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ABSTRACT

Recently the online advertising market has exhibited a gradual shift from second-
price auctions to first-price auctions. Although there has been a line of works
concerning online bidding strategies in first-price auctions, it still remains open
how to handle budget constraints in the problem. In the present paper, we initiate
the study for a buyer with a budget to learn her online bidding strategies in repeated
first-price auctions. We propose an RL-based bidding algorithm against the optimal
non-anticipating strategy under stationary competition. Our algorithm obtains
Õ(
√
T )-regret if the bids are all revealed at the end of each round, where Õ(·) is a

variant of the big-O that hides logarithmic factors. With the restriction that the buyer
only sees the winning bid after each round, our modified algorithm obtains Õ(T

7
12 )-

regret by techniques developed from survival analysis. Our analysis extends to
the more general scenario where the buyer can have any bounded instantaneous
utility function with regrets of the same order. Simulation experiments show that
the constant factor inside the regret bound is rather small.

1 INTRODUCTION

There has been extensive growth in the online advertising market in recent years. It was estimated that
the volume of online advertising worldwide would reach 500 billion dollars in 2022 (Statista, 2021).
In such a market, advertising platforms use auctions to allocate ad opportunities. Typically, each
advertiser has a limited amount of capital for an advertisement campaign. Therefore, consecutive
rounds of competition are interconnected by budgets of participating advertisers. Furthermore, each
advertiser has very limited knowledge of 1) her valuation of certain keywords and 2) the competitors
she is facing. There are many works being devoted to studying algorithms for learning strategies for
optimally spending the budget in repeated second-price auctions (see Section 1.1).

In practice, on the other hand, we have witnessed numerous switches from second-price auctions
to first-price auctions in the online advertising market. A recent remarkable example is Google
AdSenses’ integrated move at the end of 2021 (LLC, 2021). Earlier examples also include AppNexus,
Index Exchange, and OpenX (Sluis, 2017). This industry-wide shift is due to various factors including
a fairer transactional process and increased transparency. Therefore, the shift to first-price auctions
brings about major importance to the following open question which is barely considered in previous
works:

How should budget-constrained advertisers learn to compete in repeated first-price auctions?

This paper thus initiates the study of learning to bid with budget constraints in repeated first-price
auctions. It has been noted that the application of first-price auctions with budgets is not limited
to online advertising mentioned above. Traditional competitive environments like mussel trade in
Netherlands (van Schaik et al., 2001), modern price competition, and procurement auctions (e.g. U.S.
Treasury Securities auction (Chari and Weber, 1992)) are examples as well.

Challenges and contributions The challenges in this setting are two-fold.

The first challenge relates to the specific information structure of first-price auctions. In practice, it is
often the case that only the highest bid is revealed to all participants (Esponda, 2008). This is known
as censored-feedback or an informational version of winner’s curse in literature (Capen et al., 1971).
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This affects the information structure of learning since the buyer learns less information when she
wins. This makes the problem challenging compared to standard contextual bandits (c.f. Section 1.1).

The second challenge is more fundamental. It is known that the strategy in first-price auctions is
notoriously complex to analyze, even in the static case (Lebrun, 1996). To get an intuitive feeling
of this difficulty in our problem compared to repeated second-price auctions. Let us consider the
offline case where the opponents’ bids are all known. Given the budget, the problem for second-price
auctions can be reduced to a pure knapsack problem, where the budget is regarded as weight capacity
and prices as weights. This structure enables mature techniques including duality theory to be applied
to study the benchmark strategy. Pitifully in first-price auctions, since the payment depends on the
buyer’s own bid, the previous approach/benchmark is not directly usable. We provide a concrete
example to further illustrate such difficulties.
Example 1.1. Consider a case where the buyer’s value v follows a uniform distribution on [0.4, 1]
and the highest bid m of her opponents’ follows a uniform distribution on [0, 0.5]. The time horizon
is T and the buyer’s budget B = 0.5T . The first-best benchmark (an anticipating1 strategy that
knows her values and her opponents’ bids) can be viewed as a knapsack problem, which is

E
v∼FT

m∼GT

[
max

b1,...,bT

T∑
t=1

(vt − bt)1{bt≥mt}

]
subject to

T∑
t=1

1{bt≥mt}bt ≤ B ∀(vt)Tt=1; (mt)
T
t=1,

where vt is her value and mt is her opponents’ highest bid at time t. The buyer wants to determine
each bt to maximize the revenue. In hindsight, we need to pay as close to mt as possible. Using
the theory of knapsack, the utility is T · E[1{v≥m}(v − m)]+ = 0.45T . On the contrary, the
optimal non-anticipating bidding strategy in a first-price auction is to bid v

2 and the utility is
T · E[1{ v

2≥m}
v
2 ] = 0.26T . There is already an Ω(T ) separation between the first-best benchmark

and the ideal case with full information.

This example shows that simple characterization of the optimum in Balseiro and Gur (2019) is not
applicable to our problem. Furthermore, it remains unclear what methodology can be applied in
first-price auctions with budgets. The state-of-the-art adaptive pacing strategy downgrades to truthful
bidding as the budget increases, so in first-price auctions, it may result in near-zero reward and thus
cannot have any theoretical guarantee (see (Balseiro and Gur, 2019, §2.4) for further discussions).

The present paper takes the first step to combat the challenges mentioned above with a dynamic
programming approach. Correspondingly, our contribution is also two-fold:

• We provide an RL-based learning algorithm. Through the characterization of the optimal
strategy, we obtain Õ(

√
T )-regret guarantee for the algorithm in the full-feedback case2.

• In the censored-feedback setting, by techniques developed from survival analysis, we modify
our algorithm and obtain a regret of Õ(T

7
12 ).

1.1 RELATED WORK

Repeated second-price auctions with budgets There is a flourishing source of literature on
bidding strategies in repeated auctions with budgets. Through the lens of online learning, Balseiro
and Gur (2019) identify asymptotically optimal online bidding strategies known as pacing (a.k.a.
bid-shading in literature) in repeated second-price auctions with budgets. Inspired by the pacing
strategy, Flajolet and Jaillet (2017) develop no-regret non-anticipating algorithms for learning with
contextual information in repeated second-price auctions. Another line of works that uses similar
techniques in the present paper includes Amin et al. (2012); Tran-Thanh et al. (2014); Gummadi
et al. (2012). Gummadi et al. (2012) and Amin et al. (2012) study bidding strategies in repeated
second-price auctions with budget constraints, but the former does not involve any learning and
the latter does not provide any regret analysis (their estimator is biased). Tran-Thanh et al. (2014)
derive regret bounds for the same scenario but the optimization objective is the number of items won
instead of value or surplus. Baltaoglu et al. (2017) also use dynamic programming to tackle repeated

1An algorithm is anticipating if bid selection depends on future observations, see Flajolet and Jaillet (2017).
2This is especially practical in public-sector auctions (Chari and Weber, 1992) as regulations mandate all

bids to be revealed.
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second-price auctions with budgets. However, they assume per-round budget constraints and their
dynamic programming algorithm is for allocating bids among multiple items. Again, we emphasize
that no prior work has been done in repeated first-price auctions with budgets since the structure of
the problem (compared to second-price variants) is fundamentally different (recall Example 1.1).

Repeated first-price auctions without budgets Two notable works concerning repeated first-price
auctions are Han et al. (2020b) and Han et al. (2020a). Han et al. (2020b) introduce a new problem
called monotone group contextual bandits and obtain an O(

√
T ln2 T )-regret algorithm for repeated

first-price auctions without budget constraints under stationary settings. This bound is improved to
O(T

1
3+ϵ) by Achddou et al. (2021) with additional assumptions on distributions. Han et al. (2020a)

concentrate on an adversarial setting and develop a mini-max optimal online bidding algorithm with
O(
√
T lnT ) regret against all Lipschitz bidding strategies. Badanidiyuru et al. (2021) consider the

problem in a contextual setting. A crucial difference is that in the present paper, budgets are involved
thus the algorithms from previous works are not directly suitable for our needs.

Bandit with knapsack From the bandit side, Badanidiyuru et al. (2013) develop bandit algorithms
under resource constraints. They show that their algorithm can be used in dynamic procurement,
dynamic posted pricing with limited supply, etc. However, since the bidder observes her value
before bidding in our problem, results by Badanidiyuru et al. (2013) cannot be directly applied
to our setting. Our setting also relates to contextual bandit problems with resource constraints
(Badanidiyuru et al., 2014; Agrawal and Devanur, 2016; Agrawal et al., 2016). Nevertheless,
applying this contextual bandit approach requires discretizing the action space, which needs Lipschitz
continuity of distributions. Our approach does not rely on any continuity assumption. Further, the
performance guarantee (typically Õ(T

2
3 )) is worse than ours. It also does not fit into our information

structure when the feedback is censored.

2 PRELIMINARIES

Auction mechanism We consider a repeated first-price auction with budgets. Specifically, we
suppose that the buyer has a limited budget B to spend in a time horizon of T ≤ +∞ (can be unknown
to her) rounds. At the beginning of each round t = 1, 2, . . . , T , the bidder privately observes a value
vt for a fresh copy of item and bids bt according to her past observations ht and value vt. Denote the
strategy she employs as π : (vt, Bt,ht)→ bt, which maps her current budget Bt, value vt and past
history ht to a bid. Let mt be the maximum bid of the other bidders. Since the auction is a first price
auction, if bt is larger than mt, then the buyer wins the auction, is charged bt, and obtains a utility of
vt − bt; otherwise, she loses and the utility is 0. Therefore, the instantaneous utility of the buyer is

rt = (vt − bt)1{bt≥mt}.

The exact information structure of history the buyer observes is dictated by how the mechanism
reveals mt. In full generality, we assume that the feedback is censored, i.e. only the highest bid is
revealed at the end of each round and the winner does not observe mt exactly. This is considered
to be an informational version of winner’s curse (Capen et al., 1971) and is of practical interest
(Esponda, 2008). For the purpose of modeling, we suppose that ties are broken in favor of the buyer
but this choice is arbitrary and by no means a limitation of our approach.

Next, we state the assumptions on mt and vt. Without loss of generality, we assume that bt,mt, vt
are normalized to be in [0, 1]. In the present paper, we consider a stochastic setting where mt and vt
are drawn from some distributions F,G unknown to the buyer, respectively, and independent from
the past. We will also refer to the cumulative distribution functions of F,G with the same notations.
No further assumptions will be made on F,G. Now, the expected instantaneous utility of the buyer at
time t with strategy π is

Rπ(vt, bt) = E
mt∼F

[rt] = (vt − bt)F (bt).

To argue for the reasonability of this assumption, note that although other buyers may also involve
learning behavior, it is typical that in a real advertising market, there are a large number of buyers
(Kahng et al., 2004). The specific buyer only faces a different small portion of them and is completely
oblivious of whom she is facing in each round. Therefore, the buyer’s sole objective is to maximize
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her utility (instead of fooling other buyers) and by the law of large numbers, the price mt and value
vt the buyer observes are independent and identically distributed at least for a period of time3.

Buyer’s target and regret The buyer aims at maximizing her long-term accumulated utility subject
to budget constraints. Recall that the instantaneous utility of the buyer is rt = (vt − bt)1{bt≥mt}.
The payment is ct = bt1{bt≥mt} and the budget will then decrease accordingly as the payment incurs.
She can continue to bid as long as the budget has not run out but must stop at

τ∗ = min

{
T + 1,min

{
t ∈ N :

t∑
τ=1

cτ = B

}
+ 1

}
.

The buyer’s problem now becomes determining how much to bid in each round to maximize her
accumulated utility. In line with works Gummadi et al. (2012); Golrezaei et al. (2019); Deng and
Zhang (2021), the buyer adopts a discount factor λ ∈ (0, 1). She takes discounts since she does
not know T or τ∗ — Discount factors can be interpreted to be the estimate of the probability that
the repeated auction will last for at least t rounds (Devanur et al., 2014; Drutsa, 2018). It means
that the process will terminate at each round with probability 1 − λ (Uehara et al., 2021). On the
economic side, in important real-world markets like online advertising platforms, buyers are impatient
for opportunities since companies of different sizes have different capabilities. Discount factors
model how impatient4 the buyer is in (Drutsa, 2017; Vanunts and Drutsa, 2019). Now the buyer’s
optimization problem is to determine a non-anticipating strategy π for the following:

max
π

E
v∼FT

m∼GT

[
T∑

t=1

λt−1rt

]
subject to

T∑
t=1

1{bt≥mt}bt ≤ B ∀(vt)Tt=1; (mt)
T
t=1,

where bt = π(vt, Bt,ht). Here, v := (v1, . . . , vT ) denotes the sequence of private values the buyer
observes, and m := (m1, . . . ,mT ) is the sequence of the highest bids of the other bidders. V π(B, t)
denotes the expected accumulated utility using strategy π with budget B and starting from time t.
Let π∗ denote the optimal bidding strategy with the knowledge of the underlying distributions F
and G. The corresponding expected accumulated utility is V π∗

(B, t). (We sometimes use V (·, ·) to
represent V π∗

(·, ·) for convenience in the rest of the paper.)

We now come to define the regret. First, write the per-episode revenue suboptimality for each round t
as

SubOptt(πt) = V π∗
(Bt, t)− V πt(Bt, t),

where πt is the strategy used in round t. Our evaluation metric is then the sum of suboptimality for
t = 1, . . . , T , namely

Regret(T ) = E

[
T∑

t=1

SubOptt(πt)

]
, (1)

where the expectation is taken over the trajectories of the achievement of v and the realization of
others’ bids inexplicitly.

The definition of regret comes from traditional reinforcement learning (RL) literature of infinite-
horizon discounted model (Kaelbling et al., 1996). The definition is also inspired by the recent
advances in Yang et al. (2021); He et al. (2021); Liu and Su (2020); Zhou et al. (2021). Zhou et al.
(2021) call it cumulative error. It reflects the suboptimality for πt to learn the optimal valuation of
attending the auction.

In the most common scenario, such as Balseiro and Gur (2019), the budget constraint is linear to time
horizon T , i.e. B

T ∼ Θ(1). Therefore, a bidder has an expectation that she will win for O(T ) rounds.

3This assumption has support from experimental evidence (Pin and Key, 2011). It can also be theoretically
justified using mean field asymptotics. Please also see Han et al. (2020b) for another justification.

4As an additional explanation, in budget-constrained first-price auctions, the bidder always bids below or
equal to her value. So she is very sensitive to the market price. However, by not winning the auction at a certain
price, the bidder creates a future opportunity to win an equivalent auction at a lower price. The use of a bid
discount factor adds flexibility to tune this behavior. As the bidder has a preference for present utility over future
utility, the discount factor moderates the extent of underbidding that she finds to be optimal, which makes the
model more general.
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With a sub-optimal policy, it is easy to suffer O(T ) regret which is intolerable for bidders. It leads to
the challenge to achieve a sublinear regret in first-price auctions and we design algorithms to answer
the question.

3 BIDDING ALGORITHM AND ANALYSIS

In this section, we present our bidding algorithm and the high-level ideas in the analysis of regret.
We first consider the case where the feedback is not censored, i.e. the buyer is aware of mt no matter
whether she wins or not. Then we extend our algorithm to the case where the feedback is censored
with techniques developed from survival analysis.

3.1 FULL FEEDBACK

When F and G are known, the buyer’s problem can be viewed as offline. The technical challenge lies
in the observation that even when the distributions are known, the buyer’s problem cannot be directly
analyzed as a knapsack problem. To tackle this challenge, we use a dynamic programming approach
to solve the problem. In particular, the optimal strategy π∗ satisfies the following Bellman equation:

b∗(Bτ , v) ∈ argmax
b

[(v − b) + λV (Bτ − b, τ + 1)]F (b) + λV (Bτ , τ + 1)(1− F (b)),

V (Bτ , τ) = E
v
[(v − b∗) + λV (Bτ − b∗, τ + 1)]F (b∗) + λV (Bτ , τ + 1)(1− F (b∗)),

for all τ ∈ N and 0 ≤ Bτ ≤ B. Note that for any Bτ < 0, V (Bτ , τ) = −∞. By choosing
appropriate initialization conditions, we can solve the equation recursively and obtain the optimal
bidding strategy together with the function V (·, ·). The above recursion also characterizes the optimal
solution, which will be used in the analysis later.

When the buyer does not have the information of F and G, she can learn the distributions from past
observations. Therefore, it is natural to maintain estimations F̂ and Ĝ of the true distributions. Our
algorithm for the full-feedback case is now depicted in Algorithm 1. To ease technical loads, we first
assume the knowledge of G and only estimate F in Algorithm 1. Later, we will add the estimation of
G and its analysis is presented in Theorem 3.2.

Algorithm 1 Algorithm for the full-feedback case
1: Input: Initial budget B and constant C1 ▷ C1 is an arbitrary positive constant
2: Initialize the estimation F̂ of F to a uniform distribution over [0, 1] and B1 ← B
3: for t = 1, 2, . . . do
4: Observe the value vt in round t
5: Let t0 be the smallest integer that satisfies λt0−t 1

1−λ < C1√
t

6: Set VF̂ (Bt0 , t0) = 0 for any Bt0 ▷ VF̂ is algorithm’s estimation of V
7: for τ = t0, t0 − 1, . . . , t do
8: Qv,F̂ (Bτ , τ, b)← [(v − b) + λVF̂ (Bτ − b, τ + 1)]F̂ (b) + λVF̂ (Bτ , τ + 1)(1− F̂ (b))

9: Solve the optimization problem b̂∗τ ← argmaxb Qv,F̂ (Bτ , τ, b)

10: VF̂ (Bτ , τ)← Ev∼G[Qv,F̂ (Bτ , τ, b̂
∗
τ )]

11: end for
12: Place a bid b̂t ← argmaxb Qv,F̂ (Bt, t, b)

13: Observe mt, ct and rt from this round of auction and update F̂ (x) = 1
t

∑t
i=1 1{mi≤x}.

14: Bt+1 ← Bt − ct. If Bt+1 ≤ 0 then halt.
15: end for

Similar to prior work (Amin et al., 2012), Algorithm 1 performs exploration and exploitation
simultaneously. The buyer initializes the estimation of F to a uniform distribution (Line 2). At
round t, the buyer observes her valuation. Then, she uses her estimation of F to solve the dynamic
programming problem recursively5 to obtain an estimation of the optimal bid (Line 7~Line 11). To

5For the non-trivial case B ≤ T , this can be solved in O
(

T4.5

(1−λ)6

)
time with only O(T− 1

2 ) loss (see, e.g.
Chow and Tsitsiklis, 1989).
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provide a base case for recursion, note that for sufficiently large t0 ≫ t, VF̂ (·, t0)’s impact to VF̂ (·, t)
is negligible due to the discount λt0−t. Therefore, the buyer can approximate VF̂ (·, t0) with zero
for t0 (Line 5). Finally, the auction proceeds with mt, rt, ct revealed and the buyer updates her
information accordingly (Line 13~Line 14).

Analysis of regret To analyze the algorithm, we first assume that Algorithm 1 knows the distribution
G exactly and establishes the regret. Then we add the contribution of the estimation of F .
Theorem 3.1. Under the circumstance that F is unknown, the worst-case regret of Algorithm 1 is
Õ(
√
T ), where the regret is computed according to Equation (1). Explicitly, if we take C1 = 1,

Regret(T ) ≤
(
4

√
ln(
√
2T )

1 + λ

(1− λ)3
+

4

1− λ

)√
T + 1.

To show an example of the application of the result, let us take the budget B to scale linearly with
T as in Balseiro and Gur (2019); Flajolet and Jaillet (2017). Specifically, assume that T < +∞
and there exists a constant β such that the budget B = βT , then we establish that the regret is
Õ(
√
T ) in this special case. Indeed, under this condition, we can simply set t0 = T + 1 and

VF̂ (BT+1, T + 1) = 0 for any BT+1 in Algorithm 1. Therefore, C1 = 0 and the worst-case regret is

bounded by
(
4
√
ln(
√
2T ) 1+λ

(1−λ)3

)√
T + 1.

Next, we deal with the case where G is also initially unknown. Based on Algorithm 1, we additionally
maintain an estimation Ĝ of G based on past observations of valuations. Ĝ is initialized to be a
uniform distribution and will be used to solve the dynamic programming problem (see Line 7 of
Algorithm 2). Using similar techniques as before (with more work), we obtain the following theorem.
Theorem 3.2. Under the circumstance that F,G are both unknown, it holds that the worst-case regret
of Algorithm 1 using empirical distribution functions to estimate F and G is Õ(

√
T ). Explicitly, if

we take C1 = 1,

Regret(T ) ≤
(√

ln(2T )
6(1 + λ)

(1− λ)3
+

4

1− λ

)√
T + 1.

3.2 CENSORED FEEDBACK

In this subsection, we deal with the case that the buyer can only see the winner’s bid after each round.
In other words, the feedback is left-censored. Concretely, the buyer’s observation is

ot = max{bt,mt}.
When she wins, the exact value of mt is not revealed. The buyer only knows that mt is smaller
than her bid in the current round. To estimate the distribution of mt, there is a classical statistics
(KM estimator) developed by Kaplan and Meier (1958) for the estimation of F in this scenario.
However, the KM estimator assumes the sequence (mt)

T
t=1 is deterministic, which does not fit our

needs. Although Suzukawa (2004)’s extension allows random censorship, it requires independence
between bt and mt, which is not realistic since we use the estimated distribution to place bids.

To tackle this problem, we first introduce an estimator proposed by Zeng (2004) denoted by F̂n to
take place of the previous empirical distribution used in Algorithm 1.

Estimation procedure We now present the procedure for estimating F under censored feedback.
It suffices to estimate the distribution function of 1 −mt which is right-censored by 1 − bt. Let
yt = min{1−mt, 1− bt}, rt = 1{mt≥bt}. The observations can now be described as (yt, rt,ht)

T
t=1.

Roughly speaking, to decouple the dependency between mt, bt, we use the fact that bt and mt

are independent conditioning on ht. Intuitively, the history ht provides information for getting
enough effective samples for mt. Next, we establish models to estimate the hazard rate functions6 of
1 −mt, 1 − bt using ht. With the hazard rate functions, we use the maximum likelihood method
with a kernel to compute the final estimation F̂t and obtain Equation (3).

6The hazard rate function of a random variable X with p.d.f. f and c.d.f. F is HX(x) = f(x)
1−F (x)

.
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Details follow. We initialize with a sequence (bandwidth) (at)Tt=1 such that log2 at

ta2
t
→ 0, ta2t →

∞, ta4t → 0 as t→ +∞ and a symmetric kernel function K(·, ·) ∈ C2(R2) with bounded gradient.
Now, at each time t, we compute two vectors βt,γt which maximize each of the following likelihood
functions (these can be regarded as loss functions of the estimation that we aim to optimize)

f(β) =

t∑
τ=1

rτ
t

β⊤hτ − log
∑

yi≥yτ

eβ
⊤hτ

 , g(γ) =

t∑
τ=1

1− rτ
t

γ⊤hτ − log
∑

yi≥yτ

eγ
⊤hτ

 .

(2)
We arbitrarily pad h1, . . . ,ht with zeros to make their length the same (we will show that this is
without loss of generality in a moment). Compute Zt = (β⊤

t ht,γ
⊤
t ht)

⊤. The survival function
of 1−mt, or equivalently the cumulative distribution function of mt, is estimated based on Zeng
(2004)’s estimator

F̂t(x) =
1

t

t∑
i=1

t∏
j=1

(
1− K((Zi −Zj)/an)1{yj≤x}rj∑n

m=1 K((Zi −Zm)/an)1{yj≤ym}

)
. (3)

Now, we are ready to apply the estimator to design the algorithm for the censored-feedback case. Note
that the new estimator’s convergence rate is slower than that for the full-feedback case. Therefore,
compared to Algorithm 1, Algorithm 2 is now a multi-phase algorithm. The algorithm only updates
the estimation of F̂ at the end of each phase (see Figure 1 for an illustration). The other elements of
each phase in Algorithm 2 are similar to Algorithm 1.

Algorithm 2 Algorithm for the censored-feedback case
1: Input: Initial budget B and constant C1 ▷ C1 is an arbitrary positive constant
2: Initialize the estimation F̂ of F and the estimation Ĝ of G to uniform distributions over [0, 1]
3: B1 ← B
4: for Phase i = 1, 2, . . . do ▷ Phase i (i > 1) lasts for 2i rounds. Phase 1 lasts for 2 rounds
5: for each t in the time interval of round i do
6: Observe the value vt in round t
7: Update Ĝ(x) = 1

t

∑t
i=1 1{vi≤x}.

8: Let t0 be the smallest integer that satisfies λt0−t 1
1−λ < C1√

t

9: Set VF̂ ,Ĝ(Bt0 , t0) = 0 for any Bt0 ▷ VF̂ ,Ĝ is algorithm’s estimation of V
10: for τ = t0, t0 − 1, . . . , t do ▷ This loop can be moved to the end of each phase to reduce

the invocation time from T to lnT
11: QF̂ ,Ĝ(Bτ , τ, b)← [(v− b) + λVF̂ ,Ĝ(Bτ − b, τ +1)]F̂ (b) + λVF̂ ,Ĝ(Bτ , τ +1)(1−

F̂ (b))

12: Solve the optimization problem b̂∗τ ← argmaxb QF̂ ,Ĝ(Bτ , τ, b)

13: VF̂ ,Ĝ(Bτ , τ)← Ev∼G[QF̂ ,Ĝ(Bτ , τ, b̂
∗
τ )]

14: end for
15: Place a bid b̂t ← argmaxb QF̂ ,Ĝ(Bt, t, b)
16: Observe ot, ct and rt from this round of auction
17: Bt+1 ← Bt − ct. If Bt+1 ≤ 0 then halt.
18: end for
19: Update F̂ using the estimator specified in Equation (3) with data observed before this phase
20: end for

Analysis of regret To analyze the performance of Algorithm 2, we will prove a series of lemmas
on the estimation error of Equation (3). We concentrate on the performance of the new estimator
since this is the major difference between Algorithm 1 and Algorithm 2. In particular, our proof relies
on the following convergence result.

Lemma 3.3 (Zeng). Let F̂n be the estimation of F after using n observations. We have
√
n(F̂n(1− x)− F (1− x)) =⇒ B(x) in ℓ∞([0, 1]),

where B(x) is a Gaussian process.
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Estimate F using Equation (3)

Estimate F using Equation (3)

Estimate F using Equation (3)

Phase k
Length 2k−1

Phase k − 1
Length 2k−2

Phase 1
Length 2

· · ·

Figure 1: Schematic representation of the phases in Algorithm 2. Algorithm 2 updates its estimates
of F at the end of each phase.

Before we proceed to apply the lemma, we verify a series of prerequisites mentioned in Zeng (2004)
to make sure it holds. First, we make sure that conditioning on ht, the random variables 1 −mt

and 1 − bt are independent. Indeed, bt is completely decided by ht and mt is independent of ht.
Second, we note that the maximizer shown in Equation (2) is essentially doing Cox’s proportional
hazards regression analysis. To establish consistency of the estimator, we show that at least one of
m̃t := 1 −mt and 1 − bt follows Cox’s proportional model. That is to say, there exists β and a
function f(y) such that the hazard rate function of m̃t or 1− bt conditioning on ht exactly follows

H(y | ht) = f(y)eβ
⊤ht . (4)

Equation (4) holds for m̃t. In fact, taking β = 0 and f(y) = F ′(1−y)
1−F (1−y) suffices. Since we take

β = 0, consistency establishes regardless of the way we pad ht.

Next, consider some phase at time 2n ≤ t ≤ 2n+1 − 1. The estimation F̂n is computed using the
first 2n observed data points. Applying similar techniques for the rate of convergence of empirical
process (Norvaiša and Paulauskas, 1991), we obtain the following lemma on the performance of F̂ in
Algorithm 2.
Lemma 3.4. Under the update process in Algorithm 2, for any 2n ≤ t ≤ 2n+1 − 1, we have the
following bounds for the estimation F̂n:

|Pr(sup
b
|
√
2n(F̂n(1− b)− F (1− b))| ≥ r)− Pr(sup

b
|B(1− b)| ≥ r)| ≤M(1+r)−3 ln2(t)·t− 1

6 ,

where M is a constant depending only on F and Algorithm 2.

Finally, we now bound the difference between F̂n and F with the help of Lemma 3.4.

Lemma 3.5. Recall that we use the first 2n data points to estimate F̂ . Under the update procedure
of Algorithm 2, for any 2n ≤ t ≤ 2n+1 − 1, with probability at least 1− T− 5

12 /(2 lnT )

sup
x
|F̂ (x)− F (x)| ≤

√
2C5(4M ln3 T )

1
3 t−

5
9T

5
36 ,

where C5 is an absolute constant.

With Lemma 3.5 in hand, we now have
Theorem 3.6. Under the circumstance that F,G are both unknown and the feedback is censored, the
worst-case regret of Algorithm 2 is Õ(T

7
12 ). Explicitly, if we take C1 = 1,

Regret(T ) ≤
(
9
√
2(1 + λ)

2(1− λ)3
C5(4M ln3 T )

1
3 + 1

)
T

7
12 +

(√
1

2
ln (4T

17
12 )

2(1 + λ)

(1− λ)3
+

4

1− λ

)
√
T .

Remark 3.7. The setting in Han et al. (2020b) is a special case of ours, where there are no budget
constraints and λ = 0 (thus removing the 1

1−λ factor in our results). The buyer’s aim is to maximize
(v − b)F (b) each round. This is equivalent to VF̂ = 0 in our setting with no need to estimate G,
yielding regret Õ(

√
T ) in the full-feedback case and regret Õ(T

7
12 ) in the censored-feedback case.

Remark 3.8. The regret-bound looks unusual at a first glance. The reason is that the convergence
rate of the estimator is lower than that in the commonly used “Hoeffding-type” or “Bernstein-type”
inequalities. However, due to the information structure, they are not suitable to be used in our
environment to our best knowledge.

8
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4 LOWER BOUND

Here, we discuss the lower bound for the regret under such settings. This will shed light on the
optimality gap of the proposed policies.

Full Feedback We have proposed a general solution framework that works for any β where the
budget constraint is B = βT and any discount rate λ ∈ [0, 1). Note that the general lower bound
is no less than the lower bound for a specific case. Consider the case when β = 1 and λ = 0. Our
problem reduces to the case where the buyer essentially does not face budget constraints and is
extremely myopic. Under this circumstance, the problem is a multi-armed bandit problem. Auer et al.
(2002) shows that it suffers from a Θ(

√
T )-regret lower bound. This means that our algorithm is

optimal up to logarithmic terms.

Censored Feedback The Õ(
√
T ) lower bound also applies here. However, the upper bound and

the lower bound have not matched yet. We leave this as an intriguing open problem as there is a lack
of relevant literature to show regret lower bounds under the censored-feedback case. However, we
want to provide some evidence that our upper bound is sufficiently good. For example, parallel to
our work, Gaitonde et al. (2022) extend the pacing techniques to a class of auction forms including
first-price auctions. They obtain an Õ(T

3
4 )-regret bounds against the best linear policy under the

value-maximization objective. Under a censored-feedback information structure with contextual

valuations, Cesa-Bianchi et al. (2017) show an Õ(T
d−1/3
d+2/3 )-regret upper bound without budget

constraints where d is the dimension of the context. And a similar information and payment structure
in Bayesian persuation yield an Õ(T

4
5 ) regret bound (Castiglioni et al., 2020).

5 DISCUSSION AND CONCLUSION

In this paper, we develop a learning algorithm to adaptively bid in repeated first-price auctions
with budgets. On the theoretical side, our algorithm, together with its analysis of Õ(

√
T )-regret

in the full-feedback case and Õ(T
7
12 )-regret in the censored-feedback case, takes the first step in

understanding the problem. On the practical side, our algorithm is simple and readily applicable to
the digital world that has shifted to first-price auctions7.

Questions raise themselves for future explorations. We observe here that in the limiting case λ→ 1,
the optimal bidding strategy in Algorithm 2 is similar to a pacing strategy, which relates to the
open question8 raised in Balseiro and Gur (2019). In the limiting case of λ → 1, the optimal bid
of Algorithm 2 is of the form vt

1+xt
, where xt is a pacing multiplier that depends only on Bt and F

and can be computed without solving the dynamic programming problem. This observation can be
viewed as a corollary of (Theorem 3.1 Gummadi et al., 2012). This connection between Algorithm 2
and pacing suggests further investigations. Other immediate open questions include closing the gap
between upper and lower bounds for the censored feedback case.
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A PROOF OF THEOREM 3.1

The establishment of the regret bounds will be given in two steps. First, we will show that the buyer’s
estimation VF̂ is approximately accurate with a sufficient number of samples. This relies on the
estimation of F . Concentration inequalities are thus intrinsic to our analysis. Second, we bridge
the regret defined in Equation (1) with V and VF̂ . This is done by a series of auxiliary quantities
measuring the regret. We obtain the desired result by combining the two steps.

We first present the following lemma (Dvoretzky et al., 1956; Massart, 1990), which states a uniform
convergence result for the estimation of cumulative distribution functions.

Lemma A.1 (Dvoretzky–Kiefer–Wolfowitz). Given t ∈ N, let m1,m2, . . . ,mt be real-valued
independent and identically distributed random variables with cumulative distribution function F .
Let F̂t denote the associated empirical distribution function defined by F̂t(x) =

1
t

∑t
i=1 1{mi≤x}

where x ∈ R. Then with probability 1− δ, it holds

sup
x
|F̂t(x)− F (x)| ≤

√
1

2
ln

2

δ
t−

1
2 .

With Lemma A.1 in hand, given any T , we show a bound for the difference between V (Bt, t) and
VF̂ (Bt, t) for any 1 ≤ t ≤ T (recall that V (Bt, t) is the accumulated utility of the optimal strategy
with the knowledge of F ). We prove this using induction. Note that the induction basis is a little
tricky due to the base case of recursion in Algorithm 1. Therefore, in the following lemma, we first
deal with the induction step.

Lemma A.2. For any round t ≤ T , budget Bt and with probability at least 1 − δ
T , we have

the following bounds for the estimated VF̂ and the ground truth with F if supBt0
|V (Bt0 , t0) −

VF̂ (Bt0 , t0)| ≤
√

1
2 ln

2T
δ

1+λ
(1−λ)2 t

− 1
2 :

|V (Bt, t)− VF̂ (Bt, t)| ≤ Ct−
1
2 = Õ

(
1√
t

)
where C =

√
1

2
ln

2T

δ

1 + λ

(1− λ)2
.

Proof. We will use backward induction to show that

|V (Bt, t)− VF̂ (Bt, t)| ≤ Ct−
1
2 .

The inequality holds trivially with the condition of the lemma for the basis (t = t0). Suppose the
bound holds for t+ 1. Now we write out the difference of the value functions

V (Bt, t)− VF̂ (Bt, t) = E
v∼G

[Qv,F (Bt, t, b
∗
t )−Qv,F̂ (Bt, t, bt)]

≤ E
v∼G

[Qv,F (Bt, t, b
∗
t )−Qv,F̂ (Bt, t, b

∗
t )],

where bt is Algorithm 1’s estimated optimal bid and b∗t is the bid of the benchmark. The inequality
establishes by noting that b∗t is sub-optimal under F̂ . Next consider the term inside the expectation
which is rewritten as follows:

Qv,F (Bt, t, b
∗
t )−Qv,F̂ (Bt, t, b

∗
t ) ≤

|(vt − b∗t )(F (b∗t )− F̂ (b∗t ))|︸ ︷︷ ︸
∆1

+ λF (b∗t )|(V (Bt − b∗t , t+ 1)− VF̂ (Bt − b∗t , t+ 1))|+ λ|(F (b∗t )− F̂ (b∗t ))VF̂ (Bt − b∗t , t+ 1)|︸ ︷︷ ︸
∆2

+ λ|(1− F (b∗t ))(V (Bt, t+ 1)− VF̂ (Bt, t+ 1))|+ λ|(F̂ (b∗t )− F (b∗t ))VF̂ (Bt, t+ 1)|︸ ︷︷ ︸
∆3

.

To bound the above equation, we deal with the three terms ∆1,∆2,∆3 separately. Using Lemma A.1

and union bound of T rounds, ∆1 ≤
√

1
2 ln

2T
δ t−

1
2 with probability at least 1− δ. By the induction
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hypothesis |V (Bt, t)− VF̂ (Bt, t)| ≤ C(t+ 1)−
1
2 ≤ Ct−

1
2 and that any value function is bounded

by 1 + λ+ λ2 + · · · = 1
1−λ , we have

∆2 ≤ λCF (b∗t )t
− 1

2 +
λ

1− λ

√
1

2
ln

2T

δ
t−

1
2 ,

∆3 ≤ λC(1− F (b∗t ))t
− 1

2 +
λ

1− λ

√
1

2
ln

2T

δ
t−

1
2 .

Therefore,

Qv,F (Bt, t, b
∗
t )−Qv,F̂ (Bt, t, b

∗
t ) ≤

(
2λ

1− λ

√
1

2
ln

2T

δ
+ λC +

√
1

2
ln

2T

δ

)
t−

1
2

=

√
1

2
ln

2T

δ

1 + λ

(1− λ)2
t−

1
2 .

This establishes that V (Bt, t) − VF̂ (Bt, t) ≤ Ct−
1
2 . Finally, by symmetry—swap F and F̂ and

repeat the proof above, it holds that

|V (Bt, t)− VF̂ (Bt, t)| ≤ Ct−
1
2 .

This finishes the induction step and the claim follows.

Note that the lemma above assumes that supBt0
|V (Bt0 , t0) − VF̂ (Bt0 , t0)| is bounded above by√

1
2 ln

2T
δ

1+λ
(1−λ)2 t

− 1
2 , which holds if the base case VF̂ (Bt0 , t0) is set accurately (i.e. V (Bt0 , t0) =

VF̂ (Bt0 , t0)). We use ṼF̂ (Bt, t) to denote the estimated value function using F̂ if the base is indeed
accurate. In the following lemma, we show that using the alternative initialization method specified in
Line 5 of Algorithm 1, supBt

|VF̂ (Bt, t)− ṼF̂ (Bt, t)| actually satisfies the condition of Lemma A.2.

Lemma A.3. Suppose ṼF̂ (Bt0 , t0) = V (Bt0 , t0) and ṼF̂ (Bt, t) is then computed by the recursive
procedure in Algorithm 1. Then it holds that for any τ ≤ t0 and Bτ :

|VF̂ (Bτ , τ)− ṼF̂ (Bτ , τ)| ≤
1

1− λ
λt0−τ .

In particular, when τ = t, we have supBt
|VF̂ (Bt, t)− ṼF̂ (Bt, t)| ≤ C1√

t
(by construction of t0).

To prove Lemma A.3, we will state a general form of it concerning the error in the initialization of
the base case. This lemma will come in handy in the following sections.
Lemma A.4. For any fixed distributions F,G, consider the value function VF,G(Bt, t). Suppose we

use an arbitrary value in
[
0, 1

1−λ

]
to initialize the base case VF,G(Bt0 , t0) and recursively compute

thereon to obtain ṼF,G(Bt, t), then it holds that for any t ≤ t0:

sup
Bt

|VF,G(Bt, t)− ṼF,G(Bt, t)| ≤
1

1− λ
λt0−t.

Proof. When τ = t0, the claim holds because VF,G and ṼF,G(·, ·) are both upper bounded by 1
1−λ

and lower bounded by 0.

Supposing the claim holds when τ = t+ 1, then for τ = t, we have

ṼF,G(Bt, t)− VF,G(Bt, t) ≤ E
v∼G

[(vt − b∗t )F (b∗t ) + λF (b∗t )ṼF,G(Bt − b∗t , t+ 1)

+ λ(1− F (b∗t ))Ṽ (Bt, t+ 1)− (vt − b∗t )F (b∗t )− λF (b∗t )VF,G(Bt − b∗t , t+ 1)

− λ(1− F (b∗t ))VF,G(Bt, t+ 1)]

≤ 1

1− λ
λt0−t−1λ
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=
1

1− λ
λt0−t,

In the derivation above, b∗t denotes the optimal bidding strategy obtained by computing V (Bt, t).
The first inequality holds since b∗t is not be the optimal bidding strategy under V̂ (·, t)’s view. The
second inequality holds since |Ṽ (Bt+1, t+ 1)− V (Bt+1, t+ 1)| ≤ 1

1−λλ
t0−t−1 for any Bt+1.

And by symmetry, we have |Ṽ (Bt, t)− V (Bt, t)| ≤ 1
1−λλ

t0−t. This concludes the induction step
and yields the lemma.

In particular, using Lemma A.4, under the condition of Lemma A.3, the initialization is taken to be 0.
We have

sup
Bt

|VF̂ (Bt, t)− ṼF̂ (Bt, t)| ≤
1

1− λ
λt0−t.

Remark A.5. For convenience, similar to the notations used in this lemma, for any value function ν,
we will use ν̃ to denote its approximately-initialized counterpart. Furthermore, we will invoke the
lemma many times for other value functions in the rest of the proofs.

Synthesizing Lemma A.2 and Lemma A.3, we have |V (Bt, t)−VF̂ (Bt, t)| ≤ (C+C1)t
1
2 . A crucial

next step is to relate this bound to the final regret. This is achieved by two transformations. Roughly
speaking, the buyer’s “regret” can be viewed in two parts: 1) she does not bid according to the optimal
strategy; 2) her strategy is not optimally spending the budget which leads to future losses. These
two transformations are done with this intuitive observation and summarized in the following lemma
that bounds the performance of the buyer’s strategy. Below we first condition on the good event that
the estimation succeeds for every t. Then we add the contribution of the bad event to the regret in
Theorem 3.1.

Lemma A.6. For any given Bt and t, denote V π(Bt, t) = Ev∼GT

[∑T
τ=t λ

τ−tRπ(vτ , bτ )
]
, then

|V (Bt, t)− V π(Bt, t)| ≤
4
(√

1
2 ln

2T
δ

1+λ
(1−λ)2 + C1

)
(1− λ)

√
t

.

By Lemma A.6 and further transformations, we can now establish the regret bound of Algorithm 1.
Below we first condition on the good event that the estimation (of Lemma A.1) succeeds for every t.
Then we add the contribution of the bad event to the regret in Theorem 3.1 finally.

To proof this theorem, we will first bound the following auxiliary “regret” with Lemma A.2 and
Lemma A.4.

Let us first make an intuitive and approximate description of the regret. The buyer’s “regret” can
be viewed in two parts: 1) she does not bid according to the optimal strategy; 2) her strategy is not
optimally spending the budget which leads to future losses. Given remaining budget Bt at time t with
strategy π, the above intuition guides us to first look at

R1 = E
v∼GT

[
T∑

t=1

(Rπ∗

t (vt, b
∗
t )−Rπ

t (vt, bt))

+ [λ(F (b∗t )V (Bt − b∗t , t+ 1) + (1− F (b∗t ))V (Bt, t+ 1))

− λ(F (bt)V (Bt − bt, t+ 1) + (1− F (bt))V (Bt, t+ 1))]

]
.

Lemma A.7. Suppose Lemma A.2 and Lemma A.4 hold for some constants C and C1, i.e. |V (Bt, t)−
VF̂ (Bt, t)| ≤ (C + C1)t

− 1
2 . Assume further that supx |F (x)− F̂ (x)| ≤ Kt−

1
2 for some constant

K. We have

R1 ≤ 2

(
K(1 + λ)

1− λ
+ (1 + λ)C + 2C1

)√
T .

Proof. To ease description, we first let

Ĥt := (vt − bt)F̂ (bt) + λ(F̂ (bt)VF̂ (Bt − bt, t+ 1) + (1− F̂ (bt))VF̂ (Bt, t+ 1)),

15
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Ht := (vt − b∗t )F (b∗t ) + λ(F (b∗t )V (Bt − b∗t , t+ 1) + (1− F (b∗t ))V (Bt, t+ 1)),

H̃t := (vt − bt)F (bt) + λ(F (bt)V (Bt − bt, t+ 1) + (1− F (bt))V (Bt, t+ 1)).

(Recall that bt is Algorithm 1’s estimated optimal bid and b∗t is the bid of the benchmark.) Using the
notations above, R1 now becomes

E
v∼GT

[
T∑

t=1

(Ht − H̃t)

]
≤ E

v∼GT

[
T∑

t=1

(|Ht − Ĥt|+ |Ĥt − H̃t|)
]
.

Use the induction part in the proof of Lemma A.2 and Lemma A.4, |Ht − Ĥt| ≤ (C + C1)t
− 1

2

follows from the condition. In order to bound |Ĥt − H̃t|, we write

|Ĥt − H̃t| ≤|(vt − bt)(F (bt)− F̂ (bt))|+ λ|F̂ (bt)− F (bt)|VF̂ (Bt − bt, t+ 1)

+ λF (bt)|V (Bt − bt, t+ 1)− VF̂ (Bt − bt, t+ 1)|
+ λ|F (bt)− F̂ (bt)|VF̂ (Bt, t+ 1) + λ(1− F (bt))|V (Bt, t+ 1)− VF̂ (Bt, t+ 1)|

≤ Kt−
1
2

(
1 +

2λ

1− λ

)
+ λ

(
Ct−

1
2 +

C1

λ
t−

1
2

)
=

(
K(1 + λ)

1− λ
+ λC + C1

)
t−

1
2 .

The first inequality holds because of the triangle inequality and the second inequality establishes
using the conditions specified (Lemma A.1, Lemma A.2 and Lemma A.4). Note that it holds that
|V (Bt+1, t+ 1)− VF̂ (Bt+1, t+ 1)| ≤ 1

1−λλ
t0−t−1 = C1

λ
√
t
.

Finally, we sum up the above estimation and obtain

R1 ≤
T∑

t=1

(
K(1 + λ)

1− λ
+ (1 + λ)C + 2C1

)
t−

1
2 ,

as desired.

In particular, taking C =
√

1
2 ln

2T
δ

1+λ
(1−λ)2 and K =

√
1
2 ln

2T
δ as it holds in the analysis of

Algorithm 1, we have R1 ≤ 4(C + C1)
√
T .

Next, we will build connections between R1 and the accumulated differences in the values i.e. regret.

Let us recall the definition of regret that

Regret(T ) = E
v∼GT

[
T∑

t=1

(V (Bt, t)− V π(Bt, t))

]
.

Lemma A.8. For any given Bt and t, suppose that the conditions for Lemma A.7 holds. We have

|V (Bt, t)− V π(Bt, t)| ≤
C ′

(1− λ)
√
t

where C ′ =
K(1 + λ)

1− λ
+ (1 + λ)C + 2C1.

Proof. To start, we introduce the following notation:

Hπ
t = (vt − bt)F (bt) + λ(F (bt)V

π(Bt − bt, t+ 1) + (1− F (bt))V
π(Bt, t+ 1)).

Note that we have Ev∼GT [Ht] = V (Bt, t) and Ev∼GT [Hπ
t ] = V π(Bt, t). We will use backward

induction to bound the difference between V (Bt, t) and V π(Bt, t) for any Bt. First choose a
sufficient large t0 and assume V (Bt0 , t0) = Ṽ π(Bt0 , t0). When τ = t0, the induction basis
holds since V (Bt0 , t0) = Ṽ π(Bt0 , t0). Now consider τ = t + 1. By the induction hypothesis,
|V (Bτ , τ)− Ṽ π(Bτ , τ)| ≤ C′

(1−λ)
√
τ

, and when τ = t, it holds that

H̃t −Hπ
t = E

v∼G
[λF (bt)(V (Bt − bt, t+ 1)− Ṽ π(Bt − bt, t+ 1))

16



Under review as a conference paper at ICLR 2023

+ λ(1− F (bt))(V (Bt, t+ 1)− Ṽ π(Bt, t+ 1))]

≤ C ′λ

(1− λ)
√
t+ 1

.

It follows that

|V (Bt, t)− Ṽ π(Bt, t)| ≤ E
v∼G

[|Ht − H̃t|+ |H̃t −Hπ
t |] ≤

C ′
√
t
+

C ′λ

(1− λ)
√
t+ 1

≤ C ′

(1− λ)
√
t
.

and this concludes the induction step.

Applying the proof techniques in Lemma A.4 with the condition for V π , we have

|V π(Bt, t)− Ṽ π(Bt, t)| ≤
1

1− λ
λt0−t.

Since t0 is arbitrarily chosen (as long as it is sufficiently large), we can take t0 → +∞. Note that we
have limt0→+∞ Ṽ π(Bt, t) = V π(Bt, t). Therefore, it holds that

|V (Bt, t)− V π(Bt, t)| ≤
C ′

(1− λ)
√
t
,

which ends the proof.

This establishes

Regret(T ) ≤ 2C ′

1− λ

√
T ,

and leads to the Theorem 3.1.

In particular, take C =
√

1
2 ln

2T
δ

1+λ
(1−λ)2 and K =

√
1
2 ln

2T
δ as it holds in the analysis of Algo-

rithm 1, we have Regret(T ) ≤ 4(C+C1)
1−λ

√
T .

The bound above is conditional on the good event that the estimation (of Lemma A.1) succeeds for
every 1 ≤ t ≤ T . Now take δ = 1

T and note that Pr[bad event] ≤ 1
T . By using the trivial regret

bound T for the failure event, we have

Regret(T ) ≤
(
4

√
ln(
√
2T )

1 + λ

(1− λ)3
+

4

1− λ

)√
T + 1.

and this concludes the proof of Theorem 3.1.
Corollary A.9. We can establish the relationship between our regret and the loss of cash flow. Let’s
define the loss of cash flow as R2 = Ev∼GT

[∑T
t=1 R

π∗
(vt, b

∗
t )−Rπ(vt, bt)

]
, then it holds that

R2 ≤
((

4

√
ln(
√
2T )

1 + λ

(1− λ)2
+ 4C1

)
+ 1− λ

)√
T +

λ

2
log 1

λ

T

(1− λ)2
+ 1.

Proof. In order to prove Corollary A.9, we show the following lemma first. It relates the regret
defined in Equation (1) with R2 in Corollary A.9.

Lemma A.10. Suppose that Regret(T ) ≤ 2C′

1−λ

√
T , then R2 ≤ (2C ′ + 1− λ)

√
T + 1−λ

2 log 1
λ

T
1−λ .

Proof. In fact, note that

Regret(T ) = E
v∼GT

[
T∑

t=1

(1 + λ+ · · ·+ λt−1)(R∗(vt, b
∗
t )−Rπ(vt, bt))

]
,

and any expected instantaneous reward is no greater than 1. We have∣∣∣∣ 1

1− λ
R2 − Regret(T )

∣∣∣∣ = E
v∼GT

[∣∣∣∣∣
T∑

t=1

λt

1− λ
(R∗(vt, b

∗
t )−Rπ(vt, bt))

∣∣∣∣∣
]

17
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≤ λ

2(1− λ)
log 1

λ

T

(1− λ)2
+

1√
T
T.

The above bound holds because when t ≥ log 1
λ

√
T

1−λ , we have λt

1−λ ≤ 1√
T

. The considered quantity is

divided into two parts with this threshold log 1
λ

√
T

1−λ . The first part is no greater than log 1
λ

√
T

1−λ
λ

1−λ and

the second part is no greater than 1√
T
T =

√
T . The result follows after simple rearrangements.

Therefore, take C ′ = K(1+λ)
1−λ + (1 + λ)C + 2C1 as it holds in the analysis of Algorithm 1, we have

R2 ≤
((

4

√
1

2
ln

2T

δ

1 + λ

(1− λ)2
+ 4C1

)
+ 1− λ

)
√
T +

λ

2
log 1

λ

T

(1− λ)2
,

conditioning on the good event. Combining the bad event leads to our Corollary A.9 finally.

B PROOF OF THEOREM 3.2

Note that the function Q depends on both F and G as V does. With the additional condition that
G also needs to be estimated, we use Q·,Ĝ and Q·,G to denote the corresponding version computed
using Ĝ and G respectively. We also extend this notation on V in this scenario (c.f. Algorithm 2).

We start with two simple lemmas. These two lemmas are direct corollaries of Lemma A.1 and
Lemma A.4.
Lemma B.1. Let Ĝt be the estimated distribution at round t in Algorithm 1. With probability 1− δ,

sup
x
|Ĝt(x)−G(x)| ≤

√
1

2
ln

2

δ
t−

1
2 .

Lemma B.2. For any round t ≤ T , budget Bt, it holds that

sup
Bt

|VF̂ ,Ĝ(Bt, t)− ṼF̂ ,Ĝ(Bt, t)| ≤
1

1− λ
λt0−t.

In the following proof, we will bridge V (Bt, t) and VF̂ ,Ĝ(Bt, t)—the estimated value function,
gradually. For distributions A,B, the notation VA,B refers to the value function computed when
F = A and G = B.
Lemma B.3. With probability at least 1− δ

2T , for any given t ≤ T and budget Bt, we have

|VF̂ ,Ĝ(Bt, t)− VF̂ ,G(Bt, t)| ≤
√

1

2
ln

4T

δ

1

(1− λ)2
t−

1
2 .

Proof. First we note that Lemma B.1 states with probability at least 1− δ
2T , supx |Gt(x)−G(x)| ≤√

1
2 ln

4T
δ t−

1
2 . Now we apply backward induction. When t = t0, the induction basis holds trivially

since |VF̂ ,Ĝ(Bt, t)−VF̂ ,G(Bt, t)| = 0 ≤
√

1
2 ln

4T
δ

1
1−λ t

− 1
2 . Assume the induction hypothesis holds

for τ = t+ 1. For any t < t0, vt and Bt, it holds that

QF̂ ,G(Bt, t, b
∗
t )−QF̂ ,Ĝ(Bt, t, bt) ≤ QF̂ ,G(Bt, t, b

∗
t )−QF̂ ,Ĝ(Bt, t, b

∗
t )

= λF̂ (b∗t )VF̂ ,G(Bt − b∗t , t+ 1) + λ(1− F̂ (b∗t ))VF̂ ,G(Bt, t+ 1)

− λF̂ (b∗t )VF̂ ,G(Bt − b∗t , t+ 1)− λ(1− F̂ (b∗t ))VF̂ ,Ĝ(Bt, t+ 1)

≤ λF̂ (b∗t )|VF̂ ,G(Bt − b∗t , t+ 1)− VF̂ ,Ĝ(Bt − b∗t , t+ 1)|
+ λ(1− F̂ (b∗t ))|VF̂ ,G(Bt, t+ 1)− VF̂ ,Ĝ(Bt, t+ 1)|

≤
√

1

2
ln

4T

δ

λ

(1− λ)2
t−

1
2 .
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The first inequality holds since by construction b∗t is the optimal bid under F̂ and G’s view while bt is
the optimal bid under F̂ and Ĝ’s view. The second inequality holds with the triangle inequality. And
the third inequality is due to the induction hypothesis. Finally, by symmetry—swap G and Ĝ and

repeat the proof above, it holds that |QF̂ ,G(Bt, t, bt)−QF̂ ,Ĝ(Bt, t, b
∗
t )| ≤

√
1
2 ln

4T
δ

λ
(1−λ)2 t

− 1
2 .

Next, since VF̂ ,Ĝ(Bt, t) = EĜ[QF̂ ,Ĝ(Bt, t, bt)] and VF̂ ,G(Bt, t) = EG[QF̂ ,vt
(Bt, t, b

∗
t )], we have

|VF̂ ,G(Bt, t)− VF̂ ,Ĝ(Bt, t)| ≤ ∆1 +∆2,

where

∆1 = |E
G
[QF̂ ,G(Bt, t, b

∗
t )]− Ê

G
[QF̂ ,G(Bt, t, b

∗
t )]| and

∆2 = |Ê
G
[QF̂ ,Ĝ(Bt, t, bt)]− Ê

G
[QF̂ ,G(Bt, t, b

∗
t )]|.

• To bound ∆1: since QF̂ ,G is supported on
[
0, 1

1−λ

]
and the difference between G and Ĝ is

upper bounded by
√

1
2 ln

4T
δ t−

1
2 , ∆1 is bounded by

√
1
2 ln

4T
δ t−

1
2

1
1−λ . Note that we use

the fact that with integration by parts,
∫ 1

0
Qd(G − Ĝ) = Q(G − Ĝ)|10 −

∫ 1

0
(G − Ĝ) dQ.

Therefore, it holds that |∆1| ≤
∫ 1

0
|G − Ĝ||dQ|. Since Q is monotone w.r.t. vt and is

two-sided bounded, it holds that |∆1| ≤
√

1
2 ln

4T
δ t−

1
2

1
1−λ .

• To bound ∆2, it is clear that ∆2 ≤
√

1
2 ln

4T
δ

λ
(1−λ)2 t

− 1
2 by linearity of expectation.

Therefore, we obtain

|VF̂ ,G(Bt, t)− VF̂ ,Ĝ(Bt, t)| ≤
√

1

2
ln

4T

δ

1

(1− λ)2
t−

1
2 ,

which finishes induction step and concludes the proof.

Lemma B.4. For any t ≤ T and budget Bt, with probability at least 1− δ
T , it holds that:

|VF,G(Bt, t)− ṼF̂ ,Ĝ(Bt, t)| ≤
(√

1

2
ln

4T

δ

2 + λ

(1− λ)2
+ C1

)
t−

1
2 .

Proof. In order to bound the difference between ṼF̂ ,Ĝ(Bt, t) and VF,G(Bt, t). We first rewrite

|VF,G(Bt, t)− ṼF̂ ,Ĝ(Bt, t)| ≤ ∆1 +∆2 +∆3,

where

∆1 = |ṼF̂ ,Ĝ(Bt, t)− VF̂ ,Ĝ(Bt, t)|,
∆2 = |VF̂ ,Ĝ(Bt, t)− VF̂ ,G(Bt, t)| and

∆3 = |VF̂ ,G(Bt, t)− VF,G(Bt, t)|.

• To bound ∆1: using Lemma B.2 and the definition of t0, we conclude that ∆1 ≤ C1√
t
.

• To bound ∆2: using Lemma B.3, it holds that ∆2 ≤
√

1
2 ln

4T
δ

1
(1−λ)2 t

− 1
2 .

• To bound ∆3: using Lemma A.2, we obtain that ∆3 ≤
√

1
2 ln

4T
δ

1+λ
(1−λ)2 t

− 1
2 . Note that

we use Bonferroni’s method to divide δ into two parts for the union bound of error in the
estimations of F and G.
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Therefore, it holds that:

|VF,G(Bt, t)− ṼF̂ ,Ĝ(Bt, t)| ≤
(√

1

2
ln

4T

δ

2 + λ

(1− λ)2
+ C1

)
t−

1
2 .

Now, we provide a bound similar to Lemma A.7 for Theorem 3.2. Similarly, we define

Ĥt := (vt − bt)F̂ (bt) + λF̂ (bt)ṼF̂ ,Ĝ(Bt − bt, t+ 1) + λ(1− F̂ (bt))ṼF̂ ,Ĝ(Bt, t+ 1),

H̃t := (vt − bt)F (bt) + λF (bt)VF,G(Bt − bt, t+ 1) + λ(1− F (bt))VF,G(Bt, t+ 1),

Ht := (vt − b∗t )F (b∗t ) + λF (b∗t )VF,G(Bt − bt, t+ 1) + λ(1− F (b∗t ))VF,G(Bt, t+ 1).

Recall that R1 = Ev∼GT

[∑T
t=1(Ht − H̃t)

]
. The following series of arguments holds. First, we

have

R1 ≤
∣∣∣∣∣ E
v∼GT

[
T∑

t=1

(Ht − Ĥt)

]∣∣∣∣∣+ E
v∼GT

[
T∑

t=1

|H̃t − Ĥt|
]
.

Followed from Lemma B.3, it holds that∣∣∣∣∣ E
v∼GT

[
T∑

t=1

Ht − Ĥt

]∣∣∣∣∣ ≤
(√

1

2
ln

4T

δ

2 + λ

(1− λ)2
+ C1

)
T∑

t=1

t−
1
2 .

It suffices to bound |H̃t − Ĥt|. To do so we rewrite

|H̃t − Ĥt| ≤ ∆1 +∆2 +∆3 +∆4 +∆5,

where

∆1 = |(vt − bt)F̂ (bt)− (vt − bt)F (bt)|,
∆2 = λF̂ (bt)|ṼF̂ ,Ĝ(Bt − bt, t+ 1)− VF,G(Bt − bt, t+ 1)|,
∆3 = |λF̂ (bt)VF,G(Bt − bt, t+ 1)− λF (bt)VF,G(Bt − bt, t+ 1)|,
∆4 = λ(1− F̂ (bt))|ṼF̂ ,Ĝ(Bt, t+ 1)− VF,G(Bt, t+ 1)| and

∆5 = |λ(1− F̂ (bt))VF,G(Bt, t+ 1)− λ(1− F (bt))VF,G(Bt, t+ 1)|.

• To bound ∆1: using Lemma A.1, it holds ∆1 ≤
√

1
2 ln

4T
δ t−

1
2 .

• To bound ∆2 + ∆4: using Lemma B.3 and setting C1 ← C1

λ , it holds that ∆2 + ∆4 ≤
λ
(√

1
2 ln

4T
δ

2+λ
(1−λ)2 + C1

λ

)
t−

1
2 .

• To bound ∆3: since VF,G(·, ·) ≤ 1
1−λ , then it holds that ∆3 ≤ λ

1−λ

√
1
2 ln

4T
δ t−

1
2 .

• To bound ∆5: like the way we deal with ∆3, it holds that ∆5 ≤ λ
1−λ

√
1
2 ln

4T
δ t−

1
2 .

After summing them up, we have

|H̃t − Ĥt| ≤
(√

1

2
ln

4T

δ

1 + 2λ

(1− λ)2
+ C1

)
t−

1
2 .

Therefore, conditioning on the good event that the estimation succeeds (of both F and G) for every t,
R1 is bounded by

R1 ≤
(√

1

2
ln

4T

δ

3 + 3λ

(1− λ)2
+ 2C1

)
T∑

t=1

t−
1
2 ≤

(√
1

2
ln

4T

δ

6(1 + λ)

(1− λ)2
+ 4C1

)
√
T .
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We then apply the same techniques in Lemma A.8 to yield

Regret(T ) ≤
(√

ln(2T )
6(1 + λ)

(1− λ)3
+

4

1− λ

)√
T ,

conditioning on the good event.

Now take δ = 1
T and note that Pr[bad event] ≤ 1

T . By using the trivial regret bound T for the failure
event, we obtain the desired bound

Regret(T ) ≤
(√

ln(2T )
6(1 + λ)

(1− λ)3
+

4

1− λ

)√
T + 1.

Similar to Corollary A.9, we have the following corollary.
Corollary B.5. The loss of cash flow when distribution of G is unknown is upper bound by(√

ln(2T ) 6(1+λ)
(1−λ)2 + 5− λ

)√
T + λ

2 log 1
λ

T
(1−λ)2 + 1.

C OMITTED PROOF IN SECTION 3.2

C.1 PROOF OF LEMMA 3.4

We first use the techniques that appeared in (Norvaiša and Paulauskas, 1991) to obtain

Lemma C.1. Under Algorithm 2, let F̂n be an empirical process of updates and B be a general
Gaussian process, respectively, indexed by a class F of real measurable functions. We have:

|Pr({∥F̂n∥F ≥ r})− Pr({∥B∥F ≥ r})| ≤ C2(1 + r)−3 ln2(t) · t− 1
6 ,

where C2 is a constant depending only on F̂n and t is the size of data used to update the estimation.

Using Lemma C.1, we have |Pr(supb |
√
2n(F̂n(1− b)− F (1− b))| ≥ r)− Pr(supb |B(1− b)| ≥

r)| ≤ C2(1 + r)−3 ln2(2n)(2−
n
6 ). Since 2n ≤ t ≤ 2n+1 − 1, it holds that:

|Pr(sup
b
|
√
2n(F̂n(1− b)− F (1− b))| ≥ r)− Pr(sup

b
|B(1− b)| ≥ r)|

≤ C2(1 + r)−3 ln2(t)

(
t

2

)− 1
6

.

Taking M = C22
1
6 concludes the proof.

C.2 PROOF OF LEMMA 3.5

Before we proceed to bound the difference between F̂n and F , we also need the following lemma to
to characterize a property of Gaussian processes.
Lemma C.2. Let B(1− b) be a Gaussian process, we have

Pr(sup
b
|B(1− b)| ≥ r)| ≤ C3e

−C4r
2

,

where C3 and C4 are constants.

For a Gaussian process, the tail satisfies Gaussian distribution. For a normal distribution, we have the
following well-known inequality ∫ ∞

x

1√
2π

e−
t2

2 dt ≤ C6e
−C7x

2

,

where x ≥ 0 and C6, C7 are constants. For example, we can take C6 = 1
2e

1
2 and C7 = 1

2 in this
inequality.

To bound for a certain Gaussian process, we rescale the random variable and the tail distribution also
satisfies above property. So, there exists C3 and C4 to make Lemma C.2 hold.
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Now we give a bound for the estimation of F̂ . First, we have

Pr(sup
x
|
√
2n(F̂ (x)− F (x))| ≥ r) ≤ Pr(|B| ≥ r) +M(1 + r)−3 ln2(t) · t− 1

6 ,

We show that Lemma 3.5 establishes if we take r = max{r1, r2} where r1 =
√

1
C4

ln 4C3 lnT
δ and

r2 = (4M ln3 T )
1
3 t−

1
18 δ−

1
3 . Indeed, if r ≥ r1 then the first part on the right side is not greater than

δ
4 lnT by Lemma C.2 and if r ≥ r2 then the second part is not greater than δ

4 lnT . Take δ = T− 5
12 . It

follows from simple comparison (between the rate of growth of r1 and r2) that there exists a constant
C5 for any t and T such that max{r1, r2} ≤ C5r2. Now,

Pr

(
sup
x

∣∣∣∣∣
√

t

2
(F̂ (x)− F (x))

∣∣∣∣∣ ≥ C5r2

)
≤ Pr(sup

x
|
√
2n(F̂ (x)− F (x))| ≥ C5r2) ≤

1

2T
5
12 lnT

since t ≤ 2n+1. This concludes the proof of the lemma.

C.3 PROOF OF THEOREM 3.6

Similar to the proof in the full-feedback case, let us first assume the knowledge of G. The regret
of learning G will be considered later. The proof of Theorem 3.6 is short thanks to the tool-sets
established by previous sections. As usual, we first condition on the good event that the estimation
succeeds for every t. Then we add the contribution of the bad event to the regret in the final proof.

In order to bound the final regret, we need to bound the difference between F and F̂n and then apply
the methodology used in the proof of Theorem 3.1.

Dropping the first two rounds, for any 2n ≤ t ≤ 2n+1 − 1, the estimation of F is F̂n. Then using
Lemma 3.5, we obtain that, with probability at least 1− δ

2 lnT ,

sup
x
|F̂n(x)− F (x)| ≤

√
2C5(4M ln3 T )

1
3 t−

5
9T

5
36 ., (5)

where δ = T− 5
12 . Note that we use the fact that if 1 ≤ t ≤ T , the algorithm updates for at most

⌊lnT ⌋ times. Now, the new concentration bound (Lemma C.1) effective changes K,C and the
convergence rate in Lemma A.7, Lemma A.8 and Lemma A.10. Therefore, by substituting C√

t

with
√
2C5(4M ln3 T )

1
3 t−

5
9T

5
36

1+λ
(1−λ)2 and K√

t
with

√
2C5(4M ln3 T )

1
3 t−

5
9T

5
36 in the lemmas we

obtain that conditioning on the good event (w.p. 1− δ
2 ) that the estimation of F succeeds every time,

R1 ≤ 4C1

√
T +

9
√
2(1 + λ)

2(1− λ)2
C5(4M ln3 T )

1
3T

7
12 ,

if Algorithm 2 has the knowledge of G.

Next we add the estimation of G. Note that Lemma B.3 decouples the regret of estimating F and G,

hence we may apply the same approach in the proof of Theorem 3.2 by taking C =
√

1
2 ln

4T
δ

1+λ
(1−λ)2

and K =
√

1
2 ln

4T
δ and we have

R1 ≤ 4C1

√
T +

9
√
2(1 + λ)

2(1− λ)2
C5(4M ln3 T )

1
3T

7
12 +

[√
1

2
ln

4T

δ

2(1 + λ)

(1− λ)2

]
√
T ,

conditioning on the good event (w.p. 1− δ) that the estimation of F succeeds every time.

Finally, we use Lemma A.8 to transform R1 into the final regret, which yields

Regret(T ) ≤
(
9
√
2(1 + λ)

2(1− λ)3
C5(4M ln3 T )

1
3

)
T

7
12 +

(√
1

2
ln (4T

17
12 )

2(1 + λ)

(1− λ)3
+

4

1− λ

)
√
T ,

conditioning on the good event that the estimations of F and G succeeds for every 1 ≤ t ≤ T . Note
that Pr[bad event] ≤ 1

T
5
12

. By using the trivial regret bound T for the failure event, we have

Regret(T ) ≤
(
9
√
2(1 + λ)

2(1− λ)3
C5(4M ln3 T )

1
3 + 1

)
T

7
12 +

(√
1

2
ln (4T

17
12 )

2(1 + λ)

(1− λ)3
+

4

1− λ

)
√
T .

This concludes the proof.
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D EMPIRICAL EVALUATION

Although this is mostly a theory paper, we briefly provide some experimental evidence to show that
our algorithm is efficient and performs well to complement the theoretical result.

Setup The datasets of values and highest bids of the opponents are obtained by 1) sampling from
uniform distributions over [0, 1], and 2) sampling from right-truncated exponential distributions. Note
that by domain knowledge (Fibich and Gavish, 2012; Han et al., 2020b), most valuations and bids
in online auctions follow exponential distributions, so we believe that our simulations can correctly
reflect real scenarios9.

The discount factor is set to be an extreme λ = 1− 10−7 to test the robustness of our algorithm. On
each realized trajectory of values and highest bids, we only reveal vt and max(mt, bt) to the bidder
(i.e. Algorithm 2). The dynamic programming part of the algorithm is computed using heuristics
(sampling and gradient descent). For the benchmark, we use a standard baseline — fixed pacing
parameter that has the knowledge of the realized values and bids. Although this is an anticipating
strategy, we believe it serves as a strong and suitable baseline because pacing is widely applied in
practice.

We fix T = 2000000 and vary ρ = B/T from 0.005 to 1.0 — the target average expenditure rate
that reflects how much the bidder is constrained to budgets. The utility of the online algorithm is
compared to the baseline to evaluate how the performance varies w.r.t. budgets.
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Figure 2: Utilities of the algorithm and the baseline with T = 2000000 and B/T from 0.005 to
1.0. Left: uniform distribution. Right: exponential distribution. The fixed-pacing baseline knows
opponents’ highest bids in advance and uses them to choose an optimal pacing parameter.

Results and discussion The results are shown in Figure 2, where we plot the rewards of the
algorithm and the baseline as a function of ρ = B/T . We make the following observations regarding
the results. First, although the baseline is anticipating, our algorithm achieves almost the same
revenue. The loss incurred by our strategy is less than 5% in cases for almost all the ρ values. This
suggests that the actual constant factor of our algorithm is rather small. Second, we observe that
the strategy of our algorithm in the ρ = 1 region recovers that of the Bayesian optimal, providing
additional evidence that the algorithm indeed learns the best non-anticipating strategy. Finally, we
highlight that in our experiments, each step of decisions takes less than 10ms to perform, which is
realistic for real-time deployment.

Additional analysis on λ We have also repeated our experiments with λ = 0.9 and λ = 0.1 to
find out the impact of λ on our algorithm. The results for uniform distributions and exponential
distributions are listed in Table 1 and Table 2, respectively. We can see that due to small λs, the
baseline is much more unstable than our algorithm, and the performance of our algorithm is superior.

9We are unable to obtain real datasets on first-price auctions with budgets due to the fact that currently, most
platforms are on the transition to first-price auctions so there are no public datasets to the best of our knowledge.
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λ = 0.9 λ = 0.1
Budget sufficiency Algorithm Fixed pacing (baseline) Algorithm Fixed pacing (baseline)

0.005 0.052±0.028 0.371±0.187 0.082±0.068 0.174±0.258
0.01 0.09±0.038 0.352±0.151 0.109±0.076 0.144±0.2
0.02 0.128±0.038 0.372±0.138 0.124±0.08 0.174±0.222
0.03 0.179±0.045 0.342±0.173 0.143±0.093 0.181±0.219
0.04 0.22±0.059 0.364±0.15 0.175±0.09 0.137±0.198
0.05 0.262±0.071 0.378±0.174 0.185±0.09 0.131±0.209
0.06 0.319±0.067 0.378±0.151 0.192±0.111 0.211±0.244
0.07 0.342±0.075 0.397±0.193 0.201±0.126 0.184±0.24
0.08 0.389±0.065 0.374±0.165 0.21±0.106 0.158±0.198
0.09 0.425±0.085 0.38±0.156 0.244±0.113 0.197±0.256
0.10 0.501±0.086 0.429±0.18 0.251±0.124 0.186±0.233
0.11 0.53±0.102 0.373±0.183 0.265±0.127 0.141±0.2
0.12 0.552±0.081 0.353±0.154 0.265±0.116 0.141±0.198
0.13 0.613±0.099 0.363±0.157 0.278±0.13 0.155±0.216
0.14 0.64±0.108 0.356±0.151 0.314±0.144 0.196±0.244
0.15 0.668±0.093 0.408±0.178 0.277±0.118 0.161±0.221
0.16 0.701±0.113 0.359±0.183 0.331±0.146 0.193±0.265
0.17 0.723±0.087 0.366±0.142 0.307±0.131 0.168±0.222
0.18 0.734±0.104 0.402±0.171 0.326±0.138 0.17±0.238
0.19 0.758±0.098 0.411±0.16 0.353±0.167 0.173±0.24
0.4 0.722±0.09 0.336±0.165 0.325±0.153 0.217±0.26
0.6 0.736±0.091 0.391±0.181 0.343±0.16 0.137±0.196
0.8 0.738±0.087 0.357±0.147 0.333±0.144 0.235±0.266
1.0 0.736±0.098 0.359±0.159 0.333±0.145 0.148±0.202

Table 1: More results with λ = 0.9 and λ = 0.1 for uniform distributions. All the rewards are
normalized and the standard deviations are shown. The fixed-pacing baseline knows opponents’
highest bids in advance and uses them to choose an optimal pacing parameter.

λ = 0.9 λ = 0.1
Budget sufficiency Algorithm Fixed pacing (baseline) Algorithm Fixed pacing (baseline)

0.005 0.057±0.03 0.299±0.133 0.08±0.066 0.111±0.163
0.01 0.12±0.047 0.263±0.122 0.124±0.083 0.106±0.165
0.02 0.182±0.049 0.269±0.151 0.148±0.095 0.149±0.216
0.03 0.259±0.059 0.32±0.161 0.191±0.108 0.136±0.194
0.04 0.328±0.068 0.286±0.152 0.204±0.111 0.127±0.174
0.05 0.403±0.074 0.32±0.158 0.251±0.127 0.108±0.176
0.06 0.434±0.068 0.309±0.149 0.252±0.121 0.131±0.189
0.07 0.52±0.083 0.3±0.138 0.287±0.11 0.136±0.18
0.08 0.584±0.099 0.301±0.12 0.288±0.141 0.106±0.177
0.09 0.628±0.096 0.249±0.135 0.348±0.154 0.152±0.23
0.10 0.688±0.112 0.294±0.134 0.317±0.141 0.125±0.194
0.11 0.665±0.087 0.29±0.143 0.346±0.162 0.104±0.155
0.12 0.672±0.096 0.294±0.137 0.337±0.148 0.132±0.216
0.13 0.668±0.082 0.316±0.146 0.353±0.137 0.129±0.187
0.14 0.674±0.1 0.307±0.129 0.344±0.138 0.114±0.197
0.15 0.667±0.1 0.307±0.152 0.334±0.142 0.126±0.18
0.16 0.661±0.091 0.266±0.11 0.341±0.163 0.122±0.183
0.17 0.698±0.098 0.297±0.147 0.343±0.159 0.132±0.195
0.18 0.676±0.106 0.293±0.16 0.336±0.158 0.103±0.165
0.19 0.689±0.114 0.274±0.125 0.351±0.156 0.119±0.191
0.4 0.645±0.09 0.296±0.136 0.337±0.15 0.146±0.217
0.6 0.677±0.094 0.311±0.146 0.354±0.143 0.151±0.231
0.8 0.674±0.101 0.307±0.163 0.345±0.149 0.106±0.152
1.0 0.679±0.087 0.274±0.149 0.355±0.161 0.099±0.139

Table 2: More results with λ = 0.9 and λ = 0.1 for exponential distributions. All the rewards are
normalized and the standard deviations are shown. The fixed-pacing baseline knows opponents’
highest bids in advance and uses them to choose an optimal pacing parameter.
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