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Abstract

We present a rotated hyperbolic wrapped normal distribution (RoWN), a simple
yet effective alteration of a hyperbolic wrapped normal distribution (HWN). The
HWN expands the domain of probabilistic modeling from Euclidean to hyperbolic
space, where a tree can be embedded with arbitrary low distortion in theory. In this
work, we analyze the geometric properties of the diagonal HWN, a standard choice
of distribution in probabilistic modeling. The analysis shows that the distribution
is inappropriate to represent the data points at the same hierarchy level through
their angular distance with the same norm in the Poincaré disk model. We then
empirically verify the presence of limitations of HWN, and show how RoWN, the
proposed distribution, can alleviate the limitations on various hierarchical datasets,
including noisy synthetic binary tree, WordNet, and Atari 2600 Breakout. The
code is available at https://github.com/ml-postech/RoWN.

1 Introduction

Hyperbolic space has served as an effective medium to learn parsimonious representations of hier-
archical data, including vocabulary with relationships (Nickel and Kiela, 2017, 2018; Tifrea et al.,
2019), knowledge graphs (Chami et al., 2020; Sun et al., 2020), and social networks (Zhao et al., 2011;
Shavitt and Tankel, 2008). Recent studies reveal that the underlying anatomy in much complex data
is non-Euclidean, supporting the success of representation learning in hyperbolic space (Bronstein
et al., 2017). However, due to the absence of well-defined distribution that is easy to sample and has
an analytic density function in hyperbolic space, earlier studies have focused on the non-probabilistic
learning framework.

Hyperbolic wrapped normal distribution (HWN) has been recently proposed as an alternative to the
celebrated normal distribution in Euclidean space. With an analytic density function and easiness of
sampling, the HWN expands the domain of probabilistic modeling from Euclidean to hyperbolic space.
The HWN has been successfully applied in various probabilistic models, including VAE (Kingma and
Welling, 2014) and probabilistic word embeddings (Vilnis and McCallum, 2015). However, unlike
the normal distribution in Euclidean space, the geometric characteristics of the HWN have not been
fully understood so far. Therefore, figuring out what can be done or not with the HWN is difficult.

In this work, we analyze the geometric properties of the diagonal HWN, a standard choice of
distribution in many probabilistic models (Mathieu et al., 2019; Nagano et al., 2019). Based on the
observation that the principal axes of the diagonal normal distribution in Euclidean space have a
parallel structure with the standard bases, we also focus on the structure of the principal axes of HWN
in hyperbolic space to delve into a deeper understanding. Our analysis shows that the principal axes
of the diagonal HWN are locally parallel to the standard bases in the Poincaré disk model.

Figure 1 (a) shows a common understanding on learned representation of hierarchical data in the
Poincaré disk. The hierarchical structure spreads out like the spokes of a wheel. The local variation
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(a) The Poincaré disk model (b) The Lorentz model

Figure 1: Visualization of hyperbolic space models. (a) The Poincaré disk model can embed a given
tree-structured data with low distortions as shown in the illustration. The black segments refer to
the shortest path between the points in the Poincaré disk model. The red dashed line denotes the
continuous points in the same hierarchy level. (b) The Lorentz model is another model for hyperbolic
space. The blue line is the shortest path between the points on the Lorentz model. The red line is the
projected geodesic via the diffeomorphism, which is still a geodesic of the Poincaré disk model.

in a hierarchy can then be represented as an angular difference between nodes at the same level of the
norm, i.e., the principal axis representing local variation is orthogonal to the radial axis. However,
our analysis of the geometric property reveals that the local variation can only be modeled along with
the standard bases with the diagonal HWN.

To fix the structure of the principal axes in the diagonal HWN, we propose a simple yet effective
alteration of HWN, named a rotated hyperbolic wrapped normal distribution (RoWN). By rotating the
diagonal covariance matrix before parallel transportation of HWN, we could resolve the limitations
in local variation structure while keeping the valuable properties, such as easy sampling and tractable
density of the original HWN.

We verify the representation learned with RoWN agrees with the common characteristic of repre-
sentation in hyperbolic space, which is barely observable with the diagonal and the full covariance
HWN, by using synthetic noisy binary tree dataset. We demonstrate the usefulness of RoWN on the
benchmark datasets: WordNet and Atari 2600 breakout. We summarize our contributions as follows:

1. We provide an analysis of the geometric properties of HWN and its potential limitations in
representation learning.

2. We propose a novel and efficient method of using hyperbolic distribution, namely RoWN,
and apply it to probabilistic models.

3. We demonstrate the performance of RoWN through the comparison with the Euclidean
normal distribution, diagonal covariance HWN, and full covariance HWN on one synthetic
dataset and two benchmark datasets.

2 Preliminaries

This section reviews the wrapped normal distribution defined on the Lorentz model. We first introduce
the Lorentz model of hyperbolic space and necessary concepts to understand the wrapped normal
distribution.

2.1 The Lorentz model

Hyperbolic space is a non-Euclidean space, having a constant negative Gaussian curvature. Figure 1
illustrates two models for hyperbolic space, among four standard equivalent models: (1) Klein model,
(2) the Poincaré disk model, (3) the Lorentz (hyperboloid) model, and (4) the Poincaré half-plane
model. In particular, the Lorentz model is famous for its numerical stability in computing the distance
and comes with a simpler closed form of geodesics (Nickel and Kiela, 2018). The Lorentz model Ln

is the Riemannian manifold consisting of the set of points z ∈ Rn+1 satisfying ⟨z, z⟩L = −1 and
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z0 > 0, where the Lorentizan product ⟨·, ·⟩L is defined as:

⟨x,y⟩L := −x0y0 +

n∑
i=1

xiyi,

which also works as the metric tensor on hyperbolic space, i.e., the metric tensor g of the Lorentz
model is g(x) = diag[−1, 1, · · · , 1]

2.2 Tangent space of the Lorentz model

We denote the tangent space of x ∈ Ln as TxLn, which is a set of points satisfying the orthogonality
relation with x in terms of the Lorentzian product: TxLn := {u : ⟨u,x⟩L = 0} . The metric tensor
g induces an inner product of two tangent vectors from a tangent space. Geodesic γ : [0, 1] → Ln

generalizes straight lines in the Riemannian manifold which is the shortest curve between two points.
The exponential map expx : TxLn → Ln maps a tangent vector u ∈ TxLn onto Ln as:

expx(u) := cosh(∥u∥L)x+ sinh(∥u∥L)
u

∥u∥L
, (1)

such that expx(u) = y, γ(0) = x, γ(1) = y. The log map, inverse of the exponential map, is
defined as logx(y) := exp−1

x (u).

Parallel transport is an operation that transports a tangent vector in the tangent space at x to another
vector in the tangent space at y along the geodesic from x to y without losing the parallel property.
The parallel transport in the Lorentz model is given by:

PTx→y(v) := v +
⟨y − αx,v⟩L

α+ 1
(x+ y), (2)

where α = −⟨x,y⟩L.

2.3 Hyperbolic wrapped normal distribution

One of the key challenges in adopting hyperbolic space to probabilistic models is finding a dis-
tribution on hyperbolic space that is easy to sample and has a closed-form density function. The
two most common distributions of hyperbolic space used in previous work are Riemannian normal
distribution (Mathieu et al., 2019; Said et al., 2014) and hyperbolic wrapped normal distribution
(HWN) (Nagano et al., 2019). Our work is mainly based on the HWN because sampling in Rieman-
nian normal distribution is limited with only a unit variance.

The sampling process with the HWN follows:

1. Sample v ∈ Rn from a Gaussian distribution N (0, Σ) in Euclidean space.

2. Parallel transport the vector [0,v] ∈ T0LLn to the tangent space.

3. Project the transported tangent vector to Ln using exponential mapping.

The density of a sample can be measured via the change of variable method. For convenience, we
denote the procedures 2 and 3 as a single operation:

fµ(v) := expµ(PT0L→µ([0,v])), (3)

with given µ ∈ Ln and v ∈ Rn, and 0L = [1, . . . , 0] stands for the origin of Ln.

3 Rotated Hyperbolic Wrapped Normal Distribution

This section introduces several observations on the geometric properties of the HWN distribution
transformation from the Euclidean space to hyperbolic space. We show the limitations of the diagonal
HWN for representation learning of hierarchical data. Then, we propose a simple yet effective
modification of the HWN, called a rotated hyperbolic wrapped normal distribution.
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Diagonal HWN

RoWN
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Figure 2: Visualization of (a) the principal axes of the normal distribution in the Euclidean space,
(b) the transported version of two axes in hyperbolic space, and (c) the probability density plot of
the distributions. (a) The contour line (green) can be represented as an ellipse with major principal
axis (red) and minor principal axis (blue). (b) The transformed principal axes become geodesics in
hyperbolic space. The major principal axis of the RoWN passes the hyperbolic origin and crosses
with the minor axis at the mean point, whereas the major and minor axes of the diagonal HWN is
locally parallel to the standard axes. (c) The principal axes determine the shapes of the variational
distributions.

3.1 Observations on the hyperbolic wrapped normal distribution

First, we investigate the changes in the normal distribution during the transformation from Euclidean
to hyperbolic space by Equation 3. As the principal axes characterize the covariance structure of the
normal distribution in the Euclidean space, we investigate how the principal axes are transformed in
hyperbolic space. Before deriving our main proposition, we first show that the straight lines that pass
through the origin in the Euclidean space are transformed to the geodesics in hyperbolic space by
Equation 3.

Proposition 1. Suppose ℓs(t) = ts ∈ Rn be a line passing through the origin, where s ∈ Rn is a
directional vector. Then the curve fµ(ℓs(t)) in the Lorentz model Ln becomes a geodesic.

The proof of the proposition is provided in Appendix A. The proposition indicates that every straight
line that passes through the origin including the principal axes, is transformed into a geodesic in
hyperbolic space.

Based on the first proposition, we provide our main proposition, which fully characterizes the structure
of principal axes when projected to the Poincaré disk model:

Proposition 2. Define Proj(u) to be the projection function from the Lorentz model to the Poincaré
model, i.e., Proj(u) = x1:(u)

x0(u)+1 ,∀u ∈ Ln. If ℓs is a principal axis of the normal distribution defined
in Rn and µ the mean of HWN in Ln, then s is the tangent vector of Proj(fµ(ℓs)) on Proj(µ).

The proof of the proposition is provided in Appendix B. The proposition reveals that the principal
axes of the HWN are locally parallel to the standard bases in the Poincaré disk model. To visualize
the proposition, we plot the contour line and the principal axes of the two-dimensional diagonal
normal distribution before and after the transformation in Figure 2. We observe that the tangent lines
of the transformed principal axes are parallel to the standard bases in hyperbolic space.

When a popular diagonal normal distribution is employed as a variational distribution, the locally
parallel principal axes might be problematic in learning hierarchical representations. For example,
suppose one tries to represent the variability along the radial direction or in angular differences. In the
case, both the major (red) and minor (blue) axes in Figure 2b cannot model the variability properly.
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Algorithm 1 Sampling process with the rotated hyperbolic wrapped normal distribution
Input Mean µ ∈ Ln, diagonal covariance matrix Σ ∈ Rn×n

Output Sample z ∈ Ln

1: x = [±1, . . . , 0] ∈ Rn,y = µ1:/∥µ1:∥ ▷ ± is determined by the sign of µ0

2: R = I + (yTx− xTy) + (yTx− xTy)2/(1 + ⟨x,y⟩)
3: Rotate Σ̂ = RΣRT

4: Sample v ∼ N (0, Σ̂)

5: return z = fµ(v)

3.2 Rotated hyperbolic wrapped normal distribution

Based on the observation, we propose a simple yet effective alternative to the diagonal HWN, a
rotated hyperbolic wrapped normal distribution (RoWN). Rotating the covariance matrix to the
direction of µ enables aligning the major axis of the normal distribution in the Euclidean space to the
radial axis in hyperbolic space as visualized in the Figure 2.

To construct the distribution, we start with a mean vector µ ∈ Ln and a diagonal covariance matrix Σ
as in the standard HWN. We change the covariance matrix of the normal distribution as follows:

1. Compute the rotation matrix R that rotates the x-axis ([±1, . . . , 0] ∈ Rn) to µ1:.
2. Substitute the covariance matrix of Gaussian normal with RΣRT .

Thus, the rotation matrix R, which rotates a unit vector from x to y, can be computed as:

R = I + (yTx− xTy) +
1

1 + ⟨x,y⟩
(yTx− xTy)2. (4)

The pseudo-code of the sampling process of RoWN is in Algorithm 1. Note that the construction
is straightforward but still keeps the following benefits of the HWN: 1) The sampling can be done
efficiently, and 2) the computation of the probability density of the samples is tractable. As the HWN
provides a tractable probability density function for any kind of covariance matrix, we can easily
compute the probability density of a given sample from RoWN. See Appendix C for more details.

samples

means

(a) Diagonal HWN (b) Full covariance HWN (c) RoWN

Figure 3: Visualization of the variational distribution of hyperbolic VAE on a synthetic binary tree
dataset with different variational distributions. The red dots denote the variational means of the root
and four representative children. The upper row shows the samples from the variational distributions
where the color denotes the level of noise. The bottom row shows the means of the variational
distributions. Overall, RoWN better aligns local variation in angular difference.
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We empirically demonstrate the influence of different variational distributions in Figure 3. We
visualize the variational distributions of the synthetic binary tree dataset of depth two after training
a hyperbolic VAE. As the result shows, the model with the diagonal HWN represents the variation
in a child parallel to the standard bases, whereas the model with RoWN represents the variation in
angular difference. Please check the detailed description on the synthetic dataset in Section 4.2.

4 Experiments

In this section, we first explain the two applications of the distribution defined on hyperbolic space:
hyperbolic VAE and probabilistic hyperbolic word embedding model. We then conduct three different
experiments to compare the performance of RoWN with four baselines, including the Gaussian
distribution in the Euclidean space, the isotropic HWN (Nagano et al., 2019), the diagonal HWN, and
the full covariance HWN. We also provide an additional study on a variant of RoWN with learnable
rotation direction y in Algorithm 1, and the results are in Table 9. The details of the experiments are
described in Appendix D.

4.1 Applications of the hyperbolic distribution

Hyperbolic VAE. The hyperbolic VAE, whose latent space is hyperbolic space, has been shown to
be efficient for capturing the hierarchical structure of the data (Nagano et al., 2019; Mathieu et al.,
2019). The evidence lower bound of the hyperbolic VAE can be written as:

LELBO(θ,ϕ) := E
qϕ(z|x)·

√
det(g)

[log pθ(x | z)]−DKL

(
qϕ(x | z) ·

√
det(g) ∥ p(z) ·

√
det(g)

)
,

where qϕ is the encoder, pθ is the decoder, g is the metric tensor of the chosen model of hyperbolic
space, and p(z) is a prior distribution. The distributions defined on hyperbolic spaces, such as
HWN and RoWN, are used to define encoder qϕ(z | x) ·

√
det(g) and prior p(z) ·

√
det(g). In

hyperbolic VAEs, due to the absence of the closed-form KL divergence in the hyperbolic distributions,
the KL divergence between the encoder and the prior is usually approximated with Monte-Carlo
sampling (Nagano et al., 2019; Mathieu et al., 2019).

Probabilistic hyperbolic word embedding model. The probabilistic word embedding models aim
to learn probabilistic representations of words (Vilnis and McCallum, 2015; Nagano et al., 2019;
Tifrea et al., 2019). The embeddings learned on hyperbolic spaces have shown better performance
than the Euclidean counterpart (Nagano et al., 2019; Tifrea et al., 2019). Given the hypernymy
relationships between the words, the probabilistic hyperbolic embedding model learns the probabilistic
representation of words by minimizing the following objective:

Lword(θ) := E(s∼t,s ̸∼t′)[max(0,m+DKL(qs ∥ qt)−DKL(qs ∥ qt′))], (5)
where m is a margin, qi is a distribution for word i parameterized by θ, and s ∼ t and s ̸∼ t denote
the presence and absence of hypernymy relation between word pair s and t, respectively.

4.2 Noisy synthetic binary tree

A synthetic binary tree dataset is first used to show the performance of representing hierarchy in
Nagano et al. (2019), where each node in a tree corresponds to a sequence of binary values. Figure 4a
shows an example of the depth three binary tree, where a parent and child only differ in one digit. We
add spherical noises to the nodes in the same level of hierarchy as described in Figure 4a as the noisy
samples. With the noisy samples, we can create a dataset containing a local-level variation in the
hierarchy. For the experiments, we uniformly sample the spherical noise from [0,π/4].

We train hyperbolic VAE on noisy synthetic binary tree with varying depths. The detailed model
description is available in Appendix D.1. We set the latent dimension the same as the depth. We
report 1) the correlation between the hamming distance and the embedding distance and 2) the
correlation between the depth and the Poincaré norm of the embeddings. The first correlation is
computed over all possible pairs of test points. As Table 1 shows, the full covariance HWN and
RoWN improve the diagonal HWN except depth six, outperforming the Euclidean model in every
setting. RoWN preserves the depth information better than the other distributions in general. We
additionally visualize the variational mean obtained by training the tree of depth three in Figure 4b,
where the hierarchical structure is well preserved in the hyperbolic embedding space.
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(a) Noisy synthetic binary tree (b) Learned representations

Figure 4: Illustration of a noisy synthetic binary tree. (a) We construct a noisy synthetic binary tree
by adding spherical noises defined with θ. The continuous samples are generated at the same distance
from the root. (b) We train the depth three noisy synthetic binary tree with hyperbolic VAE with
RoWN as a variational distribution and visualize the means of the variational distributions. The
black lines show the underlying hierarchical structure, and the color denotes the level of noise. The
hierarchy and the local variations are well preserved in the representations.

4.3 WordNet

We train a probabilistic word embedding model with WordNet dataset (Fellbaum, 1998), which
consists of 82,115 nouns and 743,241 hypernymy relationships. We have initialized the embeddings
from N (0, 0.01I), which are then moved to the Lorentz model using the exponential map. We use
the learning rate warm-up proposed in (Nagano et al., 2019). We evaluate the learned representations
by computing the average rank of all the hypernymies. The rank of a given pair of words s and t is
computed among the distances between all possible pairs of the words s and t′ without hypernymy.
Table 2 shows the empirical performances of representing the word data. We report the performance
with the mean rank (MR) and the mean average precision (mAP). RoWN preserves the hierarchical
structure better than the other distributions, while the full covariance HWN often performs worse
than RoWN.

Failure of the full covariance HWN. In theory, the full covariance HWN needs to have at least
a similar performance to RoWN since the RoWN is the particular case of the full covariance. The

Table 1: Results of noisy synthetic binary tree. The results are averaged over 10 runs. The hyperbolic
models outperform the Euclidean model in all settings. Overall, RoWN preserves the hierarchical
information better than the other distributions.

Depth

4 5 6 7

Correlation
w/ distance

Euclidean 0.748±.032 0.740±.013 0.741±.008 0.733±.014

HWN (isotropic Σ) 0.773±.030 0.809±.016 0.798±.008 0.735±.022

HWN (diagonal Σ) 0.814±.008 0.791±.023 0.817±.010 0.759±.025

HWN (full Σ) 0.827±.015 0.798±.026 0.798±.010 0.794±.014

RoWN 0.820±.015 0.807±.017 0.822±.017 0.788±.016

Correlation
w/ depth

Euclidean 0.762±.117 0.807±.038 0.712±.054 0.612±.049

HWN (isotropic Σ) 0.902±.033 0.867±.034 0.811±.029 0.602±.066

HWN (diagonal Σ) 0.918±.028 0.808±.076 0.862±.035 0.697±.076

HWN (full Σ) 0.956±.015 0.878±.051 0.870±.033 0.815±.055

RoWN 0.930±.026 0.911±.027 0.901±.034 0.827±.047
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Table 2: Results of WordNet. The results are an average of 5 runs. Based on the rank of hypernymy
pairs among non-hypernymy pairs, we report the mean rank (MR) and mean average precision (mAP)
for evaluation.

Latent dimension

5 10 20

MR

Euclidean 13.968±0.504 3.862±0.281 1.955±0.157

HWN (isotropic Σ) 14.568±2.203 4.470±0.669 3.125±0.455

HWN (diagonal Σ) 16.590±1.146 3.891±0.447 2.062±0.088

HWN (full Σ) 557.309±18.006 466.513±75.142 599.140±18.916

RoWN 16.271±2.985 2.888±0.162 1.783±0.090

mAP

Euclidean 0.565±0.014 0.801±0.020 0.902±0.008

HWN (isotropic Σ) 0.617±0.012 0.820±0.013 0.847±0.017

HWN (diagonal Σ) 0.565±0.020 0.805±0.015 0.905±0.007

HWN (full Σ) 0.032±0.003 0.063±0.005 0.079±0.021

RoWN 0.593±0.024 0.844±0.009 0.921±0.005

performance of the full covariance HWN often performs worse with the probabilistic hyperbolic
word embedding models than the hyperbolic VAEs. We speculate that reason is because of the
relatively simple prior in the hyperbolic VAE, whereas the probabilistic word embedding models
need to compute the KL divergence between the full covariance HWNs. Our additional experiments
reported in Table 11 confirm our speculation as the number of training samples for the KL divergence
increases, the performance increases slightly.

Discussion of the root placement. Note that due to the isometry of the geometry, the root node can
be placed anywhere in hyperbolic space. In other words, infinitely many sets of embeddings preserve
the same pairwise distances between the nodes. To place the root near the origin, we initialize all
embeddings with the zero mean distribution as done in (Nagano et al., 2019). We find that this
initialization helps the root placed near the origin. A study on the effects of the initialization methods
is shown in Table 3. Further details about the root placement can be found in Appendix E.

4.4 Atari 2600 Breakout

Trajectories of some Atari 2600 games can be structured as a tree-like hierarchy along the time
horizon as Nagano et al. (2019) points out. For example, given Atari 2600 Breakout, the root node
can be the starting state of the game where no blocks have been broken. As the game progresses the
states of the blocks form a hierarchical structure depending on which blocks have been broken. To

Table 3: The effects of initializations. We test different initializations on the deterministic hyperbolic
word embedding models trained with the subset of the WordNet dataset. The near zero vector
model initializes the embeddings with uniform distribution U(−0.001, 0.001), while the near one
vector model initializes the embeddings with uniform distribution U(0.999, 1.001). While the
Poincaré norm of the root node differs, the other metrics remain similar.

Latent dimension

2 5 10 20

MR Near zero vector 4.346±.643 3.270±.144 2.828±.098 2.508±.049

Near one vector 4.029±.415 3.209±.094 2.856±.075 2.491±.051

mAP Near zero vector 0.821±.016 0.891±.006 0.891±.005 0.895±.003

Near one vector 0.829±.010 0.894±.004 0.891±.004 0.896±.003

The Poincaré norm of
the root node

Near zero vector 0.122±.036 0.042±.015 0.031±.007 0.024±.004

Near one vector 0.505±.076 0.650±.010 0.732±.003 0.801±.001
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Table 4: Results of Atari 2600 Breakout. The results are averaged over 5 runs. We measure the
correlation between the score of an image and the Poincaré norm of the variational mean. The HWN
with the isotropic covariance can be viewed as a variant of RoWN.

Latent dimension

10 15 20

Correlation btw.
score and norm

Euclidean 0.379±.007 0.436±.029 0.479±.020

HWN (isotropic Σ) 0.513±.012 0.598±.021 0.607±.015

HWN (diagonal Σ) 0.478±.011 0.513±.006 0.513±.008

HWN (full Σ) 0.483±.011 0.520±.009 0.563±.010

RoWN 0.497±.014 0.556±.014 0.561±.029

learn the implicit hierarchy that can be observed from the trajectories of Breakout, we train the VAE
models with the Atari 2600 Breakout images.

The images of Breakout are collected by using a pre-trained Deep Q-network (Mnih et al., 2015)
and divided into training set and test set with 90,000 and 10,000 images respectively. We label each
image with the score obtained from the game environment. So the labels are correlated to the number
of broken blocks. To train VAE, we use a DCGAN-based architecture, which was originally used
to evaluate HWN in Nagano et al. (2019). The detailed architecture is provided in Appendix D.4.
To evaluate the models, we measure the correlation between the Poincaré norm of the test images
and the labeled scores. The evaluation results and the generated images from the trained models are
reported in Table 4 and Figure 5, respectively.

In learning Breakout images, RoWN and the full covariance HWN outperform the diagonal HWN.
The isotropic HWN, where the covariance matrix is invariant to any rotation matrix, shows a better
correlation than the others in all the settings. However, as reported in Table 14, the test ELBO values
are relatively worse than the others. While the isotropic HWN shows a high correlation but relatively
lower test ELBO, RoWN shows competitive test ELBO to the others and well aligns the hierarchical
structures with respect to the norm in low latent dimensions.

5 Related work

Hyperbolic space for hierarchical representation learning. Earlier studies on the hierarchical
representation learning have focused on modeling explicit hierarchical structures through the Bayesian
non-parametrics (Griffiths et al., 2003; Larsen et al., 2002; Salakhutdinov et al., 2012; Teh et al., 2007;
Ghahramani et al., 2010; Heller and Ghahramani, 2005) or embedding the hierarchical structure into
Euclidean space (Nickel et al., 2011; Grover and Leskovec, 2016; Nguyen et al., 2017). Euclidean

The Poincaré disk model The Diagonal HWN RoWN

Figure 5: The generated images from a trained VAE endowed with RoWN by using Atari 2600
Breakout images. Every five images are generated from the randomly sampled latent vectors of
dimensionality two having the Poincaré norm 0.1, 0.9, 0.95. The larger norm of the sample latent
vectors, the more blocks are broken out in the generated images.
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space is later shown to require an excessive number of dimensions to embed the original hierarchical
structure without any distortion (Linial et al., 1994).

Hyperbolic space has been proposed as an alternative medium to embed the hierarchical data.
Theoretically, any tree-structured data can be embedded in hyperbolic space with arbitrarily low
distortion (Sarkar, 2011). Based on the theory, learning representation of hierarchical structure in
hyperbolic space has been shown great success in various datasets including WordNet hierarchy,
graph-structured data, and social network data (Nickel and Kiela, 2017, 2018; Chami et al., 2020;
Sun et al., 2020; Zhao et al., 2011; Shavitt and Tankel, 2008). However, these studies are only limited
to modeling the explicit hierarchy, which means that the dataset contains an explicit relation between
data points. Furthermore, the learning frameworks are limited in the non-probabilistic setting because
of the absence of well-behaved distribution in hyperbolic space.

Distributions in hyperbolic space. The probabilistic model enables measuring the uncertainty
and provides a principled way of learning. To extend the probabilistic learning framework from
Euclidean to hyperbolic space or Riemannian manifold in general, one needs to define a well-behaved
distribution that has a tractable density and is easy to sample from. Recently, a few studies have
proposed probabilistic learning schemes in hyperbolic space (Mathieu et al., 2019; Nagano et al.,
2019). Mathieu et al. (2019) introduces parametrizable sampling schemes for the two canonical
Gaussian generalizations defined on the Poincaré disk model. The scheme is used to train a hyperbolic
VAE and show an improved generalization performance with high interpretability. Nagano et al.
(2019) suggests a method of integrating the Bayesian framework with hyperbolic space in the Lorentz
model where the simpler closed form of geodesics is defined. Normalizing flow (Rezende and
Mohamed, 2015) can be also used to define the hyperbolic distribution in the probabilistic learning
framework. Bose et al. (2020) propose two normalizing flows defined on hyperbolic space, which
show improvements in learning hierarchical structures in graph data. Mathieu and Nickel (2020)
elevate the continuous normalizing flow (Chen et al., 2018) defined on the Euclidean space to arbitrary
Riemannian manifold, including the hyperbolic space. Based on Nagano et al. (2019), we analyze the
geometric properties of the distribution lying on the Lorentz model and show the limitations of the
existing method.

6 Limitations

We explore a better method of representing hierarchical data in hyperbolic space. To this end, we
propose a simple yet effective alternative of hyperbolic wrapped normal distribution. However,
the proposed distribution is limited only to hyperbolic space, and no generalization method for
Riemannian space is studied yet. To explore the usefulness of alternative Riemannian spaces, finding
a common distribution that can work well in any Riemannian space will be necessary.

RoWN is a subset of the full covariance HWN. However, in many cases, RoWN outperforms the full
covariance HWN in our experiments. In general, optimizing the covariance matrix requires learning
the quadratic number of parameters with respect to the dimensionality. We conjecture the hardness of
optimization leads to the poor performance of the full covariance HWN. To overcome this limitation,
a search for a better optimization algorithm in hyperbolic space needs to be explored.

7 Conclusions

In this work, we propose a novel method of using RoWN for representing the data with a hierarchical
structure. With an in-depth analysis of the geometric properties of HWN, we demonstrate why the
common choice of the diagonal covariance matrix for HWN may be inappropriate but the rotated
covariance matrix. Our empirical results present that RoWN exhibits better representation ability,
both qualitatively and quantitatively, compared to all the baselines: Euclidean normal distribution,
diagonal HWN, and full covariance HWN. We hope that our method helps better understanding the
anatomy of hyperbolic space and be a promising technique for efficient representation learning.
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A Proof of Proposition 1

We prove the first proposition in Section 3.1 in this section. Through the proposition, we first
show that straight lines that pass through the origin in the Euclidean space are transformed into the
geodesics in hyperbolic space by Equation 3.

Proposition 1. Suppose ℓs(t) = ts ∈ Rn be a line passing through the origin, where s ∈ Rn is a
directional vector. Then the curve fµ(ℓs(t)) in the Lorentz model Ln becomes a geodesic.

Proof. Let u := [x0(u),x1:(u)] ∈ Ln be given, where x0 : Ln → R and x1: : Ln → Rn denotes
the projections, i.e., xi(u) = ui . Then,

PT0L→µ([0, ts]) = [0, ts] +
1

x0(µ) + 1
⟨µ− x0(µ) · 0L, [0, ts]⟩L(0L + µ)

= [0, ts] +
1

x0(µ) + 1
⟨[0,x1:(µ)], [0, ts]⟩L[x0(µ) + 1,x1:(µ)]

= [0, ts] +
1

x0(µ) + 1
⟨x1:(µ), ts⟩[x0(µ) + 1,x1:(µ)]

= t

[
⟨x1:(µ), s⟩, s+ ⟨x1:(µ), s⟩

x1:(µ)

x0(µ) + 1

]
.

Now, let v :=
[
⟨x1:(µ), s⟩, s+ ⟨x1:(µ), s⟩ x1:(µ)

x0(µ)+1

]
and c :=

√
⟨v,v⟩L. Then,

fµ(ls) = expµ(PT0L→µ((0, ts)))

= expµ(tv)

= cosh(ct)µ+ sinh(ct)
v

c
.

Recall that the geodesic of the Lorentz model is cosh(t)x+ sinh(t)y where x ∈ Ln, ⟨y,y⟩L = 1
and y ∈ TxLn (Robbin and Salamon, 2022).

The proposition indicates that every straight line that passes through the origin including the principal
axes, is transformed into a geodesic in hyperbolic space.
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B Proof of Proposition 2

We prove the second proposition in Section 3.1 to show the geometrical properties of HWN. Based
on the first proposition, we provide our main proposition, which fully characterizes the structure of
principal axes when projected to the Poincaré disk model:

Proposition 2. Let Proj(u) be the projection function from Lorentz model to Poincaré model, i.e.,
Proj(u) = x1:(u)

x0(u)+1 ,∀u ∈ Ln. Let ℓs be a principal axis of the normal distribution defined in Rn

and µ the mean of HWN in Ln, then s is the tangent vector of Proj(fµ(ℓs)) on Proj(µ).

Proof. First, we project the transformed principal axis to the Poincaré disk model as:

Proj (fµ(ls)) = Proj
(
cosh(ct)µ+ sinh(ct)

v

c

)
= Proj

([
cosh(ct)x0(µ) + sinh(ct)

x0(v)

c
, cosh(ct)x1:(µ) + sinh(ct)

x1:(v)

c

])
=

cosh(ct)x1:(µ) + sinh(ct)x1:(v)/c

cosh(ct)x0(µ) + sinh(ct)x0(v)/c+ 1
.

Then, the derivative of the projected curve with respect to t is derived as:

∂

∂t
Proj (fµ(ls)) =

∂

∂t

cosh(ct)x1:(µ) + sinh(ct)x1:(v)/c

cosh(ct)x0(µ) + sinh(ct)x0(v)/c+ 1

=
sinh(ct)x1:(µ)c+ cosh(ct)x1:(v)

cosh(ct)x0(µ) + sinh(ct)x0(v)/c+ 1

− (sinh(ct)x0(µ)c+ cosh(ct)x0(v))(cosh(ct)x1:(µ) + sinh(ct)x1:(v)/c)

(cosh(ct)x0(µ) + sinh(ct)x0(v)/c+ 1)
2 .

As Proj(µ) is the point of the curve at t = 0, the tangent vector of the curve on Proj(µ) can be
computed by substituting t = 0:

∂

∂t
Proj (fµ(ls))

∣∣∣
t=0

=
x1:(v)

x0(µ) + 1
− x0(v)x1:(µ)

(x0(µ) + 1)2

=
s

x0(µ) + 1
+

⟨x1:(µ), s⟩x1:(µ)

(x0(µ) + 1)2
− ⟨x1:(µ), s⟩x1:(µ)

(x0(µ) + 1)2

=
s

x0(µ) + 1

∝ s.

The proposition reveals that the principal axes of the HWN are locally parallel to the standard bases in
the Poincaré disk model. To visualize the proposition, we plot the contour line and the principal axes
of the two-dimensional diagonal covariance normal distribution before and after the transformation
in Figure 2. We observe that the tangent lines of the transformed principal axes are parallel to the
standard bases in hyperbolic space.
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C Details of Rotated Hyperbolic Wrapped Normal Distribution

The details of RoWN, i.e. sampling and the probability density computation, are described in this
section. We start with a mean vector µ ∈ Ln and a diagonal covariance matrix Σ as in the standard
HWN. Based on the mean vector, we construct RoWN by rotating the covariance matrix as follows:

1. Compute the rotation matrix R that rotates the x-axis ([±1, . . . , 0] ∈ Rn) to µ1:.
2. Substitute the covariance matrix of Gaussian normal with RΣRT .

Thus, the rotation matrix R, which rotates a unit vector from x to y, can be computed as:

R = I + (yTx− xTy) +
1

1 + ⟨x,y⟩
(yTx− xTy)2. (6)

Algorithm 2 shows the entire algorithm of constructing RoWN.

Note that the construction is straightforward but still keeps the following benefits of the HWN: 1) The
sampling can be done efficiently, and 2) the computation of the probability density of the samples is
tractable. As the HWN provides a tractable probability density function for any kind of covariance
matrix, we can easily compute the probability density of a given sample from RoWN. For the details
of sampling and probability density computation, see Algorithm 3 & 4.

Algorithm 2 RoWN(µ, Σ)
Input Mean µ ∈ Ln, diagonal covariance matrix Σ ∈ Rn×n

Output Rotated covariance matrix Σ̂.

1: x = [±1, . . . , 0] ∈ Rn,y = µ1:/∥µ1:∥ ▷ ± is determined by the sign of µ0

2: R = I + (yTx− xTy) + (yTx− xTy)2/(1 + ⟨x,y⟩)
3: return Σ̂ = RΣRT

Algorithm 3 Sampling process with the rotated hyperbolic wrapped normal distribution
Input Mean µ ∈ Ln, diagonal covariance matrix Σ ∈ Rn×n

Output Sample z ∈ Ln

1: Construct Σ̂ = RoWN(µ, Σ)

2: Sample v ∼ N (0, Σ̂)

3: return z = fµ(v)

Algorithm 4 Probability density computation of the rotated hyperbolic wrapped normal distribution
Input Mean µ ∈ Ln, diagonal covariance matrix Σ ∈ Rn×n, sample z ∈ Ln

Output Log probability of z.

1: Construct Σ̂ = RoWN(µ, Σ)

2: u = logµ(z)

3: v = PTµ→0L(u) ▷ v = f−1
µ (z)

4: return (log probability ofv1: fromN (0, Σ̂))− (n− 1)(log sinh ∥u∥L − log ∥u∥L)
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D Experimental Details

In this section, we provide the details of the experiments in Section 4.

D.1 Baselines

For all the experiments, we compare the performance of RoWN with four baselines: the normal
distribution in the Euclidean space, the isotropic HWN (Nagano et al., 2019), the diagonal HWN, and
the full covariance HWN.

In the process of constructing the distributions for each application, i.e. the variational distribution of
VAE and the embedding distribution of probabilistic word embedding, the distributions except the
full covariance HWN have a diagonal matrix as an input, and then the softplus operation is used to
make it positive. The full covariance HWN has a 2D matrix Σ ∈ Rn×n as an input and constructs a
covariance matrix as ΣΣT + ϵI , to match the positive-definite property, where ϵ is set to 1e−9 in our
experiments. For the mean value, we concatenate zero at the first dimension and transport it to the
Lorentz model using exp0L

.

For the hyperbolic VAE models, we use log0L
to transform the input of the decoder to the Euclidean

space, as suggested in Mathieu et al. (2019).

D.2 Noisy synthetic binary tree

Experimental setting. A synthetic binary tree dataset is first used to show the performance of
representing hierarchy in Nagano et al. (2019), where each node in a tree corresponds to a sequence
of binary values. Figure 4a shows an example of the depth three binary tree, where a parent and
child only differ in one digit. We add spherical noises to the nodes in the same level of hierarchy
as described in Figure 4a as the noisy samples. With the data points with additional noises, we can
create a dataset containing a local-level variation in the hierarchy. For the experiments, we uniformly
sample the spherical noise from [0,π/4].

We train hyperbolic VAE on noisy synthetic binary tree with varying depth from 4 to 7. For each
depth d, we use a three-layer fully connected neural network as the architecture where the number of
hidden units is 2d+3 and the latent dimension is d. We use ReLU as the activation function for each
layer except the last layer of the encoder and decoder. The overall architecture is shown in Table 5
and Table 6. We use a Gaussian negative log-likelihood loss for the reconstruction loss with fixed
σ = 0.01, which is selected for sufficient reconstruction performance on the train set.

Table 5: Encoder architecture for noisy synthetic
binary tree

Layer Output dim Activation

FC 2d+3 ReLU

FC 2d+3 ReLU

FC 2d None

Table 6: Decoder architecture for noisy synthetic
binary tree

Layer Output dim Activation

FC 2d+3 ReLU

FC 2d+3 ReLU

FC 2d − 1 None

Results. We report 1) the correlation between the hamming distance and the embedding distance
and 2) the correlation between the depth and the norm of the embeddings. The first correlation is
computed over all possible pairs of test points. For the norm of the hyperbolic embeddings, we
use the Poincaré norm, which can be calculated by projecting the Lorentz model embedding to the
Poincaré disk model.

As Table 7 shows, while all the models show similar performance with respect to the ELBO, the full
covariance HWN and RoWN show better performance than the diagonal HWN except depth six,
outperforming the Euclidean model in every setting. RoWN preserves the depth information better
than the other distributions in general. We additionally visualize the variational mean obtained by
training the tree of depth three in Figure 4b, where the hierarchical structure is well preserved in the
hyperbolic embedding space.
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Table 7: Results of noisy synthetic binary tree. The results are averaged over 10 runs. The hyperbolic
models outperform the Euclidean model in all settings. Overall, RoWN preserves the hierarchical
information better than the other distributions.

depth

4 5 6 7

Correlation
w/ distance

Euclidean 0.748±.032 0.740±.013 0.741±.008 0.733±.014

HWN (isotropic Σ) 0.773±.030 0.809±.016 0.798±.008 0.735±.022

HWN (diagonal Σ) 0.814±.008 0.791±.023 0.817±.010 0.759±.025

HWN (full Σ) 0.827±.015 0.798±.026 0.798±.010 0.794±.014

RoWN 0.820±.015 0.807±.017 0.822±.017 0.788±.016

Correlation
w/ depth

Euclidean 0.762±.117 0.807±.038 0.712±.054 0.612±.049

HWN (isotropic Σ) 0.902±.033 0.867±.034 0.811±.029 0.602±.066

HWN (diagonal Σ) 0.918±.028 0.808±.076 0.862±.035 0.697±.076

HWN (full Σ) 0.956±.015 0.878±.051 0.870±.033 0.815±.055

RoWN 0.930±.026 0.911±.027 0.901±.034 0.827±.047

Test ELBO

Euclidean 22.591±.183 55.168±.092 124.374±.093 266.854±.199

HWN (isotropic Σ) 22.026±.201 54.054±.158 122.981±.145 265.316±.217

HWN (diagonal Σ) 22.480±.144 54.540±.117 123.444±.110 265.704±.154

HWN (full Σ) 22.371±.136 55.032±.141 124.125±.189 266.499±.112

RoWN 22.354±.138 54.648±.142 123.606±.066 266.146±.112

Decomposition of the radial and angular dependency. To show how well the angular and radial
representations are decomposed, we compute the Pearson correlation between the radial axis and the
angular axis, which has been shown to be an effective measure of variable dependency in disentangled
representation learning (Jo and Seo, 2019; Horan et al., 2021). Table 8 shows that the absolute value
of the correlation is lower or similar to 0.1 in all the models, including RoWN.

Learnable rotation. We add experiments for the models that learn the rotation direction, which is
originally fixed to the direction of µ (in Algorithm 1, the y vector). Given data, the encoder gives
the rotation direction. We test the models on the noisy synthetic binary tree setting in our paper. As
shown Table 9, as the depth becomes deeper, the learnable rotation models usually underperform
RoWN. Figure 6 shows behaviors of learned representation by an alternative Learnable Rotation 1.
Most of the rotation directions are pointing or orthogonal (black line segments on each node) to the
direction of its parent node. This implies that the alternatives of RoWN can learn representations of
nodes to align not to the root node but to the parent node. We note that these alternatives work well
with shallow depths but not with great depths.

D.3 WordNet

Experimental setting. We train a probabilistic word embedding model with WordNet dataset (Fell-
baum, 1998). We initialize the mean and variance parameters with N (0, 0.01). For the full covariance
model, we use a learning rate 0.01. For the other models, we set the learning rate 0.015 for the first
100 epochs and then set the learning rate to 0.6 for the remaining steps as done in (Nickel and Kiela,
2017; Nagano et al., 2019). We evaluate the learned representations by computing the average rank
of all the hypernymies. The rank of a given pair of words s and t is computed among the distances
between all possible pairs of the words s and t′ without hypernymy.

Results. We evaluate the learned representations by computing the average rank of all the hyper-
nymies. The rank of a given pair of words s and t is computed among the distances between all
possible pairs of the words s and t′ without hypernymy. Table 2 shows the empirical performances of
representing the word data. We report the performance with the mean rank (MR) and the mean aver-
age precision (mAP). RoWN preserves the hierarchical structure better than the other distributions,
while the full covariance HWN fails due to unstable optimization.
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Table 8: Correlation between the radian axis and the angular axis.
depth

4 5 6 7

Correlation btw.
r and θ1

Euclidean 0.144±.170 0.007±.105 0.039±.106 −0.026±.093

HWN (diagonal Σ) 0.025±.150 0.015±.137 0.110±.065 −0.003±.134

HWN (full Σ) −0.053±.216 0.049±.136 −0.017±.169 0.012±.066

RoWN 0.080±.163 0.030±.097 0.112±.093 0.025±.083

Correlation btw.
r and θ2

Euclidean 0.116±.232 −0.039±.210 0.109±.131 0.006±.095

HWN (diagonal Σ) 0.066±.170 −0.021±.190 0.044±.122 −0.024±.115

HWN (full Σ) 0.297±.116 0.113±.109 0.013±.122 0.061±.103

RoWN 0.013±.178 0.025±.173 −0.004±.115 0.064±.082

Correlation btw.
r and θ3

Euclidean 0.067±.220 −0.110±.220 −0.016±.159 0.011±.098

HWN (diagonal Σ) 0.123±.252 −0.139±.123 −0.019±.133 −0.095±.101

HWN (full Σ) −0.053±.144 −0.088±.107 0.106±.120 0.024±.079

RoWN 0.127±.253 −0.120±.169 −0.012±.120 −0.012±.083

Correlation btw.
r and θ4

Euclidean - −0.015±.073 0.013±.081 0.026±.065

HWN (diagonal Σ) - −0.047±.117 −0.035±.147 0.080±.096

HWN (full Σ) - 0.079±.150 0.042±.108 0.086±.102

RoWN - −0.031±.116 −0.070±.112 0.086±.115

Correlation btw.
r and θ5

Euclidean - - 0.082±.075 −0.029±.109

HWN (diagonal Σ) - - 0.022±.101 −0.041±.097

HWN (full Σ) - - −0.058±.111 0.076±.064

RoWN - - −0.016±.111 −0.030±.112

Correlation btw.
r and θ6

Euclidean - - - −0.018±.073

HWN (diagonal Σ) - - - −0.030±.082

HWN (full Σ) - - - 0.035±.103

RoWN - - - 0.006±.067

Optimization issue in training full covariance HWN. In the results, we find that the full covari-
ance HWN shows poor performance compared to the other models. We run extensive experiments to
show that the full covariance HWN is difficult to optimize especially in WordNet. Figure 7 shows the
performance of the full covariance HWN with varying hyperparameters, i.e. learning rate, the burn-in
factor, and the initialization method, which seems to be poor whatever we choose. We conducted

Figure 6: Visualization of the representations from learnable rotation model. The representations are
from the Learnable Rotation 1 model learned on the depth 4 noisy synthetic binary tree with latent
dimension 2. The size of the circles denotes the depth, where the biggest circle denotes the root node.
Most of the rotation directions are pointing or orthogonal (black line segments on each node) to the
direction of its parent node.
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Table 9: Results of learnable rotation models. Learnable Rotation 1 model outputs the rotation
direction parallel to the mean and variance, while Learnable Rotation 2 model outputs the rotation
direction by feeding the mean to a fully connected layer.

depth

4 5 6 7

Correlation
w/ distance

RoWN 0.820±.015 0.807±.017 0.822±.017 0.788±.016

Learnable Rotation 1 0.820±.013 0.804±.016 0.808±.013 0.770±.028

Learnable Rotation 2 0.817±.018 0.811±.018 0.801±.008 0.772±.021

Correlation
w/ depth

RoWN 0.930±.026 0.911±.027 0.901±.034 0.827±.047

Learnable Rotation 1 0.952±.018 0.903±.037 0.845±.057 0.711±.072

Learnable Rotation 2 0.948±.015 0.907±.019 0.844±.013 0.724±.058

Test ELBO
RoWN 22.354±.138 54.648±.142 123.606±.066 266.146±.112

Learnable Rotation 1 22.342±.097 54.741±.111 123.619±.180 266.076±.159

Learnable Rotation 2 22.286±.120 54.529±.067 123.382±.161 265.962±.217

an additional analysis on what causes the optimization instability and found that the number of
samples used to approximate the KL divergence is critical to full covariance HWN, especially in
the Wordnet dataset. In VAE, we can observe more stable results. We speculate that the stability
improved since the relatively simple prior (standard normal distribution) is employed with the full
covariance variational distribution. Table 11 shows that as the number of training samples increases,
the performance increases, but the result is still poor, and using more training samples leads to an
additional computation time.

D.4 Atari 2600 Breakout

Experimental setting. To learn the implicit hierarchy that can be observed from the trajectories of
Breakout, we train the VAE models with the Atari 2600 Breakout images. The images of Breakout
are collected by using a pre-trained Deep Q-network (Mnih et al., 2015) and divided into a training
set and test set with 90,000 and 10,000 images respectively. We label each image with the score
obtained from the game environment. So the labels are correlated to the number of broken blocks.
To train VAE, we use a DCGAN-based architecture, which was originally used to evaluate HWN in
Nagano et al. (2019). The detailed architecture is provided in Table 12 and Table 13. We use binary
cross-entropy loss for the reconstruction loss.

Table 10: Results of WordNet. The results are an average of 5 runs. Based on the rank of hypernymy
pairs among non-hypernymy pairs, we report the mean rank (MR) and mean average precision (mAP)
for evaluation.

latent dimension

5 10 20

MR

Euclidean 13.968±0.504 3.862±0.281 1.955±0.157

HWN (isotropic Σ) 14.568±2.203 4.470±0.669 3.125±0.455

HWN (diagonal Σ) 16.590±1.146 3.891±0.447 2.062±0.088

HWN (full Σ) 557.309±18.006 466.513±75.142 599.140±18.916

RoWN 16.271±2.985 2.888±0.162 1.783±0.090

mAP

Euclidean 0.565±0.014 0.801±0.020 0.902±0.008

HWN (isotropic Σ) 0.617±0.012 0.820±0.013 0.847±0.017

HWN (diagonal Σ) 0.565±0.020 0.805±0.015 0.905±0.007

HWN (full Σ) 0.032±0.003 0.063±0.005 0.079±0.021

RoWN 0.593±0.024 0.844±0.009 0.921±0.005
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Figure 7: Varying hyperparameters of the full covariance HWN on WordNet. We run several hyper-
parameters combination of full covariance HWN on WordNet. We fix the latent dimension to 5
and burn-in epochs to 100. We vary the learning rate from 1e−4 to 0.6 and the factor c, which is
used to reduce the learning rate in the burn-in steps, from 1 to 100. We run 10,000 epochs. (a,b)
When we initialize the entire covariance matrix with N (0, 0.01), the full covariance HWN show poor
performance with any hyper-parameter combinations. (c,d) Initializing only the diagonal entries with
N (0, 0.01) and let the remaining part to zero improves the performance of the full covariance HWN
but it still performs worse than RoWN.

Table 11: Varying samples of the full covariance HWN on WordNet.
# of samples 1 50 100

MR 326.185±7.610 73.572±9.926 69.964±10.457

mAP 0.056±0.004 0.241±0.021 0.241±0.019

Runtime (s/epoch) 6.288 6.748 8.163

Results. To evaluate the models, we measure the correlation between the norm of the test images
and the labeled scores. For the norm of the hyperbolic embeddings, we use the Poincaré norm, which
can be calculated by projecting the Lorentz model embedding to the Poincaré disk model. The results
are reported in Table 14. While all the models show similar representation power with respect to
ELBO, RoWN and the full covariance HWN outperform the diagonal HWN. Especially, RoWN
aligns the hierarchical structures better with respect to the norm in low latent dimensions.

Nagano et al. (2019) report a higher score of correlation in latent dimension 20, but we find some
issues with the result. First, Nagano et al. (2019) compute the correlation between the labeled
scores and the norm in the tangent space (v vector from Algorithm 4), not the Poincaré norm. The
projection function in Proposition 2 depends on the first element of the input vector. Thus the Poincaré
norm is not proportional to the v norm, and computing the correlation with the v norm will show
different behavior compared to the correlation with the Poincaré norm. Second, the reproduction
results obtained from the code by the official repository1 are far from the reported correlation. Our
reproduction results of the correlation between the labeled scores and the v norm show 0.616, and
between the Poincaré norm show 0.501 averaged over four runs.

Qualitative results. Figure 8 shows more examples of generated images from VAE models trained
on Breakout images with two dimensional latent space.

1https://github.com/pfnet-research/hyperbolic_wrapped_distribution
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Table 12: Encoder architecture for Breakout
Layer Output dim Activation

Conv2d 80× 80× 16 ReLU

Conv2d 40× 40× 32 ReLU

Conv2d 40× 40× 32 ReLU

Conv2d 20× 20× 64 ReLU

Conv2d 20× 20× 64 ReLU

Conv2d 10× 10× 64 ReLU

FC 2× latent dimension None

Table 13: Decoder architecture for Breakout
Layer Output dim Activation

FC 10× 10× 64 ReLU

ConvTranspose2d 20× 20× 32 ReLU

Conv2d 20× 20× 32 ReLU

ConvTranspose2d 40× 40× 16 ReLU

Conv2d 40× 40× 16 ReLU

ConvTranspose2d 80× 80× 1 Sigmoid

Table 14: Results of Atari 2600 Breakout. The results are averaged over 10 runs. We measure the
correlation between the score of an image and the Poincaré norm of the variational mean.

latent dimension

10 15 20

Correlation btw.
score and norm

Euclidean 0.379±.007 0.436±.029 0.479±.020

HWN (isotropic Σ) 0.513±.012 0.598±.021 0.607±.015

HWN (diagonal Σ) 0.478±.011 0.513±.006 0.513±.008

HWN (full Σ) 0.483±.011 0.520±.009 0.563±.010

RoWN 0.497±.014 0.556±.014 0.561±.029

Test ELBO

Euclidean −1269.044±.241 −1269.624±.258 −1269.682±.178

HWN (isotropic Σ) −1271.018±.440 −1272.139±.170 −1272.914±.118

HWN (diagonal Σ) −1269.816±.272 −1270.725±.260 −1271.087±.234

HWN (full Σ) −1269.021±.320 −1269.569±.206 −1269.882±.438

RoWN −1269.531±.212 −1270.203±.211 −1270.967±.183

E Discussion on Root Placement

Note that due to the isometry of the geometry, the root node can be placed anywhere in hyperbolic
space. In other words, infinitely many sets of embeddings preserve the same pairwise distances
between the nodes. This reveals that finding the appropriate isometry, where the root node is placed
near the origin, is important for using RoWN as the distribution. In this section, we discuss the
techniques we used to place the root node near the origin of each application.

E.1 Probabilistic word embedding model

In our experiments, to place the root node near the origin, we have initialized embeddings from
N (0, 0.01I), which are then moved to the Lorentz model using the exponential map, with learning
rate warm-up Nagano et al. (2019). The results with different initialization method are shown in
Table 3.

E.2 Hyperbolic VAE

When RoWN is used as a variational distribution in the hyperbolic VAE, the application of RoWN
is different from the probabilistic word embedding model since the KL divergence encourages all
variational means to be close to the prior mean. Suppose we only focus on nodes at a certain depth
in a tree. In that case, it can be easily identified that it would be beneficial to have all nodes at the
same level of the norm to minimize the geometric mean between the prior and posterior means.
Here, we assume that each pair of nodes requires to have a certain amount of distance to minimize
the reconstruction error. As shown in Figure 3a, the original HWN is difficult to have the nodes at
the same depth with similar norms since the local variation cannot be modeled through the radial
direction. Eventually, the root node slightly deviates from the prior mean. With RoWN, as shown in
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(a) Diagonal HWN (b) RoWN

Figure 8: Generation results of the VAE models trained on Breakout images. The models are trained
on Breakout images with two dimensional latent space. We generate the images from randomly
sampled latent vectors having Poincaré norm as 0.1, 0.3, 0.5, 0.7, 0.9.

Figure 3c, all the nodes at the same depth can be placed at a similar norm while preserving their local
variations. If this is indeed the case, the root node is likely to be placed near the prior mean since the
nodes with different depths will be placed at different levels of norms in the space.
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