
Supplementary material507

A Proofs508

A.1 Proof of Proposition 1509

Proof. Let (Q,R, g) 2 C(a, b, r,↵), P := Q diag(1/g)RT . Remarks that for all i, j,510
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Therefore we have511
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Finally we obtain that512

X

i,i0,j,j0

|Ai,i0 �Bj,j0 |
2Pi0,j0Pi,j � "H(Q,R, g) �

X

i,j

|

p
x̃i �

p
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and by taking the infimum over all (Q,R, g) 2 C(a, b, r,↵), the results follows.513

A.2 Proof of Proposition 2514

To show the result, we first need to recall some notions linked to the relative smoothness. Let X a515

closed convex subset in a Euclidean space Rq. Given a convex function H : X ! R continuously516

differentiable, one can define the prox-function associated to H as517

DH(x, z) := H(x)�H(z)� hrH(z), x� zi.

Let us now introduce the definition of the relative smoothness with respect the H .518

Definition 2 (Relative smoothness.). Let L > 0 and f continuously differentiable on X . f is said to519

be L-smooth relatively to H if520

f(y)  f(x) + hrf(x), y � xi+ LDH(y, x)

In [33], the authors show the following general result on the non-asymptotic stationary convergence521

of the mirror-descent scheme defined by the following recursion:522

xk+1 = argmin
x2X

hrf(xk), xi+
1

�k
Dh(x, xk)

where (�k) a sequence of positive step-size.523

Proposition 3 ([33]). Let N � 1, f continuously differentiable on X which is L-smooth relatively to524

H . By considering for all k = 1, . . . , N , �k = 1/2L, and by denoting D0 = f(x0)�minx2X f(x),525

we have526

min
0kN�1

�k 
4LD0

N
.

where for all k = 1, . . . , N527

�k :=
1

�2
k

(DH(xk, xk+1) +DH(xk+1, xk)).
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Let us now show that our objective function is relatively smooth with respect the the KL diver-
gence [26, 43]. The result of Propostion 2 will then follow from Proposition 3. Here X = C(a, b, r,↵),
H is the negative entropy defined as

H(Q,R, g) :=
X

i,j

Qi,j(log(Qi,j)� 1) +
X

i,j

Ri,j(log(Ri,j)� 1) +
X

j

gj(log(gj)� 1),

and let us define for all (Q,R, g) 2 C(a, b, r,↵)528

F"(Q,R, g) := �2hAQ diag(1/g)RTB,Q diag(1/g)RT
i+ "H(Q,R, g) .

Let us now show the following proposition.529

Proposition 4. Let " � 0, 1
r
� ↵ > 0 and let us denote L",↵ := 27(kAk2kBk2/↵4 + "). Then for530

all (Q1, R1, g1), (Q2, R2, g2) 2 C(a, b, r,↵), we have531

krF"(Q1, R1, g1)�rF"(Q2, R2, g2)k2  L",↵kH(Q1, R1, g1)�H(Q2, R2, g2)k2

Proof. Let (Q,R, g) 2 C(a, b, r,↵) and let us denote P = Q diag(1/g)RT . We first have that532

rF"(Q,R, g) = (rQF"(Q,R, g),rRF"(Q,R, g),rgF"(Q,R, g))

where533

rQF"(Q,R, g) := �4APBR diag(1/g) + " logQ

rRF"(Q,R, g) := �4BPTAQ diag(1/g) + " logR

rgF"(Q,R, g) := �4D(QTAPBR)/g2 + " log g

First remarks that534

krQF"(Q1, R1, g1)�rQF"(Q2, R2, g2)k2  4kAP1BR1 diag(1/g1)�AP2BR2 diag(1/g2)k2
+ "k logQ1 � logQ2k2 .

Moreover we have535

AP1BR1 diag(1/g1)�AP2BR2 diag(1/g2) = A((P1 � P2)BR1 diag(1/g1) + P2B(R1 diag(1/g1)�R2 diag(1/g2))

where536

P1 � P2 = (Q1 �Q2) diag(1/g1)R
T

1 +Q2(diag(1/g1)R
T

1 � diag(1/g2)R
T

2 )

and537

R1 diag(1/g1)�R2 diag(1/g2) = (R1 �R2) diag(1/g1) +R2(diag(1/g1)� diag(1/g2))

Finally we obtain that538
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◆
.

As Q! H(Q) is 1-strongly convex w.r.t to the `2-norm on �n⇥r, we have539

kQ1 �Q2k
2
2  hlogQ1 � logQ2, Q1 �Q2i

 k logQ1 � logQ2k2kQ1 �Q2k2

from which follows that540

kQ1 �Q2k2  k logQ1 � logQ2k2.

Moreover we have541

k1/g1 � 1/g2k2 
kg1 � g2k2

↵2

k log g1 � log g2k2

↵2

15



Then we obtain that542
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and the result follows.552
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B Low-rank Approximation of Distance Matrices553

Here we recall the algorithm used to perform a low-rank approximation of a distance matrix [5, 21].554

We use the implementation of [33].555

Algorithm 4 LR-Distance(X,Y, r, �) [5, 21]
Inputs: X,Y, r, �
Choose i⇤ 2 {1, . . . , n}, and j⇤{1, . . . ,m} uniformly at random.
For i = 1, . . . , n, pi  d(xi, y⇤j )

2 + d(x⇤
i
, y⇤

j
)2 + 1

m

P
m

j=1 d(x
⇤
i
, yj)2.

Independently choose i(1), . . . , i(t) according (p1, . . . , pn).
X(t)

 [xi(1) , . . . , xi(t) ], P
(t)
 [
p
tpi(1) , . . . ,

p
tpi(t) ], S  d(X(t), Y )/P (t)

Denote S = [S(1), . . . , S(m)],
For j = 1, . . . ,m, qj  kS(j)

k
2
2/kSk

2
F

Independently choose j(1), . . . , j(t) according (q1, . . . , qm).
S(t)
 [Sj

(1)

, . . . , Sj
(t)

], Q(t)
 [

p
tqj(1) , . . . ,

p
tqj(t) ], W  S(t)/Q(t)

U1, D1, V1  SVD(W ) (decreasing order of singular values).
N  [U1(1), . . . , U

(r)
1 ], N  STN/kWTNkF

Choose j(1), . . . , j(t) uniformly at random in {1, . . . ,m}.
Y (t)

 [yj(1) , . . . , yj(t) ], D
(t)
 d(X,Y (t))/

p
t.

U2, D2, V2 = SVD(NTN), U2  U2/D2, N (t)
 [(NT )(j

(1)), . . . , (NT )(j
(t))], B  

UT

2 N (t)/
p
t, A (BBT )�1.

Z  AB(D(t))T , M  ZTUT

2
Result: M,N

C Nonnegative Low-rank Factorization of the Couplings556

In this section, we recall the algorithm presented in [33] to solve problem (8) where we denote557

p1 := a and p2 := b.558

Algorithm 5 LR-Dykstra((K(i))1i3, p1, p2,↵, �) [33]

Inputs: K(1),K(2), g̃ := K(3), p1, p2,↵, �, q
(3)
1 = q(3)2 = 1r, 8i 2 {1, 2}, ṽ(i) = 1r, q(i) = 1r

repeat

u(i)
 pi/K(i)ṽ(i) 8i 2 {1, 2},

g  max(↵, g̃ � q(3)1 ), q(3)1  (g̃ � q(3)1 )/g, g̃  g,

g  (g̃ � q(3)2 )1/3
Q2

i=1(v
(i)
� q(i) � (K(i))Tu(i))1/3,

v(i)  g/(K(i))Tu(i)
8i 2 {1, 2},

q(i)  (ṽ(i) � q(i))/v(i) 8i 2 {1, 2}, q(3)2  (g̃ � q(3)2 )/g,
ṽ(i)  v(i) 8i 2 {1, 2}, g̃  g

until
P2

i=1 ku
(i)
�K(i)v(i) � pik1 < �;

Q diag(u(1))K(1) diag(v(1))
R diag(u(2))K(2) diag(v(2))
Result: Q,R, g

D Additional Experiements559

D.1 Illustration560

In Fig. 7, we show the time-accuracy tradeoffs of the two methods presented in Figure 1 on the561

same example. We see that our method, Lin GW-LR, manages to obtain similar accuracy as the562

one obtained by Quad Entropic-GW even when the rank r = n/1000 while being much faster with563

order of magnitude.564
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Figure 7: Here n = m = 10000, and the ground cost considered is the squared Euclidean distance.
Note that for in that case we have an exact low-rank factorization of the cost. Therefore we compare
only Quad Entropic-GW and Lin GW-LR. We plot the time-accuracy tradeoff when varying � for
multiple ranks r. " = 1/� for Quad Entropic-GW and " = 0 for Lin GW-LR.

D.2 Effect of " and �565

In Fig. 2, we consider two Gaussian mixture densities samples with n = m = 5000 points in566

respectively 5D and 10D where567

µ(1)
X = [0, . . . , 0] 2 R5, µ(2)

X = [0, 1, 0, . . . , 0] 2 R5, µ(3)
X = [1, 1, 0, . . . , 0] 2 R5,

⌫(1)Y = [0.5, 0.5, 0, . . . , 0] 2 R10, ⌫(2)Y = [�0.5, 0.5, 0, . . . , 0] 2 R10,

⌃X = 0.05⇥ Id5 and ⌃Y = 0.05⇥ Id10.

In Figure 8, we compare the time-accuracy tradeoff when varying " and �. We show that when " = 0,568

the proposed method manage to consistently obtain the smallest GW loss whatever � is. By allowing569

" > 0, the algorithm is able to obtain a better time-accuracy tradeoff. However the choice of " for the570

best time-accuracy tradeoff depends highly on �.

Figure 8: In this experiment, we consider the exact same setting as presented in Figure 2. The ground
cost is the squared Euclidean distance. We consider only the linear version of our algorithm. The rank
is fixed to be r = n/100. We plot the time-accuracy tradeoff when varying ✏ for multiple choices of
�.

571

D.3 Low-rank Problem572

In Fig. 3 and 4, we consider two distributions in respectively 10-D and 15-D where the support is a573

concatenation of clusters of points. In Fig. 9, we show an illustration of the distributions considered574

in smaller dimensions.575

In Fig. 10, 11, 10, we compare the time-accuracy tradeoffs of our method with the entropic one576

as proposed in [28] when the underlying cost is the Euclidean distance. The setting considered is577

the same as the one presented in Fig. 3 but we consider different number of clusters. In Fig. 13,578

14, 13, we also compare the time-accuracy tradeoffs of our method with the entropic one when the579

underlying cost is the squared Euclidean distance. The setting is the same as the one presented in580

Fig. 4 but we consider different number of clusters. We show that our method consistenly manage to581

obtain similar accuracy as the entropic method while being orders of magnitude faster.582
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Figure 9: The source distribution and the target distribution live respectively in R2 and R3. Both
distributions have the same number of samples n = m = 10000, the same number of clusters which
is set to be 10 here, the same number of points in each cluster, and we force the distance between the
centroids of the cluster to be larger than � = 10 in each distribution.

Figure 10: The number of clusters is set to be 5 and the underlying cost is the Euclidean distance.

Figure 11: The number of clusters is set to be 20 and the underlying cost is the Euclidean distance.

Figure 12: The number of clusters is set to be 30 and the underlying cost is the Euclidean distance.

D.4 Ground Truth Experiment583

In this experiment we aim at comparing the different methods when the optimal coupling solving the584

GW problem has a full rank. For that purpose we consider a certain shape in 2-D which corresponds585

to the support of the source distribution and we apply two isometric transformations to it, which are586

a rotation and a translation to obtain the support the target distribution. See Figure 16 (left) for an587

illustration of the dataset. Here we set a and b to be uniform distributions and the underlying cost is588
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Figure 13: The number of clusters is set to be 10 and the underlying cost is the squared Euclidean
distance.

Figure 14: The number of clusters is set to be 20 and the underlying cost is the squared Euclidean
distance.

Figure 15: The number of clusters is set to be 30 and the underlying cost is the squared Euclidean
distance.

Figure 16: We compare the couplings obtained when the ground truth is the identity matrix in the
same setting as in Figure 7. Here the comparison is done when � = 250. Left: illustration of the
dataset considered. Middle left: we show the coupling as well as the GW loss obtained by Quad

Entropic-GW. Middle right, right: we show the couplings and the GW losses obtained by Lin

GW-LR when the rank is respectively r = 10 and r = 100.

the squared Euclidean distance. Therefore the optimal coupling solution of the GW problem is the589

identity matrix and the GW loss must be 0. In Figure 17, we compare the time-accuracy tradeoffs,590

and we show that even in that case, our methods obtain a better time-accuracy tradeoffs for all �. See591

also Figure 16 for a comparison of the couplings obtained by the different methods.592
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Figure 17: The ground truth here is the identity matrix and the true GW loss to achieve is 0. We
set the number of samples to be n = m = 10000. As we consider the squared Euclidean distance,
only Quad Entropic-GW and Lin GW-LR are compared. We plot the time-accuracy tradeoff when
varying � for multiple choices of rank r. " = 1/� for Quad Entropic-GW and " = 0 for Lin

GW-LR.
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