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Supplementary material

A Proofs

A.1 Proof of Proposition 1

Proof. Let (Q, R, g) € C(a,b,r,a), P := Qdiag(1/g)RT. Remarks that for all 4, j,

\/Z |Aiir = Bj o |*Pir jr 2 \/Z | Aiir[*Pir jr — \/Z |Bjgr [P g
i

51 a4l y! Al
i, g 2V

> |VE — /3]

Therefore we have

> A =By PPy Py = >3 A = By [2Py i P

i,i,5,5" 0,5 .5’

> WEi = ViR
i

Y

Finally we obtain that
Z |Aiiw — Bjyo|* Py jy Pij — eH(Q, R, g) > Z V& — /3’ Pij —eH(Q, R, g)
i, i.j

and by taking the infimum over all (@, R, g) € C(a, b, T, «), the results follows. O

A.2 Proof of Proposition 2

To show the result, we first need to recall some notions linked to the relative smoothness. Let X’ a
closed convex subset in a Euclidean space R?. Given a convex function H : X — R continuously
differentiable, one can define the prox-function associated to H as

Dy(x,2):= H(x) — H(z) = (VH(z),z — 2).
Let us now introduce the definition of the relative smoothness with respect the H.
Definition 2 (Relative smoothness.). Let L > 0 and f continuously differentiable on X. f is said to
be L-smooth relatively to H if

fly) < f@) +(Vf(z),y —2) + LDu(y,x)

In [33], the authors show the following general result on the non-asymptotic stationary convergence
of the mirror-descent scheme defined by the following recursion:

. 1
g1 = argmin(V f(zx), ) + — Dp(z, x1)
reX Yk

where () a sequence of positive step-size.

Proposition 3 ([33]). Let N > 1, f continuously differentiable on X which is L-smooth relatively to
H. By considering forallk =1, ..., N, v, = 1/2L, and by denoting Dy = f(x¢) — mingex f(z),
we have

min A <
0<k<N-1

where forallk =1,... N

1
Ay = ?(DH(LE]C,ZL']HJ) + DH(l'k+1;xk))‘
k
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Let us now show that our objective function is relatively smooth with respect the the KL diver-
gence [26, 43]. The result of Propostion 2 will then follow from Proposition 3. Here X = C(a, b, 1, @),
H is the negative entropy defined as

H(Q,R,g) := Z Qi,;(log(Qi5) — 1) + ZRi,j(log(Ri,y‘) -1+ Zgj(log(gj) - 1),
i,j i,J J
528 and let us define for all (Q, R, g) € C(a,b,, @)
F.(Q, R, g) := —2(AQ diag(1/g)R" B, Q diag(1/9)R") + ¢H(Q, R, g) .
529 Let us now show the following proposition.

ss0 Proposition4. Lete >0, 1 > o > 0 and let us denote L o := 27(||Al|2|| B||2/a* + €). Then for
sst all (Q1,R1,91),(Q2, Ra,92) € C(a,b,r, ), we have

|VF.(Q1,R1,01) — VF-(Q2,Ra, g2)|l2 < Le o ||H(Q1, R1,91) — H(Q2, R2, 92)||2

s32 Proof. Let (Q, R, g) € C(a,b,r, ) and let us denote P = Q diag(1/g)RT. We first have that
VIE(Q, R, g9) = (VoF:(Q, R,g), VrF:(Q, R, g), V, F(Q, R, g))
533  where
VoF-(Q,R,g) := —4APBRdiag(1/g) + clog Q
VrF.(Q,R,g) := —4BPT AQ diag(1/g) + clog R
VyF.(Q,R,g) := —4D(QTAPBR)/g* + clog g
s34  First remarks that

[VQF:(Q1, R1,91) — Vo Fe(Q2, R, 92)|l2 < 4[|APLBR, diag(1/g1) — AP BRy diag(1/g2)||2
+¢|llog Q1 — log Q2|2 -

535 Moreover we have
APy BR; diag(1/g1) — APaBRy diag(1/g2) = A((Py — P2)BRy diag(1/g1) + P2 B(Ry diag(1/¢g1) — Rodiag(1/g2))
53 where
P1— Py = (Q1 — Q2) diag(1/g1) RY + Q2(diag(1/g1)R] — diag(1/g2)R)
537 and
Ry diag(1/g1) — Radiag(1/g2) = (R1 — R2) diag(1/g1) + Ro(diag(1/g1) — diag(1/g2))

538 Finally we obtain that

Q1 — Q|| n |R1 — R2|
[0

Al||B
HAP1BR1diag(1/91)—APgBdeiag(l/g2)||SH |!| ”( -

e - 1/92||>

[R1 — Ro|
wanz) (Pl s g - 1/m1)
539 As Q — H(Q) is 1-strongly convex w.r.t to the £5-norm on A, ., we have

Q1 — Q2|13 < (log @1 — log Q2, Q1 — Q)
< |llog Q1 — log Qa2]|2[|Q1 — Q2|2

540 from which follows that

Q1 — Q2]]2 < || log Q1 — log Q2|2

541 Moreover we have

g1 — g2ll2 _ ||log g1 —log gal|2
1t/g1 = 1/gellz < =" < =

15
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551

552

Then we obtain that

4/|Al||| B
IVoFQu e, 01) = ToF(@e Recgle < (2020 4 2) 10601 ~ 08 Qal

+(1+1/a)

(1+1/a)

Similarly we obtain that Then we obtain that

| log g1

UANB .,

4||A||HB||

— log Ra |2

—log g22

4| Al B
IV RE-(Q1, Ri, 1) — V Fo(Qa, Bay go)lls < ('””' s) I og By — log Ral[s

4| Alll| B
4 1/0) T 104 0, 105 a1
41| A|l|| B
u+wwl¥LMmm—m@m
Moreover we have
Vg F(Q1, R1,91) — Vo F-(Q2, Ra, g2)||2 <4|D(Q] APiBR1) /g5 — TAP,BRy) /g5
+ ¢l log g1 — log g2|
and
D(QTAP\BRy)/gt — D(QY AP,BRy) /g3 =(1/97 — 1/93)D(QT AP,BRy)
1
+ ?(D(Q?APlBRl) —D(QYAP,BRy));.
2

Note also that
1(1/97 —1/93)D(QT APLBRy)|| <

and

Q1 AP BR, — Q3 AP,BR, = (Q — Q3)AP,BR + Q3 A(PiBR,
= QT —QIYAP BR, + QY A((P, -

from which follows that
1

2
and we obtain that

vaFs(Qla Rlagl) - VgFE(Q2> R27

n 4HAHIIBH

n 4HAH||BH

IIAIIHBII

|ng«ﬁAaBRn—D«£A&BRﬂm<” HBT (1165,

| log g1 — log ga|

10g Q2|| + || log Ry

(4||A||||B|| ) | log Q1 — log Qs ||

— P,BRy)
Py)BR, + P,B(R; — Ry))

)wg& log s

Finally we have

HVFE(Qthagl) - VFE(Q27R2792)||% S 3

o?

(™
(4||A||||B||

+3[2(1+1/a)?

| log g1 — log ga 2

from which we obtain that

[VF.(Q1,R1,91) — VF.(Q2, R2, 92) |13 < L2, (|| log Q1
and the result follows.
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B Low-rank Approximation of Distance Matrices

Here we recall the algorithm used to perform a low-rank approximation of a distance matrix [5, 21].
We use the implementation of [33].

Algorithm 4 LR-Distance(X, Y, 7,7) [5, 21]

Inputs: X, Y, r, ~

Choose i* € {1,...,n},and j*{1,...,m} uniformly at random.
Fori=1,...,n,p; + d(xi,y;)Q + d(x;-*,y;-‘)Q + < Z;n:l d(x},y;)%
Independently choose i1, ..., i() according (p1,. .., pn).

XU [z, zi0], PO = VIpiws o /o], S+ d(XD,Y)/P®
Denote S = [S™M), ..., S(™)],

Forj=1,...,m, q; « [|SD[3/[S]%

Independently choose j(1, ..., i according (¢1, ..., qm)-

SO (59,877, QW [\ figzo, ., Sidgo ], W+ SO /Q0)

Ui, D1, Vi < SVD(W) (decreasing order of singular values).

N « [U1(1),..., U], N« STN/|WTN|»

Choose j(U, ..., ® uniformly at random in {1,...,m}.

YO [y, y0], DO« d(X,Y®) /L.

Uy, Dy, Vo = SVD(NTN), Uy « Uy/Dy, N « [(NT)U™) . (NT)U)], B «
UFN® /\t, A« (BBT)~L.

Z « AB(D)T M « ZTUf

Result: M, N

C Nonnegative Low-rank Factorization of the Couplings

In this section, we recall the algorithm presented in [33] to solve problem (8) where we denote
p1 :=aand py := b.

Algorithm 5 LR-Dykstra((K ), <;<3, p1,p2, @, 8) [33]

Inputs: K(l)aK(2)7§ = K(3)7p17p27a75a Q§3) = Q§3) = 1r7Vi S {172}7 '17(7') = ].r,q(z) = 1T
repeat

u® — p;/ KO vi € {1,2},

g max(a,§04”), ot « G06”)/9, 59

g (G0 a >)1/3 Hle(vu) ® ¢ © (KO)Tyd)1/3,
v® — g/(K)Tu® vi € {1,2},

¢V (30 ©¢D) v vi e {1,2}, ¢f « (G0 ¢)/9,
7D 0D Vie{1,2}, g

until 37 [u® @ KOv@ — p,||; < §;

Q « diag(u™M)K® diag(v™)

R « diag(u®)K® diag(v®)

Result: Q, R, g

D Additional Experiements

D.1 Illustration

In Fig. 7, we show the time-accuracy tradeoffs of the two methods presented in Figure 1 on the
same example. We see that our method, Lin GW-LR, manages to obtain similar accuracy as the
one obtained by Quad Entropic-GW even when the rank » = n/1000 while being much faster with
order of magnitude.
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Figure 7: Here n = m = 10000, and the ground cost considered is the squared Euclidean distance.
Note that for in that case we have an exact low-rank factorization of the cost. Therefore we compare
only Quad Entropic-GW and Lin GW-LR. We plot the time-accuracy tradeoff when varying -y for
multiple ranks r. £ = 1/~ for Quad Entropic-GW and ¢ = 0 for Lin GW-LR.

D.2 Effect of  and

In Fig. 2, we consider two Gaussian mixture densities samples with n = m = 5000 points in

respectively 5D and 10D where

p =100,...,00 e R, u =10,1,0,...,0] € R®, u{¥ =[1,1,0,...,0] € R,
) =10.5,0.5,0,...,0] € R, v = [0.5,0.5,0,...,0] € R,
Z)( = 0.05 x Id5 and Ey = 0.05 x Id10~

In Figure 8, we compare the time-accuracy tradeoff when varying € and y. We show that when € = 0,
the proposed method manage to consistently obtain the smallest GW loss whatever v is. By allowing
€ > 0, the algorithm is able to obtain a better time-accuracy tradeoff. However the choice of ¢ for the
best time-accuracy tradeoff depends highly on .

y: 100 y: 50 y: 30 y: 10
0.20 0.20 0.20 020 — <
|
@
©0.15 0.15 0.15 0.15
=
©o0.10 0.10 | 0.10 0.10
00557 108 10° oo 0057 108 10° o0 0057 108 10° om0 00517 10° 10°
Operations Operations Operations Operations

—— Lin GW-LR, r=50, £ =19
—— Lin GW-LR, r=50, £ = 23%

—— Lin GW-LR, r="50, £ = 2%
Lin GW-LR, r=50, £ = 2920

Lin GW-LR, r=50, g =291
Lin GW-LR, r=50, g =292

Lin GW-LR, r=50, £ = 2990

Figure 8: In this experiment, we consider the exact same setting as presented in Figure 2. The ground
cost is the squared Euclidean distance. We consider only the linear version of our algorithm. The rank
is fixed to be r = n/100. We plot the time-accuracy tradeoff when varying e for multiple choices of

Y.

D.3 Low-rank Problem

In Fig. 3 and 4, we consider two distributions in respectively 10-D and 15-D where the support is a
concatenation of clusters of points. In Fig. 9, we show an illustration of the distributions considered
in smaller dimensions.

In Fig. 10, 11, 10, we compare the time-accuracy tradeoffs of our method with the entropic one
as proposed in [28] when the underlying cost is the Euclidean distance. The setting considered is
the same as the one presented in Fig. 3 but we consider different number of clusters. In Fig. 13,
14, 13, we also compare the time-accuracy tradeoffs of our method with the entropic one when the
underlying cost is the squared Euclidean distance. The setting is the same as the one presented in
Fig. 4 but we consider different number of clusters. We show that our method consistenly manage to
obtain similar accuracy as the entropic method while being orders of magnitude faster.
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Figure 9: The source distribution and the target distribution live respectively in R? and R3. Both
distributions have the same number of samples n = m = 10000, the same number of clusters which
is set to be 10 here, the same number of points in each cluster, and we force the distance between the
centroids of the cluster to be larger than 5 = 10 in each distribution.
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Operations Operations Operations Operations
—+= GW-LR, r=g5; —+= GW-LR, r=1g5 GW-LR, r=£ e Entropic-GW == Quad Entropic-GW
—— Lin GW-LR, r=5ﬁﬁ —— Lin GW-LR, r=ﬁ Lin GW-LR, r=%

Figure 10: The number of clusters is set to be 5 and the underlying cost is the Euclidean distance.

y: 30
0.06 0.06 0.06
«
&
20.04 0.04 0.04
&
0.02 0.02 0.02
0.00 10° 10%° 101 10%2 0.00 10° 10%° 101 10%2 0.00 10° 1010 10M 1012 0.00 10° 10 1011 102
Operations Operations Operations Operations
—:= GW-LR, r=g; —:= GW-LR, r=qg5 GW-LR, r=4 oot Entropic-GW == Quad Entropic-GW
; _on P X _n ; a _n
— Lin GW-LR, r=g55 Lin GW-LR, r =155 Lin GW-LR, r=g

Figure 11: The number of clusters is set to be 20 and the underlying cost is the Euclidean distance.

y: 100 y: 50
"""" "u-\-;-\-.-.-..,.. e il T FEF T P L,
(004 AN 0.04
ke AN
= W .
3 0.02 N 0.02 .
0.00 10° 101 10! 1012 0.00 10° 101 10t 10%? 0.00 10° 101 10t 10%? 0.00 10° 1010 10 10%2
Operations Operations Operations Operations
—:= GW-LR, r=g; —:= GW-LR, r= g5 GW-LR, r=4g  =oeee Entropic-GW == Quad Entropic-GW

—— Lin GW-LR, r=-%

—— Lin GW-LR, r=gg5 105 Lin GW-LR, r= 4

Figure 12: The number of clusters is set to be 30 and the underlying cost is the Euclidean distance.

D.4 Ground Truth Experiment

In this experiment we aim at comparing the different methods when the optimal coupling solving the
GW problem has a full rank. For that purpose we consider a certain shape in 2-D which corresponds
to the support of the source distribution and we apply two isometric transformations to it, which are
a rotation and a translation to obtain the support the target distribution. See Figure 16 (left) for an
illustration of the dataset. Here we set a and b to be uniform distributions and the underlying cost is
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Figure 13: The number of clusters is set to be 10 and the underlying cost is the squared Euclidean
distance.
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Figure 14: The number of clusters is set to be 20 and the underlying cost is the squared Euclidean
distance.
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Figure 15: The number of clusters is set to be 30 and the underlying cost is the squared Euclidean
distance.

025
[l S
o
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0 .
:
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-0.50 'y

-0.75 n

GW loss: 0.00697 GW loss: 0.00737 GW loss: 0.00557

Figure 16: We compare the couplings obtained when the ground truth is the identity matrix in the
same setting as in Figure 7. Here the comparison is done when v = 250. Left: illustration of the
dataset considered. Middle left: we show the coupling as well as the GW loss obtained by Quad
Entropic-GW. Middle right, right: we show the couplings and the GW losses obtained by Lin
GW-LR when the rank is respectively » = 10 and r = 100.

the squared Euclidean distance. Therefore the optimal coupling solution of the GW problem is the
identity matrix and the GW loss must be 0. In Figure 17, we compare the time-accuracy tradeoffs,
and we show that even in that case, our methods obtain a better time-accuracy tradeoffs for all . See
also Figure 16 for a comparison of the couplings obtained by the different methods.
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Figure 17: The ground truth here is the identity matrix and the true GW loss to achieve is 0. We
set the number of samples to be n = m = 10000. As we consider the squared Euclidean distance,
only Quad Entropic-GW and Lin GW-LR are compared. We plot the time-accuracy tradeoff when
varying + for multiple choices of rank r. ¢ = 1/~ for Quad Entropic-GW and £ = 0 for Lin
GW-LR.
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