDiff-contrast,t(θ) = ωi,j log σ

(
β log

πθ(y
w
t,i |yw

t+1,i)

πref(yw
t,i |yw

t+1,i)
− β log

πθ(y
l
t,j |yl

t+1,j)

πref(yl
t,j |yl

t+1,j)

)
(2)

Note that different from Yin et al. (2024), the embedding distance weighting is performed outside
the log-sigmoid function as we have observed superior empirical performance with this modified
formulation.

Following DDPM (Ho et al., 2020), we then optimize the diffusion models across all timesteps t,

L̃(θ) = Et∼U [1,T−1]

[
λ(t) · ωi,j log σ

(
β log

πθ(y
w
t,i |yw

t+1,i)

πref(yw
t,i |yw

t+1,i)
− β log

πθ(y
l
t,j |yl

t+1,j)

πref(yl
t,j |yl

t+1,j)

)]
(3)

where t is uniformly sampled from [1, T−1], and λ(t) is the timestep re-weighting factor. Similar to
Ho et al. (2020), this re-weighting factor is chosen to be constant for all timesteps. In the following
two sections, we will explore (a) how to define ωi,j for multi-modal T2I tasks and (b) how to
efficiently estimate πθ(y

l
t |yl

t+1) by using only (yw
0 ,y

l
0,x) from the offline dataset.

2.1 CONTRASTIVE WEIGHTS FOR IMAGE PREFERENCE LEARNING

In RPO (Yin et al., 2024), the weight ωi,j is assigned to a pair of preference data, denoted as
(yw

i ,x
w
i ) and (yl

j ,x
l
j), by comparing their text embeddings. This weighting scheme utilizes the

semantically related preference pairs within the batch and is the core to the success of RPO. In T2I
models, we have multi-modal preference data with prompt and image. To this end, we introduce
multi-modal distance weights that consider the context of both the prompt and image. This adap-
tation is designed to enhance the learning of preferences in T2I models by capturing the intricate
interplay between textual and visual modalities.

Multi-Modal Embedding Distance Weights Denote (y,x), (y′,x′) as two image-prompt pairs
and f(y, c) as an encoder that extracts image-text embeddings. The contra distance weight is defined
as

ω̃ = exp(−cos(f(y,x), f(y′,x′))

τ
)
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where cos(f(y,x), f(y′,x′)) = 1 − f(y,x)T f(y′,x′)
||f(y,x)||2||f(y′,x′)||2 , τ is the temperature parameter that de-

termines the sensitivity of the weight against the change in embedding distance. Smaller τ leads to
greater sensitivity to variations in embedding distance, resulting in weights that focus on pairs that
are very close in terms of semantic meaning and visual appearance. Conversely, a higher τ leads to
more uniform weight distribution.

In our setting with paired preference data: D = (yw,yl,x). Let M be the size of the mini-
batch. The unnormalized distance weight matrix W̃ ∈ RM×M is then defined as W̃i,j = ω̃i,j ,

where ω̃i,j = exp(− cos(f(yw
i ,xw

i ),f(yl
j ,x

l
j))

τ ). Following Yin et al. (2024), we normalize the distance
weights on each row of the weight matrix so that the sum of each row of W equals 1. Intuitively, the
distance matrix measures the similarity between preference pairs (yw

i ,x
w
i ) and (yl

j ,x
l
j), i, j ∈ [M ].

The diagonal elements corresponds to the preference pairs with identical prompt. The off-diagonal
elements represent the contrast within the batch among preference pairs associated with different
prompts. This approach leverages all available preference pairs within the batch and enhances im-
age preference learning.

2.2 SAMPLING DIFFUSION CHAIN FROM OFFLINE DATA

Given (yw
0 ,y

l
0,x), Diff-contrast loss in Equation (3) requires samples yt,yt+1 to evaluate the log

probability log πθ(yt | yt+1). Note that yt,yt+1 are dependent with respect to the same y0, and
one can be efficiently derived from the forward process of Diffusion-based generative models (Ho
et al., 2020). The forward process is defined to gradually add Gaussian noise to the data y0 ∼ q(y0)
according to a variance schedule β1, . . . , βT :

q (y1:T | y0) :=

T∏
t=1

q (yt | yt−1) , q (yt | yt−1) := N
(
yt;
√
1− βtyt−1, βtI

)
(4)

Next, we introduce how we derive yt, yt+1 and πθ(yt | yt+1).

Maginal Sampling The forward process admits sampling yt at an arbitrary timestep t in closed
form. Let αt := 1− βt and ᾱt :=

∏t
s=1 αs. With the re-parametrization trick, we have

yt+1 =
√
ᾱty0 + (1− ᾱt)ϵt+1, ϵt+1 ∼ N (0, I) (5)

For ∀t, we directly sample yt+1 according to Equation (5) in the forward diffusion process.

Denoising with Ground Truth Following the usual practice (Ho et al., 2020; Xiao et al., 2021;
Wang et al., 2023b; Zhou et al., 2023), we sample yt|yt+1,y0 from the conditional posterior distri-
bution of previous diffusion steps,

q (yt | yt+1,y0) = N
(
yt; µ̃t+1 (yt+1,y0) , β̃t+1I

)
, (6)

where µ̃t+1 (yt+1,y0) :=
√
ᾱtβt+1

1−ᾱt+1
y0 +

√
αt+1(1−ᾱt)

1−ᾱt+1
yt+1 and β̃t+1 := 1−ᾱt

1−ᾱt+1
βt. Using the Gaus-

sian re-parametrization, and replacing the y0 with yt+1 in Equation (5), we could obtain

yt =

√
αt

αt+1
(yt+1 −

βt+1√
1− ᾱt+1

ϵt+1) + σt+1ϵt

where σ2
t+1 = β̃t+1 = 1−ᾱt1

1−ᾱt+1
βt+1, ϵt ∼ N (0, I). Following the denoising model definition in

DDPM (Ho et al., 2020), we parameterize πθ(yt | yt+1) as follows :

πθ(yt | yt+1) = N (yt;

√
αt

αt+1
(yt+1 −

βt+1√
1− ᾱt+1

ϵθ(yt+1, t+ 1)), σ2
t+1I) (7)

For simplicity, we approximate yt with its posterior mean: E [yt | yt+1,y0] =
√

αt

αt+1
(yt+1 −

βt+1√
1−ᾱt+1

ϵt+1). We then plug yt and yt+1 into Equation (7), and derive

πθ(yt|yt+1) ≈
1(√

2πσ2
t+1

)d exp

(
−1

2

βt+1

(1− ᾱt)

αt

αt+1
∥ϵθ(yt+1, t+ 1)− ϵt+1∥22

)
(8)
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where d is the dimension of the image vector.

Note that πθ(yt|yt+1) follows the same formula for both preferred and rejected sample pairs. Com-
bining Equations (3) and (8), with a constant timestep re-weighting (Ho et al., 2020; Wallace et al.,
2024), yields our final Diff-contrast loss:

LDiff-contrast(θ) = −E

[
ωi,j log σ

(
− 1

2
β(
∥∥ϵθ(yw

t+1,i, t)− ϵw
∥∥2
2
−
∥∥ϵref(y

w
t+1,i, t)− ϵw

∥∥2
2

− (
∥∥ϵθ(yl

t+1,j , t)− ϵl
∥∥2
2
−
∥∥ϵref(y

l
t+1,j , t)− ϵl

∥∥2
2
))

)] (9)

We provide the detailed derivation in Appendix A.

We notice a strong connection between the loss shown above with that of conditional transport
(Zheng & Zhou, 2021; Tanwisuth et al., 2021), where ωij with

∑
j ωij = 1 can be interpreted as the

probability of transporting to the jth losing prompt-image pair (xj ,y
l
t+1,j) given the ith winning

prompt-image pair (xi,y
w
t+1,i) as the origin of the transport, while the (i, j) term transformed by

log σ(·) would be considered as the cost of transporting from (xi,y
w
t+1,i) to (xj ,y

l
t+1,j). From

the conditional transport perspective, for each winning pair (xi,y
w
t+1,i), Diff-contrast computes the

distance between the winning pair and all losing pairs in the mini-batch and prioritizes maximizing
the cost from transporting from (xi,y

w
t+1,i) to the losing pairs in CLIP latent space. This approach

effectively minimizes the likelihood of sampling losing images that are semantically related to
(xi,y

w
t+1,i). This perspective may allow further improvement by adhering to the conditional-

transport framework, yet modifying the definitions of transport probabilities and point-to-point
transport cost to better serve the purpose of preference optimization. We leave this investigation to
future study.

3 STYLE ALIGNMENT DATASET

The state-of-the-art evaluation metric for human preference learning on T2I models consists of two
components: (a) Human evaluation via employed labelers, (b) Automatic evaluation leveraging hu-
man preference reward models like HPSV2 (Wu et al., 2023) and Pick Score (Kirstain et al., 2023).
(1) Cost and Reproducibility in Human Evaluation: Diffusion-DPO (Wallace et al., 2024) evalu-
ates employed labelers on Amazon Mechanical Turk to compare image generations which is costly
and suffers from poor reproducibility due to the subjective nature of human preferences. (2) Dif-
ficulties in Automatic Evaluation: As suggested by Wallace et al. (2024), diffusion-based T2I
models are pre-trained on datasets designed to align with human preferences. Consequently, Vanilla
T2I models are inherently task-tuned towards human preference alignment. This scenario presents
two significant challenges:

(a) Preference learning shows limited improvement in task-tuned models, a phenomenon also ob-
served in the LLM summarization task by Rafailov et al. (2023). (b) The performance of Supervised
Fine-Tuning (SFT) varies depending on the capacity of the Vanilla model selected. Both the pre-
training and fine-tuning data are collected to enhance alignment with human preferences, making
the quality of the preference dataset pivotal to SFT performance. SFT can dramatically improve
evaluation scores when the preference data is of higher quality than the model’s generations. Con-
versely, it can degrade performance if the model was pre-trained on images of superior quality. This
variability can undermine the effectiveness of automatic evaluations.

These issues highlight the complex interplay between model capacity and data quality of fine-tuning
models that are already implicitly preference-tuned during pre-training.

To address the limitations inherent in current image preference evaluation metrics, we introduce
a novel downstream task with datasets specifically designed for image preference learning, which
we term Style Alignment. Style alignment aims to fine-tune T2I models to generate images that
align with the offline data to achieve style transfer (Gatys et al., 2015; 2016) on T2I models. These
styles are intentionally chosen to be visually distinct from those in the Pick-a-Pic V2 dataset, thereby
enhancing the divergence between downstream tasks and pretraining. We constructed three datasets
in Van Gogh, Sketch, and Winter styles each containing 10,000 preference pairs.
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Preference Pair Construction The concept of style transfer is particularly well-suited to the field
of image preference learning. We label the edited image after style transfer as preferred and the
original image as rejected to fine-tune T2I models towards generating images with desired style.
Our datasets are crafted based on subsets of Pick-a-Pic V2 (Kirstain et al., 2023). For each pair of
images in the subset, we randomly pick one as rejected and process it with state-of-the-art image
editing models: Prompt Diffusion (Wang et al., 2023a) for Sketch and Winter style and Instruct
Pix2Pix (Brooks et al., 2023) for Van Gogh style. The new image after style transfer is labeled
as preferred. Notationally, the new datasets follow the same format as Pick-a-Pic V2: (yw,yl,x),
where yw is the image after style transfer, yl is the image from Pick-a-Pic.

Content-Safer Dataset Pick-a-Pic V2 is collected through webapp without safety checking. We
observed substantial amount of inappropriate content when exploring the dataset. To foster a safe
and ethical research environment, we manually deleted the inappropriate prompts when creating our
style transfer datasets. We will release our datasets to the public soon.

Figure 3: Example Images from Pick-a-pic, Van Gogh, Sketch and Winter Datasets

4 EXPERIMENTS

In our study, we conduct experiments designed to address the following research questions: (1)
Can Diff-contrast enhance the T2I models’ ability to generate images that better align with human
preference? (2) How do preference learning methods perform when applied to style alignment
tasks? (3) What are the key factors that affect the performance of Diff-contrast? (4) Could style
alignment effectively address the challenges encountered in aligning with human preferences in
image preference learning evalutaions?

4.1 EXPERIMENT SETUP

Models and Datasets Following Wallace et al. (2024), our human preference alignment experi-
ments are conducted on the Pick-a-Pic V2 dataset (Kirstain et al., 2023). We conduct style alignment
experiments on our style alignment datasets (Van Gogh, Sketch, and Winter). The experiments are
conducted on Stable Diffusion 1.5 (SD1.5) and Stable Diffusion XL (SDXL).

Evaluation For human preference alignment, we evaluated the Pick Score, HPSV2 , LAION Aes-
thetics score (Schuhmann, 2022), CLIP (Radford et al., 2021), and ImageReward (Xu et al., 2024),
using the HPSV2 benchmark test prompts (Wu et al., 2023) and Parti-Prompts (Yu et al., 2022).

7
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With each reward model, we report both average scores and win rates between Diff-contrast and
the baselines. For style alignment, we quantified model performance using the Fréchet Inception
Distance (FID) (Heusel et al., 2017), which measures the difference between the preferred images
in our training set and those generated from the training prompts by the fine-tuned T2I model.

Implementations We build Diff-contrast upon the codebase of Diffusion-DPO (Wallace et al.,
2024). We leverage the CLIP encoder (Radford et al., 2021) to compute multi-modal embeddings.
For human preference alignment, we performed one-stage fine-tuning on both models for SFT and
Diff-contrast. We directly use the checkpoints provided by Diffusion-DPO1. For style alignment,
we also conduct one-stage fine-tuning. Additionally, following Rafailov et al. (2023), we perform
two-stage fine-tuning which is expected to be more effective due to the domain gap between the pre-
training of T2I models and the style alignment task. The details on learning rate and optimization
steps are listed in Table 4.

4.2 HUMAN PREFERENCE ALIGNMENT

Table 1 reports win rates for Diff-contrast, Diffusion-DPO (Wallace et al., 2024), SFT, and Base Sta-
ble Diffusion. On SDXL, Diff-contrast achieves better performance on all reward models comparing
to the baselines except for slightly lower CLIP score on Parti-Prompt dataset. In particular, Diff-
contrast achieves 64.28 HPSV2 win rate on the HPSV2 benchmark dataset and 64.09 HPSV2 win
rate on the Parti-Prompt dataset . On SD1.5, We observe that Diff-contrast outperforms Diffusion-
DPO on HPSV2, PickScore, Aesthtics, and Image Reward. The consistent improvement comparing
to Diffusion-DPO (Wallace et al., 2024) in aligning SD1.5 and SDXL showcases that utilizing in-
formation from related prompt-image pairs would benefit image preference learning.

Table 1: Win rates for Diff-contrast v.s. existing alignment approaches under various reward models
using prompts from the HPSV2 and Parti-Prompt datasets. On SD1.5, the temperature parameter is
chosen to be 0.01, on SD1.5 and 0.5 on SDXL

Model Test Dataset Method HPS Pick Score Aesthetics CLIP Image Reward

SD1.5
HPSV2

Contrast (ours) v.s. Base 88.44 88.09 78.66 58.16 80.47
Contrast (ours) v.s. SFT 63.84 68.25 47.22 66.09 62.5

Contrast (ours) v.s. DPO (Wallace et al., 2024) 73.41 72.28 60.19 52.09 70.03

Parti-Prompt

Contrast (ours) v.s. Base 84.19 84.87 76.65 61.34 75.06
Contrast (ours) v.s. SFT 71.78 75.15 47.86 65.43 64.20

Contrast (ours) v.s. DPO (Wallace et al., 2024) 75.74 74.57 65.44 54.72 68.50

SDXL

HPSV2
Contrast (ours) v.s. Base 93.09 83.59 50.59 65.28 79.41
Contrast (ours) v.s. SFT 79.53 95.94 81.13 62.59 78.84

Contrast (ours) v.s. DPO (Wallace et al., 2024) 64.28 57.16 51.44 49.63 57.41

Parti-Prompt

Contrast (ours) v.s. Base 90.63 79.60 65.07 62.75 82.23
Contrast (ours) v.s. SFT 79.78 95.10 79.41 67.40 81.00

Contrast (ours) v.s. DPO (Wallace et al., 2024) 64.09 58.52 59.80 48.35 58.58

Figure 2 provides a visual comparison of Diff-contrast-SDXL, DPO-SDXL, SFT-SDXL, and Base
SDXL generations. In general Diff-contrast generates images with better quality. In the first exam-
ple: “A fantasy-themed portrait of a female elf with golden hair and violet eyes, her attire shimmer-
ing with iridescent colors, set in an enchanted forest. 8K, best quality, fine details.”, Diff-contrast
generation depicts a fantasy-themed elf which is illuminated with vibrant and visually appealing
light, highlighting the colorful details and textures of the scene. This kind of lighting creates a
lively, enchanting atmosphere. These examples showcase that Diff-contrast is able to generate im-
ages with finer details, better lighting effects, vivid colors and higher fidelity to the prompt. More
examples from Diff-contrast-SDXL can be found in Appendix F.

4.3 STYLE ALIGNMENT

We report the FID between style-transferred images in the training data and the images generated by
the finetuned models generated using the same training prompts. The results are provided in Table 2
.

1The checkpoints are downloaded from https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1 and
https://huggingface.co/mhdang/dpo-sdxl-text2image-v1
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Table 2: Comparison of the FID scores for images generated from training prompts using style-
aligned T2I models, with the training images serving as references.

Method SD1.5 SDXL
Van Gogh Sketch Winter Van Gogh Sketch Winter

SFT 15.34 20.56 16.31 28.15 16.41 21.74

DPO (Wallace et al., 2024) 91.8 34.67 63.43 152.35 137.07 99.37

Contrast (Ours) 42.24 29.36 33.29 97.57 59.75 85.54

SFT+SFT 14.73 19.89 16.06 22.71 30.48 30.78

SFT+DPO (Wallace et al., 2024) 47.47 24.92 26.26 25.62 23.32 20.02

SFT+Contrast (Ours) 13.25 17.54 14.50 17.95 15.96 15.75

We observe that for one-stage fine-tuning, SFT is most effective in fine-tuning Vanilla T2I models
due to the domain gap between vanilla Stable Diffusion Models and the style alignment dataset. Still,
we observe that Diff-contrast better aligns the model to the desired style. In two-stage fine-tuning,
Diff-contrast demonstrates superior performance for all 3 styles and 2 models. The outstanding
performance of Diff-contrast is attributable to its ability of learning from all comparisons within
the mini-batch. The less related prompts-image pairs could still benefit preference learning by the
contrast in overall style and backgrounds.

Figure 4 showcases the performance of two-tage style alignment fine-tuning on SD1.5 and SDXL.
The terms SFT, DPO, and Diff-contrast atop the image refer to performing SFT, Diffusion-DPO or
Diff-contrast on SFT tuned models. We observe that on all three datasets, Diff-contrast successfully
learns both details and the overall style, generating images that account for both style characteristics
and fine details. we note that Diffusion-DPO tends to learn an incorrect style on the Van Gogh
dataset, adding excessive green in the background. On the Winter dataset, Diffusion-DPO tends to
over-emphasize the background and obscure the main body’s details with snowflakes. Diffusion-
DPO encounters similar issues on the Sketch dataset by generating a background that does not
resemble a pencil-style sketch and obscures the details with black blocks. SFT can effectively learn
the details but appears to be weaker in leaning the styles, especially in the background. We partially
attribute the advantage of Diff-contrast over Diffusion-DPO and SFT to the use of related prompt-
image pairs. By learning all the pairs in the mini-batch, Diff-contrast is able to capture the styles
and composition more accurately, producing better quality images comparing to the baselines. More
examples from style aligned Stable Diffusion models can be found in Appendix G.

4.4 ABLATION STUDIES

We conducted ablation study on the distance temperature parameter τ with the aim of understanding
how much the focus should we put on semantically related prompt-image pairs to enhance preference
alignment. In our experiment, we compare the performance of Diff-contrast under different distance
temperatures in both human preference alignment and style alignment. In Table 3, we report reward
model scores from automatic evaluations and FID for style alignment. We find that a lower distance
temperature (τ =0.01) leads to overall best performance being highest on HPS (Wu et al., 2023),
Image Reward (Xu et al., 2024) and second highest on Pick Score (Kirstain et al., 2023). On the
style alignment task, it is observed that the style alignment performance improves as we increase
the temperature. This contrast between human preference alignment and style alignment can be
attributed to the differing natures of the two tasks: In human preference alignment tasks, a lower
temperature focuses more on related prompt-image pairs to improve prompt-specific details. In style
alignment tasks, however, correctly learning the overall image style becomes a major challenge. This
is tackled by a higher temperature that results in more uniform weights for all preference pairs since
any preference pair entails characteristics of image style that contributes to the alignment of styles.
Due to page limit, we defer the results to appendix C.

5 CONCLUSION

We introduce Diff-contrast as a novel method for aligning Text-to-Image (T2I) Models with human
preferences. This approach enhances each sampling step of diffusion models and utilizes similar
prompt-image pairs through contrastive weighting. On Stable Diffusion versions 1.5 and XL, Diff-

9
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Figure 4: Sample images from Style Aligned Stable Diffusion Models, the images are generated
from prompts: “Edelgard from Fire Emblem depicted in Artgerm’s style.”, “Portrait of Archduke
Franz Ferdinand by Charlotte Grimm, depicting his detailed face.”

contrast exhibited superior performance compared to previous alignment methods in both human
preference alignment and our newly introduced style alignment tasks. The empirical findings high-
light the effectiveness of Diff-contrast in fine-tuning diffusion-based T2I models and demonstrate
the value of style alignment as a reliable measure for assessing image preference learning methods.

Limitations & Future Work Although Diff-contrast enhances the alignment of text-to-image
models, it relies on a dataset collected from the web, which may not fully capture the diverse spec-
trum of human preferences across different communities. A potential avenue for future research
could involve developing methods to collect datasets that reflect a wider range of cultural diversity.
This would help in creating models that are more universally applicable and sensitive to various
cultural nuances.
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Diffusion Preference Alignment Via Text- Image Contrast:
Appendix

A MATHEMATICAL DERIVATION

In this section we provide the details on the derivation of our Diff-contrast loss in Equation (9), we
start from the loss function in Equation (3):

LDiff-contrast,t(θ) = ωi,j log σ

(
β log

πθ(y
w
t |yw

t+1)

πref(yw
t |yw
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− β log

πθ(y
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(10)

following Ho et al. (2020), the policies are of form:
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1− ᾱt+1

ϵθ(y
∗
t+1, t)), σ

2
t+1I

)
=

1(√
2πσ2

t+1

)d exp

(
− 1

2σ2
t+1

∥∥∥∥y∗
t −

√
αt

αt+1
(y∗

t+1 −
βt+1√
1− ᾱt+1
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where d is the dimension of the image vector, we use y∗
t for ease of notation. The derivation using
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t is applicable to both yw
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The ground-truth denoising distribution and posterior mean can be written in the form:
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to obtain y∗
t in the reverse process with the re-parametrization trick. The policy is then evaluated as:
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The log probability is simply:
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(1− ᾱt)αt+1

∥∥ϵθ(y∗
t+1, t+ 1)− ϵ∗t+1 + σt+1ϵ

∗
t

∥∥2
2

− d

2
· log 2π − d · log σt+1

(11)

Plugging equation 11 into equation 10 yields:
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1− ᾱt+1

∥∥ϵθ(y∗
t+1, t+ 1)− ϵ∗t+1

∥∥2
2

)

=
1(√

2πσ2
t+1

)d exp

(
−1

2

1− ᾱt+1

(1− ᾱt)βt+1

αt

αt+1

β2
t+1

1− ᾱt+1
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Again, the log probability is:
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Plugging equation 12 to equation 10 yields:
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B RELATED WORKS

B.1 DIFFUSION BASED TEXT-TO-IMAGE MODELS

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2020; Dhariwal & Nichol,
2021) have been the state-of-the-art in image generation. A diffusion model consists of a forward
process that gradually adds noise to the image and attempts to learn to reverse this process with
a neural network. Diffusion-based T2I models have also achieved impressive results in producing
high-quality images that closely adhere to the given caption (Nichol et al., 2022; ram, 2022; Rom-
bach et al., 2022b; Saharia et al., 2022; Podell et al., 2023a). However, these models are pre-trained
on large web dataset and may not align with human preference. Our work aims to tackle this issue
by improving T2I model alignment using semantically related prompt-image pairs

B.2 DIFFUSION-DPO

Diffusion-DPO (Wallace et al., 2024) generalizes the efficient DPO (Rafailov et al., 2023) to diffu-
sion model alignment. Diffusion-DPO defines reward R(x,y0:T ) on the diffusion path for prompt
x, latents y1:T and image y0. The RLHF loss is defined as:

max
pθ

Ex∼Dx,y0:T∼pθ(y0:T |x) [r (x,y0)]− βDKL [pθ (y0:T | x) ∥pref (y0:T | x)] (13)

where r (x,y0) = Epθ(y1:T |y0,x) [R (x,y0:T )] is the marginalized image reward across all possible
diffusion trajectories.

With some approximation and algebra, the Diffusion-DPO loss can be simplified to:

L(θ) = −E(yw
0 ,yl

0)∼D,t∼U(0,T ),

yw
t ∼q(yw

t |yw
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t∼q(yl

t|y
l
0)

log σ
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− βTω (λt) (∥ϵw − ϵθ (y

w
t , t)∥

2
2 − ∥ϵw − ϵref (y

w
t , t)∥

2
2

−
(∥∥ϵl − ϵθ

(
yl
t, t
)∥∥2

2
−
∥∥ϵl − ϵref

(
yl
t, t
)∥∥2

2

))
(14)

The approximate Diff-contrast loss is a function of denoising diffusion loss, which is simple to
compute. However, it is limited to the prompt-image pairs that shares identical prompts.

B.3 RELATIVE PREFERENCE OPTIMIZATION

Relative Preference Optimization (Yin et al., 2024) (RPO) draws inspiration from human cognition
that often involves interpreting divergent responses, not only to identical questions but also to those
that are similar. RPO utilizes both identical and semantically related prompt-response pairs in a
batch and weight them by the similarity of the prompts between preferred and rejected data. Assume
we have unpaired data with N preferred prompt-response pairs and M rejected prompt-response
pairs, (yw,i, xi) , (yl,j , xj) , i ∈ [N ], j ∈ [M ]. The RPO loss function is given by:

LRPO = − 1

M ∗N

M∑
i=1

N∑
j=1

log σ

(
ωij × β

(
log

πθ (yw,i | xi)

πref (yw,i | xi)
− log

πθ (yl,j | xj)

πref (yl,j | xj)

))
(15)

where

ωij =
ω̃ij∑N

j′=1 ω̃ij′
, ω̃ij = exp

(
−cos (f (xw,i) , f (xl,j))

τ

)
where f(·) is a text encoder, and τ is the temperature parameter. Intuitively, RPO constructs a
correlation matrix of prompts within the mini-batch and normalizes the weights across each column
to incorporate semantically related prompts into preference optimization.

RPO significantly improves the alignment of LLMs with human preferences by better emulating the
human learning process through innovative contrastive learning strategies.
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Table 3: Ablation Study on Diff-contrast Temperature Parameters. We use SD1.5 as the base model
for Huamn preference alginment and SFT-tuned SD1.5 for Van Gogh Style alignment. We reported
reward model scores on HPSV2 test prompts and style alignment FID under various temperatures,
the beta parameter is set to be 2000.

Temperature Parameter (τ ) 0.01 0.1 1.0 2.0 5.0
HPS 27.373 27.286 27.245 27.176 27.205

Pick Score 21.425 21.448 21.417 21.366 21.421

Aesthetics 5.694 5.696 5.671 5.733 5.657

CLIP 0.351 0.352 0.353 0.353 0.352

Image Reward 0.342 0.335 0.320 0.270 0.316

Style Alignment FID 31.96 16.26 13.66 13.82 13.25

C ADDITIONAL ABLATION STUDIES

n this section, we begin by presenting the ablation studies on the temperature parameter τ . We also
conducted ablation studies on batch size and β in appendix C. In the batch size ablation study, we
increased the batch size from 2 to 16 and observed a consistent improvement in HPSv2 scores. This
upward trend indicates that Diff-contrast’s approach efficiently leverages larger batches of compar-
ative data to enhance preference learning. This trend demonstrates how effectively Diff-contrast’s
strategy utilizes larger quantities of comparative data for preference learning. For ablation studies on
β,we explored values from the set [2000, 5000, 7000, 10000] and observed that β = 2000 yielding
the best performance.

(a) Ablation Studies with respect to Batch Size (b) Ablation Studies with respect to β

Figure 5: Ablation Studies based on Diff-contrast-SD1.5

D ADDITIONAL DETAILS:

We used β = 2000 for SD1.5 human preference alignment and β = 5000 for the rest of the exper-
iments. Following Wallace et al. (2024), we use AdamW for SD 1.5 (Loshchilov & Hutter, 2019)
and AdaFactor for SDXL (Shazeer & Stern, 2018). For human preference alignment, we adopted a
learning rate of 2000

β 2.048 · 10−8 for Diff-contrast. For style alignment, the learning rate is set to
be 2000

β 2.048 · 10−8 in the first stage. In second stage, we use 2000
β 2.048 · 10−8 for Van Gogh and

2000
β 2.048 · 10−9 for Sketch and Winter datasets. Eight Nvidia A100 GPUs were used for training.

The local batch size on each GPU is 16 with gradient accumulation of 4 steps for SD 1.5. For SDXL,
the local batch size is 8 with gradient accumulation of 8 steps.
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E SDXL STYLE ALIGNMENT DETAILS

Table 4: Additional details for SDXL style alignment experiments.

SFT LR SFT Steps Second Stage LR Second Stage Steps

Van Gogh 1e-7 2000 1e-8 1000

Sketch 1e-7 2000 1e-8 500

Winter 1e-7 2000 1e-8 1000

F PROMPTS AND MORE HUMAN PREFERENCE ALIGNMENT EXAMPLES

We list the prompts used in Figure 1 as follows

1. Kyoto Animation stylized anime mixed with tradition Chinese artworks A dragon flying at
modern cyberpunk fantasy world. Cinematic Lighting, ethereal light, gorgeous, glamorous,
8k, super detail, gorgeous light and shadow, detailed decoration, detailed lines

2. a masterpiece, batgirl/supergirl from dc comic wearing alternate yellow costume, coy and
alluring, full body, Kim Jung gi, freedom, soul, digital illustration, comic style, cyberpunk,
perfect anatomy, centered, approaching perfection, dynamic, highly detailed, watercolor
painting, artstation, concept art, smooth, sharp focus, illustration, art by Carne Griffiths
and Wadim Kashin, unique, award winning, masterpiece

3. (Pirate ship sailing into a bioluminescence sea with a galaxy in the sky) , epic, 4k, ultra,

4. In the vast emptiness of the interstellar void, two omnipotent deities from separate dimen-
sions collide. The Creator, wields the power of creation, bringing forth stars and life forms
with a wave of their hand. Opposite them stands the Destroyer, a god whose face is a
shifting visage of decay and entropy disintegrating celestial bodies and extinguishing stars.

5. neon light art, in the dark of night, moonlit seas, clouds, moon, stars, colorful, detailed, 4k,
ultra hd, realistic, vivid colors, highly detailed, UHD drawing, pen and ink, perfect compo-
sition, beautiful detailed intricate insanely detailed octane render trending on artstation, 8k
artistic photography, photorealistic concept art, soft natural volumetric cinematic perfect
light

6. Lady with floral headdress, blonde hair, blue eyes, seductive attire, garden, sunny day,
realistic texture

7. a cute little matte low poly isometric Zelda Breath of the wild forest island, waterfalls,
mist, lat lighting, soft shadows, trending on artstation, 3d render, monument valley, fez
video game

8. a psychedelic surrealist painting of a sunflower, surreal, dripping, melting, Salvador Dali,
Pablo Piccaso

9. Commercial photography, powerful explosion of golden dust, luxury parfum bottle, yellow
sunray, studio light, high resolution photography, insanely detailed, fine details, isolated
plain, stock photo, professional color grading, 8k octane rendering, golden blury back-
ground

10. Digital painting of a beautiful young Japanese woman, dancing, kimono is crafted with
waves and layers of fabric, creating a sense of movement and depth, fall season, by (ran-
dom: famous japanese artists) , artstation, 8k, extremely detailed, ornate, cinematic light-
ing, rim lighting,

11. giraffe in flowers by artist arne thun, in the style of natalia rak, 8k resolution, vintage
aesthetics, wallpaper, animated gifs, naoto hattori, highly realistic

12. bright painting of a tree with stars in the sky, in the style of dreamlike fantasy creatures,
multilayered dimensions, swirling vortexes, realistic color schemes, dark green and light
blue, light-filled landscapes, mystic mechanisms
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13. Holy male paladin, looking straight at the viewer, serious facial expression, heavenly aura,
bokeh, light bloom, bright light background, cinematic lighting, depth of field, concept art,
HDR, ultra high-detail, photorealistic, high saturation

14. poster of a blue dragon with sunglasses, in the style of orient-inspired, post-apocalyptic
surrealism, light orange and red, 32k uhd, chinapunk, meticulous design, detailed costumes

15. Double Exposure Human-Nature, trees, flowers, mountain, sunset, nature mind, expressive
creative art, surrealistic concept art, ethereal landscape in a cloud of magic coming out the
top of a human head, incredible details, high-quality, flawless composition, masterpiece,
highly detailed, photorealistic, 8k sharp focus quality surroundings

Additional sample images from Diff-contrast-SDXL are presented in Figure 6 and Figure 7.

Figure 6: Sample images from Diff-contrast-SDXL The prompts used to generate the images are:
“A whimsical candy maker in her enchanted workshop, surrounded by a cascade of multicolored
candies falling like rain, wearing a bright, patchwork dress, her hair tinted with streaks of pink
and blue, 8K, hyper-realistic, cinematic, post-production.”,“A samurai cloaked in white with swords
stands in a light beam of a dark cave, with a ruby red sorrow evident in the image.”,“Victorian
genre painting portrait of Royal Dano, an old west character in fantasy costume, against a red back-
ground.”, “A typhoon in a tea cup, digital render”,“A charismatic chef in a bustling kitchen, his apron
dusted with flour, smiling as he presents a beau- tifully prepared dish. 8K, hyper-realistic, cinematic,
post-production.”
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Figure 7: Sample images from Diff-contrast-SDXL The prompts used to generate the images are:
“An oil painting of an anthropomorphic fox overlooking a village in the moor.”,“A graphic poster
featuring an avocado and raspberry observing a burning world, inspired by old botanical illustrations,
Matisse, Caravaggio, Basquiat, and Japanese art.” ,“A colorful anime painting of a sugar glider with
a hiphop graffiti theme, by several artists, currently trending on Artstation.”, “A detailed painting
of Atlantis by multiple artists, featuring intricate detailing and vibrant colors.”, “A giant dinosaur
frozen into a glacier and recently discovered by scientists, cinematic still”

G MORE STYLE ALIGNMENT EXAMPLES

Additional sample images from style-aligned Stable Diffusion models are presented in Figure 8.
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Figure 8: Sample images from Style Alignment Task , the images are generated from prompts:
“Japanese hot spring interior with lanterns, koi fish and bonsai trees in a painting by Greg Rutkowski
and Craig Mullins.”,“A beautiful girl posing dramatically, with stunning eyes and features, by
Davinci on Pixiv.”

H SOCIAL IMPACTS

Diff-contrast enhances the performance of diffusion based T2I models that could democratize artistic
creation, allowing individuals without formal training in art to generate high-quality images. This
can inspire creativity and make art more accessible. However, there’s a risk of these models being
used to create misleading images or deepfakes, potentially spreading misinformation or harming
individuals’ reputations.
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