Under review as a conference paper at ICLR 2021

Supplementary Materials

A EXPERIMENTAL SETTING

In our constrained Cartpole environment, the cart is restricted in the area [—2.4, 2.4]. Each episode
length is no longer than 200 and terminated when the angle of the pole is larger than 12 degree.
During the training, the agent receives a reward +1 for every step taken, but is penalized with cost 4-1
if (1) entering the area [—2.4, —2.2], [-1.3, —1.1], [-0.1,0.1], [1.1, 1.3}, and [2.2, 2.4]; or (2) having
of the angle of pole larger than 6 degree.

In our constrained Acrobot environment, each episode has length 500. During the training, the agent
receives a reward +1 when the end-effector is at a height of 0.5, but is penalized with cost +1 when
(1) a torque with value +1 is applied when the first pendulum swings at a anticlockwise direction; or
(2) a torque with value +1 is applied when the second pendulum swings at a anticlockwise direction
with respect to the first pendulum.

For details about the update of PDO please refer to (Achiam et al., 2017, 10.3.3). The performance of
PDO is very sensitive to the stepsize of dual variable update. If the stepsize is too small, then the dual
variable won’t update quickly to enforce the constraints. If the stepsize is too large, then the algorithm
will behave conservatively and have low return reward. To appropriately select the stepsize for dual
variable, we experiment with learning rate {0.0001,0.0005, 0.001, 0.005,0.01, 0.05} for both tasks.
The learning rate 0.005 performs the best in the first task, and the learning rate 0.0005 performs the
best in the second task. Our reported result of Cartpole is with stepsize 0.005 and our reported result
of Acrobot is with stepsize 0.0005.

B TECHNICAL PROOF OF CRPO IN TABULAR SETTING

B.1 SUPPORTING LEMMAS FOR THEOREM 1

Lemma 3 (The performance difference lemma Kakade & Langford (2002) ). For all policies m, 7'

and initial distribution p, we have
1 )
= EESNV;)E“NW('|S)[A;’ (8, a)]

where J! () and v, denote the accumulated reward (cost) function and visitation distribution under
policy ™ when the initial state distribution is p.

Lemma 4 (Lemma 5.6. Agarwal et al. (2019)). Considering the approximated NPG update in line 7
of Algorithm 1 in the tabular setting and © = 0, the NPG update take the form:

exp(a@i(s,a)/(1 = 7))
Zi(s) )

a —_
Wiyl = Wy + :Qi, and Twt1q (a\s) = Tw, (a\s)
where

Zi(s) = 3 ma(als) exp (O‘?f)) |

acA v

Note that when we follow the update in line 10 of Algorithm 1, we can obtain similar results for the
case i € {1,--- ,p} as stated in Lemma 4.

Lemma 5 (Policy gradient property of softmax parameterization). Considering the softmax policy in
the tabular setting (eq. (3)). For any initial state distribution p, we have

vaf(w) = ]EswupEaN‘n'w(-\s) l(ﬂas - Z 7711}((1/|5)]1a/s> Q;_w (S,CL)‘| s
a’€A
and
2Cm;
vap < max )
Va2 (), < 352

where 1,5 is a |S| x | A|-dimension vector, with (a, s)-th element being one, and the rest elements
being zero.
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Proof. The first result can be obtained directly from Lemma C.1 in Agarwal et al. (2019), we now
proceed to prove the second result.

IV df (W), = ||E <]las - Z 7Tw(al|5)]la/5> in(s7a)‘|

a’€eA 2

<E <]las - Z 7"'w(a/|3)]1a’s> Q;w (s,a) ‘|
a’€A 2

< E 1@5 - Z 7Tw(a/‘s)‘ﬂa’s Q;—w (5,@)1

a’'€A 2
<2E[QL (s,a)] < QCmaX.
— Tw i — 1 _ "Y

O

Lemma 6 (Improvement lower bound for approximated NPG). For the iterates T, generated by the

approximated NPG updates in line 7 of Algorithm 1 in the tabular setting, we have for all initial state
distribution p and when © = 0, the following holds

J§ (wey1) = I (wy)

1—7v « 0 0
> ——FE.., |logZ - —V w ) ’
> —Eoy (og +(s) T o, ;ﬂ (als) |Qi(s,a) — Q7 (s,a)
1 _
- B, S mu,(als) ]Qg’(s, a) - Q5 (s,0)|
1- v acA '
1
- 1 — SNI/,, Z 7wa+1 (L| ‘Qﬂ'w Qt (S a)‘
acA

Proof. We first provide the following lower bound.

log Zi(s) — —— Vi (s)

1—y T
aQi(s7 a) (6% .
= log Z Ty (a|s) exp ( L ) —_ V;w (S)
ac€A 1- v 1-— Y
> mu,(als) log exp (aQt(s’a)) - VAL
1 — ’}/ 1 — wy
aEA
. N _
ZM“Q”@3M”+—*ZmM w(58) = 7 Vi, (9)
aeA aEA
(als) Qt s,a) — Q:'rwt (s,a))
aE.A
> % S mulals) |Qi(s,0) — Qi (5,0)]
- :
acA
Thus we conclude that
log Z;(s) — %V;wt (als) ’Qt s, a) jrw(&a) > 0.

aG.A

‘We then proceed to prove Lemma 6. The performance difference lemma (Lemma 3) implies
Jp(wtﬂ) = Jf (we)

SNl/p Z ’/wa+1 a’| ( )

acA
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=71 eNl/p Z Twgyr CL| Tl'w ( ) - 1— ]E‘g""’pvﬂwt (S)

acA

1 ~i O ~i
= EES’VW Z Tw.i1 (a]8)Q4(s, a) + — Ko, Z T (a]5) T‘rwt (s,a) — Qi(s,a))

acA acA

! g, vi (s)

1— SNVp Ty,

Eonv, D Tuys (als) log (7%(|S)Z)t(5)>

acA Twe (CL|S

. 1 )
8~Vp Z Twey1 a| Q (87(1) - Q%(Sa a)) — ﬁESM/pV;wt (5)

acA

@)

?

Q\»—‘

1
— a]ESNVpDKL(Ww1+1H7th) + *ESNVP IOg Zt(S)

A 1 i
SNVp Z Tws 1 (als) th( s5,a) — Qi(s,a)) — ﬁESNVpVﬂ'wt (s)

acA
]. « i i
> *]Eswup log Zt(s) - 7V7rw 5 CL) wa (57 (1)‘
o 1- v ' aEA '
1 ~i i
- 7E3~Vp Z 7th (a|8) ‘Qt(& a’) - Qﬂ'w (87 a’)‘
1- v acA '
1
- 1 — swup Z 7th+1 a| ‘Qﬂ"w Qt(s (l)’
v acA
(@) 1 -~ « i
> 7Es~p log Zt(s) - 17‘/7“” P Z Tw, a‘ 5 a) Q wg (Sa a)‘
@ -7 aEA
1 ~i i
- 7E3~Vp Z 7th (a|8) ‘Qt(& a’) - Qﬂ'wt (87 a’)‘
1- v acA
1
1 — swup Z 7th+1 a| ‘Qﬂ"w Qt(s (l)’
v acA

where (i) follows from the update rule in Lemma 4 and (44) follows from the facts that ||, /pl| >
1 —~yandlog Zy(s) — 12V} (s)+ 25 Daea Tw, (als) ‘Qi(s,a) - zrw,, (s,a)‘ > 0. O

=Y Twy

Note that when we follow the update in line 10 of Algorithm 1, we can obtain similar results for the
casei € {1,---,p} as stated in Lemma 6.

Lemma 7 (Global improvement upper bound for approximated NPG). Considering the approximated
NPG updates in line 7 of Algorithm 1 in the tabular setting when i = 0, we have
Jo(7*) = Jo (7w, )

1 : : Zochua S , 30+ aoms
< EESNV*(DKL(W 17w, ) — D (7" || T,y ) + (1—~)3 (1-—

~0
HQﬂ'wt - Qt 9

Proof. By the performance difference lemma (Lemma 3), we have
Ji (7'('*) —Ji (ﬂ-wt )
1 ,
= EESNV* Z 7r*(a|s)A§rW (s,a)

acA

1 1
= B “(als)Q%,, (s,a) = o V7, (5)
1—y ;4 -7
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1 * i 1 * i ~i
= iESNV* Z 7 (als)Q}(s,a) + iESNIJ* Z 7" (als)(Qx,, (s,a) — Qi(s,a))
" acA v a€A
1
- SNV V7
BV
@) 1 * Twyqq (a|s)Zt(S) 1 * i =
= ——E 7" (als) log + Egopn 7 (als)(QL  (s,a) — Qi(s,a
B 30 nalolog 2 SO+ B 3 )@, 50~ Qi)
1
BV ()

1 1 )
= EESNV* (Dxo(m" ||, ) — DKL<7T*||7th+1)> + a]ESNV* (log Zi(s) — ﬁvxwt (3))

_ Esop- Zﬂ- (als) Ql ( )—Qi(s,a))

acA

< EESNV* (DKL(W*”']th) - DKL(/]T*”/]th{»l))

1 «a . « iy ,
+ &ESN”* <1og Zy(s) — EV;W (s) + — anAth(cds) ‘Qi(s, a) — Qr, (s, a)‘)
1 * % oY
1 Bawr ) 7 (als)(Q5,, (5,0) = Qi(s,0))
v ac€A

(i) 1 . .
< EESMI* (Dxr(m Hﬁwt) — Dxu(m |‘7th+1))

1, - - 1 . .
+ (J’L (thrl) - Ji (wt)) + QESNVU* Z 7th+1 (a|s) ‘Q;Lrw (Sa a) - Q%(&a’)
1- (1 o FY) acA '
+ 1 SNI_/ * Z T, CL| ’Qﬂwt Qt(s (l)’
( - acA
1 « i ~i
B Y 7 (als) | @0, (5,0) — Qils, a)\
1- v acA /
(@ii) 1 % * 2Cmax
< 3 Bo (Drem|mw) = Dre (0 ) + 7 2255 s wtuz HQM
1 3 . 2acm x
= B (D0l 0,) = Drt (0 llm) + 2 |4l + HQM
1 N N 2ozcmax 3 1 Jr acmax
S aEswy* (DKL(T‘- ||7wa,) - DKL(TF ||7th,+1 )) + ‘Qﬂ'wt ( ( HQﬂ'wt 2
1 * * max ‘S| |‘A‘ (1 + OéCde
S EESNZI* (DKL(Tr ||7th) - DKL(Tr ||7th+1)) + (1 — ,7)3 (1 HQTFwt

where (i) follows from Lemma 4, (i¢) follows from Lemma 6 and (4i%) follows from the LlpSChltZ
property of J¥ (w) such that J* (w4 1) — J¥ (w;) < 26“”" |wg41 — w5, which is proved by
Proposition 1 in Xu et al. (2020b). O]

Note that when we follow the update in line 10 of Algorithm 1, we can obtain similar results for the
case i € {1,---,p} as stated in Lemma 7:

Ji(Tw,) — Ji(7)

; i . mXS A 1+acmx
< E]Eswy* (DKL(TF ||7th) _DKL(TF ||7th+1)) _|_ a ‘ || ‘ ( a

(1—~)3 (1- HQ% - Qi 2

B.2 PROOF OF THEOREM 1

We first prove the following lemmas.
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Lemma 8. Considering the CRPO in Algorithm [ in the tabular setting. Let K;, =
O(T /7 10g* (|S|? | A]> T**2/7 /§)). With probability at least 1 — 8, we have

S (o) = Jo(may)) + an NG|

teNy i=1
20°C e S| |AIT |, aVT(2 + (1) + 20Cimas)
(1 -7)? (1—7)2 7

Proof. We define the N; as the set of steps that CRPO algorithm chooses to minimize the i-th
constraint. If ¢ € N, by Lemma 7 we have

a(Jo(m”) = Jo(mw,))

< ESNV* DKL(Tr* | ‘ﬂ-wo) +

* * m X ‘S| |A| (1 + acmlx 2
< B (Dra (1 170,) = Di (7 [ ) + - (1 v o |@s., - -
(13)
If t € \V;, similarly we can obtain
a(Ji(mw,) — Ji(7™))
* * m X ‘S| |A| (1 + O[Cm x
< B (it (1 [170,) = Di (7 [ )) + - (1 v T ||en., @
(14)
Summing eq. (13) and eq. (14) from ¢t = 0 to T" — 1 yields
« Z (Jo(7™) — Jo(mw,) +az Z i(Tw, ) — Ji(7"))
teNo =1 teN;
* 2 max S A T 1 + acmax ~i
SESNV*DKL(T" ||7rw0)+ ‘ |?|, ‘ Z Z HQ”“U 7Qt (15)
(1 =) =0 teN; ‘ 2

Note that when t € A; (i # 0), we have J;(6%) > d; +1 (line 11 in Algorithm 1), which implies that

Ji(mw,) — Ji(7*) > Ji(0)) — — | Ji(6}) — Ji(m,)|
>d;+n— J —|J:(6}) Ji(wwt)|
>0 —||Qk, —Qt|\2~ (16)

Substituting eq. (16) into eq. (15) yields

o > (Jolm) = Jo(mu,)) +an§jw| a2 Y o, - ,

teNy 1=1teN;
. AL ISHAIT  3a(l+ acmax =i
< Esms Dy (7|7, ) + (1 — )3 + (1— Z Z HQWW —Q 2’
v =0 teN;

which implies

az Jo(m*) = Jo(mw,) +04772|N|

teNy =1
< Eurv D (n" 17 + (1 et (1 'S S e, -ai,
v i=0 teN;

a7
By Lemma 1, we have with probability at least 1 — § the following holds

o <1og(|3|2 AP K /5))
2 (1-Ky*

(o
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Thus, if we let

T T T3+
Kn=06 || +—F=—) log® ; :
(((1—v)28||«4> i (5(17)65|62|A02>>

then with probability at least 1 — § /7', we have
5i (1 =) [S[]A]
|ei., @il = Al
t 2 T

Applying union bound to eq. (18) from ¢t = 0 to 7" — 1, we have with probability at least 1 — § the
following holds

(18)

ZZH T“”f_@i 2

i=0 teN;

<VIA =) IS[AT, (19)
which further implies that, with probability at least 1 — J, we have

O‘Z Jo(7*) = Jo(7w,)) +0”72|N‘

teNo i=1
<E D ( * max |S‘ |A‘ T ay |‘S| |A| T(2 + (1 — 7)2 + 3acmax)
< Esps Dxo (77|70 + (1 — )3 + (1—7)t5 ’
which complete the proof. O
Lemma 9. If
1 * 20 max |S‘ |‘A| T o V |S| |"4| T(2 + (1 B 7)2 + 30[Cmax)
§CW]T > ES~V*DKL(7T ||7Two) + (1 — )3 + (1—y)15 )

(20)
then with probability at least 1 — 0, we have the following holds
1. No # 0, i.e., Wy is well-defined,
2. One of the following two statements must holds,
(a) No| > T2,
(b) > ieg(Jo(m™) = Jo(wy)) < 0.

Proof. We consider to prove Lemma 9 in the following event given in eq. (19), which happens with
probability at least 1 — §:

ZZH ”“’t_Qi 2

i=0 teN;

< VA=) [SIAT.
In this event, we have the following inequality holds, which is also the result of Lemma 8.

0 3 (o) — o)) + a3 NG

teNo i=1
20 ISIAIT = av/IS| A T(2+ (1 —7)? + 2acmax)
< Egms D (7" || Tw) + o + . @2
)+ 25 -
We first verify item 1. If Ny = 0, then >0 |N;| = T, eq. (21) implies that
5 202c2 S| AT av/|S|JAI T2+ (1 —7)? + 2acmax
ol < B D)+ 2 i SUAIT | o BTAT -+ (1~ )

which contradicts with eq. (20). Thus, we must have N # 0.
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We then proceed to verify the second item. If 3, \- (Jo(7*) — Jo(w;)) < 0, then (b) hold. If
> ien, (Jo(m*) = Jo(wy)) < 0, then Equation (21) implies that

p
* 2 max S| |A|T « |S| |'A| T(2 + (1 - 7)2 + Sacmax)
a3 W] < Bun D) + 220 AT, 2 A |
=1

Suppose that [No| < T/2,i.e., Y7, |[N;| > T/2. Then,

1 p
ST < any N

i=1

<E *DKL(W*HW )+ 2a max ‘S| |A|T + S5, |S‘ |A|T(2+(1 _7)2+3acmax)
- " (1—7)3 (L=y)t? ’
which contradicts with eq. (20). Hence, (a) holds. O

Now, we are ready to prove our main theorem. We restate Theorem 1 as follows to include the
specifics of the parameters.

Theorem 3 (Restatement of Theorem 1). Consider Algorithm 1 in the tabular setting, let o =

S||A| *
P VISTIATT, = LS (3 + B Dia (1] Ty) + B0max + G and

T I T2+1
Kn=0|(———"") log* : ) ).
(((1—7)5|A> i <5(17)35|52|A02> )

Suppose the same setting for policy evaluation in Lemma 1 hold. Then, with probability at least 1 — 0,
we have

. STA )
o)~ Bido(u) = =2 AL (g Dy (5 ) 434 26+ i)
(1—=N'5VT
and foralli € {1,--- ,p}, we have
2vIS[IA 2,/ (1= IS4
E[Ji(Tuw,,)] — di < ﬂ(?’ + Esrs D (77| Ty ) + 3Cmax + c?nax) + ( ) 1S]1A] .

T (=T VT

Proof of Theorem 1. Similar to the proof of Lemma 9. To prove Theorem 1 (or Theorem 3), we still
consider the following event given in eq. (19) that happens with probability at least 1 — §:

> |en., -,

i=0 tEN;

< VA=) IS[AT,
which implies

OLZ (Jo(7™) — Jo(mw,) +anZ|./\/'\

teNy i=1
. 20%2 S| AIT | a/[S[JAIT(2 4 (1 = 7)* + 3acmax)
< Egore D (77| ) + (1_7)3 + A=) )

We first consider the convergence rate of the objective function. In the above mentioned event, we
have the following holds

(e Z J() J() th))

tENo

. 202 [S[ AT | a/ISIJAIT(2 + (1 —7)* + 3acmax)
S ESNU*DKL(ﬂ- Hﬂ-wo) + (1 — 7)3 + (1 — 7)1‘5 .
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If > en, (Jo(m*) = Jo(mmw,)) < 0, then we have Jo(7*) — Jo(mw,,) < 0. If 35, r (Jo(7*) —
Jo(mw,)) = 0, we have |Ny| > T/2, which implies the following convergence rate
Jo(m ) E[Jo(Tu)]
Z JO Trwt))
teNo
2 SIIA| | 2v/[SITAI(2 + (1 — )% + 30Cmax
2 Dl 4 A0 STIAL | 2V ISTIAIR + (1= 2)? + Bocms)
ol (1—7)3 (1—~)15T
VISIIA] ] 2
S m (2ESNV* DKL(T" Hﬂ'wu) + 6 + 4Cmax =+ GCma.x) .
We then proceed to bound the constraints violation cost. For any ¢ € {1,--- ,p}, we have
1
ElJi(Tug)] = di = 5= > Jilmw,) — d;
Aol teNo
L 7 (pi
Sm Z(Ji(et) Z ‘J (Tw,) — Ji( )|
O teno tGN
T-1
<n+ J'L(ﬂ-wf) j( )
N ; | |
Qn
e
<0+ 23 Y i, -,
i=0 teN;

In the event defined in eq. (19), we have 7

ert - Qi ) < /(1 —7)|S]|A|T. Recall

the value of the tolerance = a ”vlﬁ | J:tlf (34+Esmv+ DL (7| |Tw ) +3Cmax+¢2 05 ). With probability
at least 1 — 4, we have

2V/|S||A] . 2 2/ (1 =) [S[|A]
E Jz Wou /] dz S —=(3 ESNV*D wo 3 max max .
)] = s < S04 B D) + B+ ) =

O

C TEecHNICAL PROOF OF CRPO IN FUNCTION APPROXIMATION SETTING

For notation simplicity, we denote state action pairs (s, a) and (s’,a’) as x and 2, respectively. For
notation simplicity, we will write ¢}, as ¢;, without making any confusing in this subsection. We
define

fo(x waor ) > 0)6, ¢ (x)

as the local linearizion of f (a;,H) at the initial point 6. We denote the temporal differ-

ences as Op(z,z’.0r) = fo(( a');0k) — vfo((s,a);0k) — 7(s,a,s") and Op(z,2'.0;) =

f(( a');0k) — v ((s,a);6k) — (s a,s’). We define the stochastic semi gradient gx(0) =
(xk,xk Hk)ng(xk,Hk) and full semi-gradients go(6x) = E,_[0o(z, 2" .0k) Ve fo(x, Gk)] and
Gx(0x) = E,, [0k (2, 2".0) Vo f(z,0)))]. The approximated stationary point 6* satisfies go(6) " (6 —
0*) > for any § € B. We define the following function spaces

Fom = { Z 1(0g () > 0)0, (96):||9—90||2§R}7
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and
fo,mz{ anam ) > 0)0, () : [|6r — b0 ||, R/W},

and fo(z,07) as the projection of Qr(z) onto the function space Fo,p, in terms of |[-[|, norm.
Without loss of generality, we assume 0 < § < i in the sequel.

C.1 SUPPORTING LEMMAS FOR LEMMA 2

We provide the proof of supporting lemmas for Lemma 2. Note that similar properties have been
given in Cai et al. (2019). Here we established these properties again under a slightly different
initialization scheme compared with that in Cai et al. (2019).

Lemma 10 (Rahimi & Recht (2009)). Let f € Fy o0, Where Fo  is defined in Assumption 2. For
any § > 0, it holds with probability at least 1 — § that

2 4R%log(%)
HH?O’"Lf_fHd = m ’
where d could be any distribution over S x A.

Lemma 11. Suppose Assumption I holds. For any policy 7 and all k > 0, it holds that

CoR
=0

Z|11 oF W(x) >0) —1 (0, ¥(x) > 0)]

l’wr

H

Proof. Note that 1 (@Iﬂﬂ(ﬂf) > O) # 1 (6g,,¢(x) > 0) implies

10,0 ()| < |04, %(x) = 05,3 (2)] < 0k, = Oorll,

which further implies

(07, 600) > 0) — 1 (07,0(0) > 0)| < 107,600 < [00r —borl). @2
Then, we can derive the following upper bound
£ [ 35000000 > 0) 1 000> )
1 m
<E [mZ_j (106, (@)] < 10k, = bo.rll )] (23)
szwa (@)] < 10k, — b0, )
@) C
< 0 Z ||‘9k — b r||2
160,11,
o fan /2 /m . 1/2
0 2
<— 10k, — Bo,- |l > ( )
" (g ) &t
i) CoR
< . 24
S Lvm 24)
where (i) follows from Assumption 1 and (44) follows from the fact that ||6g .||, > d;. O

Lemma 12. Suppose Assumption I holds. For any policy 7 and all k > 0, it holds that
4CyR?
<

Euw |f((57a);9k)_fO((S’a);ek)‘g > dl\/ﬁ
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Proof. By definition, we have

|f((s,a);6:) — fol(s,a); 01)]

= % i (L(0) () > 0) — 1(0g ,(x) > 0)) b0 ()

<L i (L7 (@) > 0) — 105, ab(x) > 0))|[oo| |67, ()

g jmi (163, ()] < 10— b0, 1) |67, 0],

< jﬁi (163, < 181~ b0.115) (160, — Bl + 160, 02)],)

< 2> U@ < 1k~ 0l Mo — O @9

r=1

where () follows from eq. (22). We can then obtain the following upper bound.

By [1f((s,0);60) - fo<(s,a>;at)|2}
% [(Z]l !9 < ”91““_907”” )||90,T_9k,r||2> ]

IA

(Z) 4 m
< E M [Zﬂ |90r < ||9kr 90r|| ZHHOT O T”z
r=1
m
= u« Z ]l |90 r¢ < ||9k,7" - 90,?"”2)]
r=1
(“) 4CyR3
< = (26)
diy/m
where in (7) we apply Holder’s inequality, and (i7) follows from the derivation in Lemma 11 after
eq. (23). O]

Lemma 13. Suppose Assumption 1 holds. For any policy m and all k > 0, with probability at least
1 — 6, we have

100) - go@u)l, < 6 [ LG
9k\Uk 9olVk)llo = (1_7)m1/4 .

Proof. By definition, we have

9% (0x) — Go(Or) I,

= [|Ey, [0k (x, 2" .0k) Vo f(x,01)] — By, [00(z, 2".01) Vo folz, 0k)]ll,

= ||Eu, [(0k (2, 2".0k) — do(z,2".0k)) Vo f(x,0k) + do(x, 2" .0k) (Vo f(x,0k) — Vafolx,0k))]ll,
<E,, [|0k(z, 2" .01) — do(x,2".0)| | Vo f(x, 01y + |00(x, 2" .01)| Vo f(x,0r) — Vo folz,0k)l]
(i)

< By, [0k (2, 2".0k) — do(z,2".0k)[] + E,i, [|00(z, 2".00) [ | Vo f(x,0r) — Vo folz,0)ll,], 27)
where (i) follows from the fact that ||V f(z,0)||, < 1. eq. (27) implies that

135 (6%) — Go(61) 15

< 2B, [|0k(z, 2 .0k) — 0o (, 2 .01) "] + 2 (B, |00 (x, 2 .0k)| [ Vo f (2, 0k) — Vo folx,00)]5])°
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< 2B, [|6k(z,2".01) — So(x, 2" 04) "] + 2B, (160 (2, ' 01) | *Bpu, [| Vo £ (2, 01) — Vo fo(x, 0k)|3]-

(28)
We first upper bound the term E,,_[|0x(z, 2'.0) — do(x, a'.0;)|?]. By definition, we have
|6k (2, 2" .0k) — So(x, 2" .0k)]
= |f(x,0r) — foz,0k) —v(f(2',0k) — fo(a',0%))]
< |f(x,0k) — folz, 0k)| + [f (2, 0) — fo(',0k)],
which implies
nak(x 2/ .0x) — do(x, 20k [’]
2By, [|f(x,6) — folw, 00)") + 2By, (| f(2',64) — fola',64)]"]
AR, (| f(x,01) — folz,0k)]%]
(i) 16CyHR?
< dm (29)

We then proceed to bound the term E,, _[|| Vo f(x,0k) — Vo fo(z, k) ||§] By definition, we have
IVof(z,0k) = Vo folz, 0l

1 m
= 7 |2 [ Ohrv(@) > 0) = 165, 0(0) > O bl vle) |
@ 1 &
< ﬁ D (1O wte) > 0) ~ 1 (0, (w) > 0) ol
(4) m
< Z (|66.,%(@)| < 1101 — Bo.rll,) 160,015 » (30)

T
where (i) follows from |b,.| < 1 and [[1(s)||, < 1, and (i¢) follows from eq. (22). eq. (30) implies
that

E,..[Vof(z,0k) — Vofola,0k)|3]

1 m m
< —E,, [(Zn 67, 6(@)] < 100 - ao,r||2>> <Z ||0o,r||§>]
r=1 r=1

R?
7211|9 )| < 110k, — b0, )

IN

@ C’OR3
= dl\/m’

where (4) follows from the derivation in Lemma 11 after eq. (23).

€1y

Finally, we consider the upper bound of E,, _[|d¢(z, 2’ 03)|°]. We proceed as follows.

E,. (|60 (z, 2’ .0;,)|")

< E,., [lfo(x,00) — r(@,2") — v fol2', 01)[°]

< 3By, [ fo(x, 00) %] + 3E,._ [ (2, 2")] + 392Ky, [l fo(a’, 01) 3]

< 6By, [| fol, 0) "] + 32 ax

= 6E,, [|fo(z,0k) — folz,02) + fo(x,0%) — Qu(@) + Qu(2)’] + 3c2a

= 18E,, [| fo(x, 0k) — fo(x,05)|*] + 18K, [| fo(z, 0%) — Qx(2)[*] + 18E,., [|Qx(2)|’] + 3¢y

212,
i 118, [| o, 0) — Qa2 )

(i) 18R? +
- (1-=7)
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Since fo,m C Fo,m- Lemma 10 implies that with probability at least 1 — §, we have

4R?log (% 1
B o(e,03) - Q) < ) < apvog (7). t8
m
Thus, with probability at least 1 — §, we have
2 2 21c?nax 2 1
E,.[|60(z,2".0,)|"] < 18R* + e + 72R* log (5 . (34)

Combining eq. (29), eq. (31) and eq. (34), we can obtain that, with probability at least 1 — 4, we have
log(3)
ACEAATET =).
H ( ( ) 2 (1 _ 7)2 m

which implies that with probability at least 1 — §, we have

log(})
15k (61) — Go(0k) ]|, < © (“) :

(1= )m7s
which complete the proof. O

C.2 PROOF OF LEMMA 2

We consider the convergence of 6, for a given i under a fixed policy 7. For the iteration of 0y, we
proceed as follows.

165+1 — 0713
= |50k — Bgr(0x)) — (0" — Bgo(67))II5
< [0k = 07) = Blgr(0x) — Go(0))]I5
= 10 — 0"II5 — 28(gk(0x) — Go(6")) " (0 — 07) + B* g (01) — G0 (675
= [|0 — 9*”3 —28(Go(0k) — G0(0%)) " (01, — 6*) + 2B(gr(0x) — gx(0k)) " (61, — 67)
+28(50(6%) — G1(01)) T (0 — %) + B2 [|91(61) — Go(67)]
< |0k — 9*”3 —28(Go(0k) — G0(0%)) " (01, — 6%) + 2B(gr(0x) — gx(0k)) " (61, — 67)
+28(90(0%) — Gr(01)) " (0 — %) + 352 |91 (0x) — G (O0)Il5 + 352 |G (0x) — o (012
+ 36 190(6%) — G0(6)II3
210k — 0°2 = 20 — ) BB, [(fol(5:): 06) — fol(s,):67))?]
+28(9k(0%) — 91(0)) T (O — 0%) +4RB | Go(0k) — G(0n) Il + 362 g (0x) — g (003
+ 36 (19 (0x) — Go(0x) 13 + 368” [|G0 (0x) — G0 (673
0y — 6712 — (2801 — %) — 126, [(fo((5,):00) — fol(s, a); 6°))7]
+2B(gr(0) — gx(0)) T (0, — 0%) + 4RB (|30 (Ok) — 1 () |l5 + 367 g (0x) — Qk(Qk)H;
+38% 13(0) — 30(00) 5 - (35)
where () follows from the fact that
(50(0) — Go(07)) T (65 — 07)
> (1= )E,, [(fol(s,0):0) — fol(s.);07))%] = R |g(0x) — Go(6x)], .

and (74) follows from the fact that

190 (61) = Go(6") 115 < 4By, [(fol(s,a); 0x) — fol(s,a);67))%] .
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Rearrange eq. (35) yields
[28(1 =) = 128°]E,., [(fo((s,a); 6k) — fo((s, a); 67))*]
<10k = 07115 — 116,41 — 0715 + 289 (0k) — 9 (0k)) T (O — 0%) + 4RB [|go(Ok) — 5 (01l

+ 367 195 () — 9 (0x) 115 + 38 195 (k) — Go (615 - (36)
Summing eq. (36) over t = 0 to K — 1 yields
K—-1
28(1=7) = 1287 Y Ep, [(fo((s,a);0) — fo((s,a);07))?]
=0
t K-1 K-1
<[00 — (15 — 105 — (13 +28 > @ (0k) — gr(0x)) T (6r — 0%) + ARB > Go(6x) — G (0k)
=0 =0
K-1 ' K-1 '
+36% D llgn(0x) — gk (00)l5 +38° > 119x(0%) — Go(64) 113
t=0 t=0
K-1
R 125 Z Cl(0k) T (0r — 07) + 35 Z 16k (885 + 4R Z 166 (06) 115 + 382 > 11€x (01113 ,
= t=0 t=0 t=0

where in (i) we deﬁne Ck(0k) = Gr(0k) — g1 (0x) and &k (0k) = Gr(0k) — Go(Ok ).
We first consider the term ZKA 1<k (0k) Hg We proceed as follows.

Py, (Z 1€k 0x) 15 > (1+ A)CZ >

SR G001 )
—p, == 22 > 144
(B

K;—l 0 2
_p, (exp =5 Cn(c;; k>||2) > exp(l 4+ A)>

1 K-1 9 2
< PMW <K exp (”Ckééc)Q) > exp(l—l—/l))

® 15~ (uck(akw

< = E,. |exp 722 /exp(1+ A)
K t=0 CC

(i

< exp(—4), (37)

where (i) follows from Markov’s inequality, (i7) follows from Assumption 4. eq. (37) implies that
with probability at least 1 — 1, we have

K—1
ST Gr@n)2 < (14108 () ) 02K <2108 [+ ) C2K. (38)
t=0 o1 o1

We then consider the term Zfigl Ce(Or) T (6 — 0*). Note that for any 0 < k < K — 1, we have

* 2 *
|Ge(0x) T (61— 6%)]" < 1Gi (6115 116 — 6715 < B [1G (1),
which implies

T _ px* 2
- [exp<|ck<ek>BgeCkg 6%) )] <k, <||<ké<>|2>] < expll).

Applying Bernstein’s inequality for martingale (Ghadimi & Lan, 2013, Lemma 2.3), we can obtain

w (|2

Z Cr(0k) T (0 — 67)

>V2(1+ A)C¢\/§> < exp(—4?%/3),
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which implies with probability at least 1 — J-, we have

<V2 <1 + \/@> CVK < 5C¢y[log (52) VK. (39

We then consider the term Z ka(ek)||2 and Z ||§;c (6k) H2 Lemma 13 implies that with
probability at least 1 — d3/ K, we have

log(3+)
16xBe)lls = € | Ty |-

Applying union bound we can obtain that with probability at least 1 — §3, we have

Z Cr(0k) T (0 — 67)

> K\ flos ()
€Ol <O | <77 | - (40)
— (1 =y)m!/
Similarly, we can obtain that with probability at least 1 — J3, we have
K-1 K
Klog(s)
02 <O — ). 41
; Hﬁk( k)”z = ((1 —7)2m1/2 “D

Combining eq. (38), eq. (39), eq. (40) and eq. (41) and applying union bound, we can obtain that
with probability at least 1 — (§; + d2 + d5 + d4), we have

K-1
26(1 —~) — 1267 " E,., [(fol(s,a);0) — fo((s,a);6%))?]
t=0

) 1 , log(3;)
< R* 4 108C¢4 [log <6>\/ + 68° log ( ) CCK + K6 (17
A _

~)ym1/4
log(5)
KO | ——2 ). 42
RO\ T “
Divide both sides of eq. (42) by [28(1 — v) — 123%]K. Recalling that the stepsize 8 =
min{1/vK, (1 — v)/12}, which implies that L . Then, with probability

VEK[28(1-7)-128%] — <1 >
atleast 1 — (1 + d2 + d3 + d4), we have

K-
[ fo((s,0);0) = fo((s,a); 0 Z e [(Fol(s,a);01) = fo((s,a);67))?]

t=0

2 108C¢ 1og () 69105 (1) 2
= [28(1 —v) — 128%]K * [28(1 —~) — 1282]VK * [28(1 —~) — 1282]VK

Lo Og((;g) 1
(1 =y)m'/* | 128(1 — ) — 1282]VK

o log(£)
(L=7)*m!/? | [25(1 - )—1252NT<

1 1 1 1
<e ((1 ) K) + 6 (( log ((51>> + O ((1 —7)2\/?1 [log (52)>
log(£) 1og<g>
O\ T | O\ T

26



Under review as a conference paper at ICLR 2021

~o (o (s () + e (1))
o (e (Y () + fn (5))).

Finally, we consider the upper bound of H f((s,a);0k) — Qx(s,a) ||Z . We proceed as follows

1£((5,0):0) = Qx(s,0)|
<3| £((5, a):0x) — foll(s,0); 00)||
+31fo((s,);0%) = Qu(s.a)ll;,

20 () + 200 - al(s.i6)

2
e

+3[fo((s,0);0x) = fol(s,a); 67|

2
s

+7||fo((s a);03) = Qx(s.a)lly

(44)
where (4) follows from Lemma 12 and the fact that
1o((5.:0) = @l )2, < == Ifo((s,0):65) = Qu(ssa).
which is given in Cai et al. (2019). eq. (33) implies that, with probability at least J5, we have
,  ARlog (L)
1/0((s,0);:07) = Qx (s, a)ll,, < ————=. (45)

m

Substituting eq. (43) and eq. (45) into eq. (44), we have with probability at least 1 — (d1 + d2 + 5 +
d4 + d5), the following holds:

|£((s,0);0x) = Qx(s, 0|

R )
e (e (o () e (5)))
o (e (1)

Letting §; = 09 = 03 = 64 = 05 = %, we have with probability at least 1 — §, the following holds:

1£((s,):05) = @r(s,0)|

<o (it (3) e (e (5)).

which complete the proof.

C.3 SUPPORTING LEMMAS FOR THEOREM 2

For the two-layer neural network defined in eq. (6), we have the following property: 7 - f(x, W) =
f(z, 7W). Thus, in the sequel, we write 7}, (a|s) = m-w (a|s). In the technical proof, we consider
the following policy class:

exp(f((s,a); W))
2aaexp(f((s,a’); W)’

w(als) == V(s,a) € S x A, (46)
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and J; (W) as the accumulated cost with policy 7. We denote ¢, (s,a) = Vi fi((s,a), W). We
define the diameter of By as Ryy. When performing each NPG update, we will need to solve the
linear regression problem specified in eq. (11). As shown in Wang et al. (2019), when the neural
network for the policy parametrization and value function approximation share the same initialization,
6 is an approximated solution of the problem eq. (11). Thus, instead of solving the problem eq. (11)
directly, here we simply use 6, as the approximated NPG update at each iteration:

o =
Wi =7 - W, 0;.
Te+1 - Wer1 =Tt t+1_W t
Lemma 14. For any 6,0’ € B and w, we have
T T 2 4COR3
[d6(s,a)" 0" — oy (s,0) " O'||, < i

Proof. By definition, we have
bo(s,a)T0" — pg,(s,a) 0

(L(6, % () > 0) = 1(0g % (z) > 0)) by b, (z)

Msgms

< [(L(6, () > 0) — 10y ,b(x) > 0))|[br] |6, ()|,
r=1
(1)
1(|69 ()| < 16, — o ll,) |00 v ()],
r=1
< Z (67, (@)] < 10- = 8o,1l,) (10776 (@) = 03, v(@)]|, + [|63,4(@)]],)

i
Il

Ms

IN

- 5 5i- §A~ i~ 3i-
Ms

1((67, )| < 16~ 60,11,) (165 Bo.rl, + (163, (5)]],)

ﬁ
Il
-

IN

1|00, (@)] < 1107 = bo.rlly) (167 = Oorlly + 1167 = borll,) , 47)

HMS

f
where (4) follows from eq. (22). Followmg from Holder’s inequality, we obtain from eq. (47) that
‘gbg s,a) 9’—¢)go(s a) 9’|

1 m
Sm[D (|65 (@)] < 116, = o.,1l,) HZ 165 = 60,1, + 116, — bo.r 2)2]
r=1
2 - -
m[zn 8,40 <10, bl [0t 3 o - 1
r=1

IN

| /\

Zﬂ 106, (2)| < 1107 — bo.rll,),

which implies

2 2
|bo(s,a)" 0" — dg, (s, a)TG’H = By, [|do(s,a) "0 — ¢g,(s,a)70'|"] <
where () follows from the derivation in Lemma 11 after eq. (23). O

Lemma 15 (Global improvement upper bound for neural NPG). Considering the approximated NPG
updates in the neural network approximation setting, we have

a(l =7)(Jo(r") = Jo(mr.w,))

« « SOzCRN\/ 00R1'5
< By [Dxe (7" ||mr,w,)] = Boe [Die (7|77, wis )] + T JTmin oLy (R +mds)

+ 2QCRN Hf((57a)v gf) - Qﬂ'rtWt (57a)||

Horr o,
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Proof. Tt has been verified that the feature mapping ¢7;, (s, a) is bounded Wang et al. (2019); Cai
et al. (2019). By following similar argument in (Agarwal et al., 2019, Example 6.3), we can show
that log(m,,(als)) is Ls-Lipschitz. Applying the Lipschitz property of log(,,(a|s)), we can obtain
the following.

EV* [DKL(W*HTrTf,Wf,” - EV* [DKL(W*||7TTt+1Wt+1 )}
=E,- [IOg(Tth+1Wt+1 (G,‘S)) - log(ﬂ-ﬂwt (G|S))]

() T Ly 2
> By« [V log(mr,w, (als)] (Te41Wigr — eWe) — 5 |71 Wi — 7 Well5

L
A

= aE,- [V log(mrw, (a]s))] " 0; -
_ 2L
= aEV* [¢Wt (87 a) - Eﬂ—nwt [¢Wt (87 a’/)]] gt e f Het H2
- Oé]El/* [Qﬂ'rtWt (87 a) - EWTtWt [QWTtWt (87 CLI)]] + aEV* [d)Wf (S’ a)TO_t - QWTtWt (8’ a)]
_ 2L, =
+aE,Er_ ., [Qﬂnwt (s,a") = dw, (s, a/)TQt] ! HatH;

= a(l =) (Jo(m") = Jo(mr,w,)) + aEy- [w, (s,a) " — f((s,a),0¢)]
+a,- [f((57 CL), ét) - QTFTtWt (3’ a)] + O‘EV*EWUV{Q [Qﬂﬂwt (57 @/) - f((87 (l/), ét)]

_ _ 2Ly o\~
+QEV*E7|'nWt [f((saa/)vet) - ¢Wt(8?a/)—r9t] - R HatH;

= a(l =) (Jo(") = Jo(mr,w,)) + @By~ [$w,(s,0) " 0 — [((s,0),0,)]
+ alE,- [f((57 a), ét) - Qﬂ'rtwt (57 a)] + o, Eﬂrtwt [Qﬂ'-rtwt( ) ((8, a/)v ét)]

_ _ 2L . _
+ By Eny, [f((5,0),0,) — dw, (s,a) 0] — “L |64

= a1l =)(Jo(7*) = Jo(mr,w,)) + aEy-Eg, [$w, (s,0) 0 — f((s,a),0)]
+ O‘Ev* [f((sa CL), a_t) - Qm—twt (87 a)] + O‘]EV*ETFrtWt [Qﬂ'nwt (87 al) - f((sa a/)7 ét)]

OB, By, [F((5.0).0) — b, (s.0) 0] — L |3

> (L= ) ((r") = ol )) — g/ Boe [ (o (5,000~ ((5.0),00)’]

- a\/EV* [(f((s,a),@t) = Qn,yw, (s,a))2 - a\/]EV*E,thWt [(Q,ant (s,a’) — f((s,a’),e_t))Q]
— /B En, [(F((5,0),00) — b (5,@) T6,)7] “TLf 16,2 (49)

Note that for any « ~ vy, and any function h(x), we have

/mh(x)du*(m) :/h(x)mduﬁw(x)

d:“ﬂw( )
\/ [ #@in, @ \/ / di”* ity (&)
< @, (50)

where (7) follows from Holder’s inequality, and (i7) follows from eq. (10). Similarly, we can obtain
/h(x)d(v*ﬁw)(x) < Ci 0@, - (51)
Substituting eq. (50) and eq. (51) into eq. (49) and using the fact that HétHz < R+ /mdy yield

E,- [DKL(W*”WTtWt)] —E,- [DKL(T(*HWTHAW»:JA )]
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a1 =)o) = Jo(mryw:,)) — acRNwEVWt [(6w. (5, @) T80 = £((s,0),00))”]
—aCrny[Bu._,, [(F((5,0),00) = Q. (5.0))?]
—aCan\[Ep._,, [(Qr, (5.0) = f((5.0'),0))?]

—aCrny[Bu._,, [(F((5,0),00) = dw, (5,0)T0:)2) = 0L (R? + md)

= a(l — ’Y)(Jo(ﬁ*) — JO(’/TTtWt)) — QQCRN\/]E#thWt {(d)wt (s7a)—|—§t — f((s,a), ét))ﬂ
- 2Oéc’RN\/]]‘Z,u,rﬂswt [(f((sv a)a a_t) - QWTtWt (57 a))Z] - asz(Rz + md%)
= a(l = 7)(Jo(m*) = Jo(mrw,)) — 2aCry ||dw, (5,0) " — f((s, a)’ét)Huwnwt

—2aCgn || f((s,a),0;) — Qr,,w, (5 a)H#’r o o’ L (R 4+ md3). (52)

t

We then proceed to upper bound the term ||¢w, (s,a) "0; — f((s,a), ;) ||2

Ko w,

2

H(bWt (Sa a)Tét - f((S, CL), ét)”y,r_r W,
= 6w, (5, @) 0 = G, (5,0) 01 + dwe (5,0) T — (5.0, 00)|[}

< 2|[bw,(5:0) 0 = dw, (5. ) TGl 42w (s,0)TE ~ F((s,a),8)],

Py wy
(1) 16CoR3
< 53
where (4) follows from Lemma 12 and Lemma 14. Substituting eq. (53) into eq. (52) yields
Ey- [Dxo(m*||mrw,)] = Eoe [Dre(m |77 0w )]
% 8C¥CRN\/ Cj()]%l'5 2 2 2
(1 =) (Jo(m") = Jo(mrw,)) — —Jamui Ly(R” +md;)
—2aCRrN Hf((s,a), 0t) = Qr,w, (s,a)“ﬂﬂ o
Rearranging the above inequality yields the desired result. O

Note that when we follow the update in line 10 of Algorithm 1, we can obtain similar results for the
case i € {1,---,p} as stated in Lemma 15:

a(l = 3)(Ji(mrw,) — Ji(7™))
< Epe [Dxu(m*||7r,w, )] — B [Di (7|77, w,,)] +

+20Chy || £((5,0),00) = Qn, v, (5,0)]|

SOzCRN\/ 00R1'5

2 2 2
Jdmi + a“Ly(R* + md3)

#"TtWt
C.4 PROOF OF THEOREM 2

We first prove the following lemmas.

Lemma 16. Considering the CRPO update in Algorithm 1 in the neural network approximation
setting. Let K;, = C1((1—+)2y/m) and N = Tlog(2T/§). With probability at least 1 — §, we have

a(1=7) Y (Jo(m*) = Jo(mw,)) + a(l =)0 > N
teNy i=1
oT

< ESNV*DKL<7T*||7TwO) +Cs <m1/4

> + Cy(a®*mT)
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+C5 <(1_5‘1T5ml/8 log? ({;3)) +Cs (a(1 = 1)VT) .

where C3 = W, Cy = Ly(R* + d3), Cs5 = 3aC2CgrnN, Cs = 2Cy and Csy is a positive
constant depend on C1.

Proof. We define the N; as the set of steps that CRPO algorithm chooses to minimize the i-th
constraint. If ¢ € N, by Lemma 15 we have

(1 =7)(Jo(7") = Jo(mr,w))
« % SOéCRN\/ C()Rl‘s
< EV* [DKL(T( ||7TTtWt)] - EV* [DKL(TF |‘7T7—t+1Wt+1):| + W + asz(RQ + md%)

+ 200y | fo((5@),00) = @2, (5, ) (54)

Hrrywy

If t € \V;, similarly we can obtain
a(l = 3)(Ji(mrw,) — Ji(7™))

< By [Dxu (™ ||7r,w, )] — B [Dx (7|77, w,0)] +

fi((sva)7 ét) - fr.,twt (87 a)

8aCprnvCoRM®
a\lj(%—ml?ﬁl + a?Ly(R? +md3)

+ 2aCrN (55

Hrrywy

Summing eq. (13) and eq. (14) fromt = 0to T — 1 yields

Al =) Y (Jolm*) = Jo(mu,)) +a(l=7) Y D (Jilmw,) = Ji(x™))

teNo i=1teN;

* SOéCRN\/ 00R1'5T
< .
< Esmw Do (77| ) + Vdiml/4

P
+2aCRNZZ fi((s,a),0;) — ;Ttwt(s,a)

i=0 teN; Hmrywe

(56)

Note that when t € A; (i # 0), we have J;(0%) > d; + n (line 11 in Algorithm 1), which implies that
Ji(mrow,) = Ji(7*) 2 Ji(0y) — Ji(w*) — | Ji(6F) = Ji(mrw,)|
> d; +n — Ji(n*) = |Ji(0}) = Ti(mrw,)|

> 1 = |J:(65) = Ji(mrw,)| - (7

To bound the term |J;(6}) — J;(7r,w,)

|jz(‘9§) - Ji(ﬂ-‘rtWt)|

, we proceed as follows

= [7:0) = Bo_, 1fi((5.0).00] + Eor_, [Fil(s,0).00)] — Ji(rows)

< |70) = B, [fi((5.0),00)] + | £i((5,0). 00 = Q0 (s,0)|

@) |- . _ _ )

<|70) ~Eu,, 1fil(5.0).00]] + Cr | fi((5,0),00) — QL (5.0) LG58

Hrrywy

where (i) can be obtained by following similar steps in eq. (50). Substituting eq. (58) into eq. (57)
yields

Ji(mrw,) — Ji(7")

-

Ji0) By, [fi((,0),0)]| + Crw

Jil(s,a),00) = @, (5,a)]
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Then, substituting eq. (59) into eq. (56) yields

a(1=7) 3 (Jo(m*) = Jo(mu)) +a(l = 1)n 3 ING]

teN i=1
8aCrNvVCoRM¥ST
< Egrops D (77| | Ty ) + a I\{/Nd»mf/zx + a?L§(R? + md3)T
1

p
+3aCRNZ Z fi((87a’)aét) - ;Ttwt(s7a)
i=0 teN; Hrrywy
p
+a(l=)> 3 [0 ~ B, [fil(s.0), 6]
i=1teN; ’
. 8aCryVCoR™YT 2 2
< B D (77| T ) + /A +a’L§(R* +md;)T
T-1 )
4+ 3aCrN Z fi((s,a),6;) — ;lTTtWt (s,a)‘
t=0 ) Hmrywy
T-1 )
+ Oé(l — ’y) JZ(Hi) — EV"nt [fl((s, CL)7 Qt)] . (60)
t=0
We then consider upper bound the term ZtT:_Ol fi((s,a),0;) — Q;Tt w, (5:0) . Lemma 2

Mmooy

implies that if we let K;, = C;((1 — 7)2y/m), then with probability at least 1 — §; /T, we have
a3 1 1 (1 =7)*Tym
Hf((S,a)ﬁK)*Qﬂ(&a)HMW < ((1—~y)1-5m1/810g <61 ;

where C and Cj are positive constant. Applying union bound, we have with probability at least
1- 519

N

3 J i T 1+ ((1=9)2T/m
2 [[fillssa),00) = @ () MWT,,W,,<CQ<MW1°*‘54<( vgl m))

(61)

We then consider bound the term Z;T:_Ol

J;(0F) — Eu, . fi((s,0), 0:)] ’ For simplicity, we denote

JN(0;) = E¢pin o, [fi((s,a),0:)]. Recall that J;(6]) = + Zjvzl fi((sj,a;),0;). Foreacht > 0,
consider the error J;(6}) — J!(6;), we have

=1
o a0 - @)
<r (43 4 +
N ] 101>
e Jbz[fi((sywaj)ag;)_‘]i(et)] >1+44
i=1 !
N 4 2
<P $§eXp<[fi((8j>aJ)>g%) Ti(0)] ) >14+4
. N 91
(S);];]E ox <[fz((337a3)vg%) Ji(00)] )]/exp(1+/1)
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< exp(—4), (62)

where (¢) follows from Markov’s inequality. eq. (62) implies that with probability at least 1 — /7,
we have

N
¥ 2o e ) = 200 < <1+ log (:{))

Applying union bound, we have with probability at least 1 — Jo,

S50 - B, U0 < %( 1g(§)> (©3)
t=0

Letting ;1 = 09 = g, N = T'log(2T/4), and combing eq. (61) and eq. (63), we have with probability
atleast 1 — 0

a(l=7) Y (Jo(m) = Jo(mu,)) + a1 =70 Y _ INi]

teNo i=1

o
S ESND*DKL( ||7Two) + C’3 ( 1/4 > + 04(04 mT)
aT (1= Y)?T/m
where C3 = %, Cy = L§(R?* + d3), Cs = 3aCyCry, and Cg = 2C; are positive
constants. O
Lemma 17. Let K;, = C1((1 — v)2y/m) and N = T'log(2T/5), if we let
ol
L a1 = YT > By D (7| [y) + C ( > 4 Cy(aPmT)

O <(1 - ;)iml/s logt <( — 7252Tﬁ>> + Gy (a(l _ y)\/f) . (64)

then with probability at least 1 — 6, we have the following holds
1. Ng # 0, i.e., Wy is well-defined,
2. One of the following two statements must holds,

(a) |No| >T/2,
(b) Zteg(Jg(w*) — Jo(wy)) <0.

Proof. We consider the event given in Lemma 16, which happens with probability at least 1 — J, we
have

a(l=7) 3 (o) = Jo(mu)) + a1 =70 3 NG|

teNy i=1

oT
< Egopx Dy (7" ||y ) + C3 ( /1 > +C4(a mT)

O <(1°;f5ml/810gi <(_72;Wr”>> + Gy (a(l —'y)\/f)‘ (65)

We first verify item 1. If Ny = 0, then Y7 |N;| = T, Lemma 16 implies that

ol
a(l - 7)77T < ESNV*DKL( Hﬂ-wo) + 03 < 1/4> + C4(a2mT)

Oy (u—jT log ¥ (W)) +Cs (a(l _ ’y)\/T) ,
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which contradicts with eq. (64). Thus, we must have Ny # (.

We then proceed to verify the second item. If ), (Jo(7*) — Jo(w;)) < 0, then (b) hold. If
> ieg(Jo(m*) — Jo(wy)) < 0, then Equation (65) implies that

p
" ol
(1 =)0 Y WGl £ Burs D (7 1) + Ca (2577 ) + o)
=1
oT

e ((1 T og! <<1 - WZ:T\%» +Ca (ol =)VT).

Suppose that [No| < T/2,i.e., .7, |[N;| > T'/2. Then,

1 T
~a(1 = )T < By Do (7||g) + C5 | —— ) + Cu(a®mT)
2 ml/4
oT 1 (1 —=7)*Tym
+ Cs <(17)1-5m1/810g4 (5 + Cs (a(l—v)ﬁ»
which contradicts with eq. (64). Hence, (a) holds. O]

Now, we are ready to prove our main theorem. We restate Theorem 1 as follows to include the
specifics of the parameters.

Theorem 4 (Restatement of Theorem 2). Consider Algorithm I in the neural network approximation
setting. Suppose Assumption 1-5 hold. Let o = 3 041 7T and
_ 4C4ESNV*DKL(7T*H7T’LU0) + 203 + m
(1=VT (L=y)m* (1= )VT
2
+2C5 <(1 — 76;357711/8 1og% ((1 st Tﬁ)) + 2\/0:7?.

Suppose performing neural TD with K;, = C1(1 — ~)%\/m iterations at each iteration of CRPO.
Then, with probability at least 1 — §, we have

Jo(r) — ElJo(mu)] < —2T™ Cs ) (W>

1
A—)VT * T=)mirs §
where
4C4D 7o 2(1 —~)C
C; = 4 KLSHWO)‘F ( m7)6+1’
and
205(1 — ~)1?
Cs = 205 + B(f/g’}/)
m

Foralli€ {1,--- ,p}, we have
4CEogroe D (7% |7 20
Bl (m,,)] - d < 2O Dialmun) | 2C0 oy
1—)VT (1—y)m (1=VT

+2(Cy + Cs) <(1_7‘;‘2Tsml/8 log <(17);T\/m>> + 4;%6.

Proof of Theorem 2. 'We consider the event given in Lemma 16, which happens with probability at
least 1 — 4:

a(l=7) D (Jo(m™) = Jo(mw,)) +al(l =7)n ) INj]

teNo i=1

N oT
< B Dia (5" 1) + o (5 ) + Cala?m)
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O <(1_O‘Tlogi <(17)2T\/m>) Oy (a(l —ﬂﬁ). (66)

7)L5m1/3 5

We first consider the convergence rate of the objective function. In the aforementioned event, we
have the following holds:

a(l =) Y (Jo(m*) = Jo(mw,))

tENo

o
< Egops Dy (7|, ) + Cs (777,1/4> + C4(a2mT)

+ s (a_;)ﬂml/s logi (W)) +Cs (a(l - 7)\/:?) .

If ZteNO(JO(W*) — Jo(mw,)) < 0, then we have Jo(7*) — Jo(ma,,) < 0. If Zte/\fo (Jo(m*) —
Jo(mw,)) > 0, we have |[Ny| > T'/2, which implies the following convergence rate

JO(T‘-*) - E[JO(T"wcm |NO| teZN JO —Jo 7rwt>)
QESN,,* DKL(ﬂ'*Hﬂ'wO) 203 204am
<
Y T A R v v S
205 1 (1 - ’y)QT\/TTL 206
I —.
T ( 5 T

. _ 1 . .
Letting o = sc,vT Wecan obtain the following convergence rate

C’7m Cg 1 (1 — 7)2T\/ﬁ
Jo(m*) — E[Jo (T, )] < _ log* ,
o(m™) [ o(m ou!)] > (1 —'y)\/T + (1 _7)2.am1/8 0 ( 5
where
4C4D |7 2(1 —~)C
o, = 4 KLTST [17wo) | 2( mV) 6,1,
and
203(1 =)'
Cg = 205 + T
We then proceed to bound the constraints violation cost. For any 7 € {1,--- ,p}, we have
1
ElJi(Tw)] = di = o= > Ji(mw,) — d;
‘N0| teNy
1 o .
< 5 (Ji(0;) — Ji(mw,) — Ji(0;)
35,100 =40+ g 32 |
T-1
<n+ Ji(7w,) — Ji(6:
T ] 2 [T = R0
A= )
<0 ] 2o [ ~ B, [Fil(s0),60)
t=0
C
RN Z ‘ fi((s,a),0;) — tht(s,a)’
Ky

Recall eq. (61) and eq. (63), in the event defined in eq. (66), we have

T-1

(0D~ Eu,_,, Ufil(5,0),0)]| < CoVT, (67)

t=0
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and

T—1 B _

> | filsi00.80 - QL (5,0)

t=0 ) Hrriwy

T 1 (21 —7)2T/m

<Oy ((1 BTV log ( 5 . (68)

Let the value of the tolerance 7 be
o 4C4ESNV* DKL(’]T*HTFwO) 203 m

(1—y)WVT " (1 —~)mt/4 M (1—y)VT

T » ((1—7)2T 2C,

we have

mi/4

+Cs <(1_7‘3)‘1T5ml/8 logt (W)) 4 C (a(l _ »y)\/T) :

which satisfies the requirement specified in Lemma 17. Combining eq. (67), eq. (68) and eq. (69),
according to Lemma 17, we have with probability at least 1 — § at least one of the following holds:

E[Ji(ﬂ-wom)] - d'L S 07
or |Ny| > T'/2, which further implies

1 oT
Sl = DT 2 Eyrye Dy (57| 1) + C <> + CalemI)

4C4ESND*DKL(7T*||7T1UO) 2C3 m
E J7 Twou )] — dZ < +
()] (1-y)VT (1 —=y)m!* (1 —y)VT
ol (APTYmY Y 4G
+2(Cs + Cs) ((1 — ~)25ml1/8 log < 5 + VT
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