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Why? 
Without multiple hypothesis testing, error 
probabilities compound when performing 
multiple hypothesis tests.

There are Data Mining applications that require 
hundreds or thousands of persistence 
calculations.


How? 
We propose a simulation-based approach to 
testing with persistent homology, with the 
advantage that we can produce a multiple 
hypothesis correction framework for this test.

Choose:

• A null model M for the data. Example: 

Uniformly distributed points in the bounding 
box.


• A persistence invariant 𝛾. Example: Length of 
the longest bar in Vietoris-Rips persistent 
homology of degree 1.


Given observed point clouds X1, …, Xn, a test 
procedure that can reject the hypothesis All of 
the point clouds were drawn from M. proceeds 
with:

• For each Xi, generate Mi2,…,MiN from M.

• For each Xi, calculate Yi1 = 𝛾(Xi) 

For each Mij, calculate Yij = 𝛾(Mij)


• For Yi2,…, YiN, estimate mean µi, std.dev. 𝜎i.


• For each Yij, calculate Zij = (Yij - µi)/𝜎i.

• For each j, calculate Zj = maxi {Zij}.

• Rank the Zj, reject the null at  

p=(N-rank(Z1)+1)/N


Why does this work? 
Theorem (Hiraoka et al): 
If M is an ergodic stationary point process in 
ℝd, and Xi a sample from the box [-i/2, i/2]d, 
then the persistence diagrams generated by 
the homology of a large variety of filtered 
simplicial complex constructions converges to 
a distribution that depends on M and the 
simplicial complex construction as i grows, up 
to a multiplicative constant that depends on i.


Convergence means that for large enough 
windows into a good null model M, the 
distribution (up to a constant factor) 
approximates a fixed distribution.

If we can find this multiplicative constant, we 
can compare point clouds drawn from 
different-sized windows.

The Z-score procedure estimates the 
multiplicative constant directly on barcode 
invariants.

The normalized Z-scores can be taken to 
represent N draws - each drawing point cloud 
collections similar to the {Xi}.

Maximizing the Z-scores picks a most extreme 
representative for each draw. Ranking picks 
the extent to which the {Xi} yield extreme 
values.


How well does this work? 
We measure rejection rates for our example 
null model as well as for two levels of isotropic 
Gaussian additive noise added to samples 
from a circle.

Using our example 𝛾, we generated 5000 
instances each for every combination of

N in {100, 500} 
n in {5, 10, 50} 
Box side lengths drawn from {0.1, 1, 10} 
Point counts for a box from {10, 50, 100, 500}

These were rejection rates using our approach. 
In the cases 𝜎=0.1 and 𝜎=0.25, a single point 
cloud drawn from a circle was introduced 
alongside n-1 null model point clouds. 


Example point clouds at 10/50/100/500 points. 
Top row: 𝜎=0.1, bottom row: 𝜎=0.25.
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