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ABSTRACT
The advent of HighDynamic Range/Wide Color Gamut (HDR/WCG)
display technology has made significant progress in providing ex-
ceptional richness and vibrancy for the human visual experience.
However, the widespread adoption of HDR/WCG images is hin-
dered by their substantial storage requirements, imposing signifi-
cant bandwidth challenges during distribution. Besides, HDR/WCG
images are often tone-mapped into Standard Dynamic Range (SDR)
versions for compatibility, necessitating the usage of inverse Tone
Mapping (iTM) techniques to reconstruct their original representa-
tion. In this work, we propose a meta-transfer learning framework
for practical HDR/WCG media transmission by embedding image-
wise metadata into their SDR counterparts for later iTM reconstruc-
tion. Specifically, we devise a meta-learning strategy to pre-train
a lightweight multilayer perceptron (MLP) model that maps SDR
pixels to HDR/WCG ones on an external dataset, resulting in a
domain-wise iTM model. Subsequently, for the transfer learning
process of each HDR/WCG image, we present a spatial-aware on-
line mining mechanism to select challenging training pairs to adapt
the meta-trained model to an image-wise iTM model. Finally, the
adapted MLP, embedded as metadata, is transmitted alongside the
SDR image, facilitating the reconstruction of the original image on
HDR/WCG displays. We conduct extensive experiments and evalu-
ate the proposed framework with diverse metrics. Compared with
existing solutions, our framework shows superior performance in
fidelity (up to 3dB gain in perceptual-uniform PSNR), minimal la-
tency (1.2s for adaptation and 2ms for reconstruction of a 4K image),
and negligible overhead (40KB).

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Inverse Tone Mapping, High Dynamic Range, Wide Color Gamut

1 INTRODUCTION
The concept of HighDynamic Range/Wide Color Gamut (HDR/WCG)
media, as defined in literature [32, 36], encompasses an extended
range of luminance representation and an augmented capability for
reproducing a broader spectrum of visible colors, significantly sur-
passing the limitations of the Standard Dynamic Range (SDR) media
definition. The advent of HDR/WCG display technology represents
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Domain-wise iTM

(1FPS）

4K HDR/WCG TM

HDR/WCG-SDR Pair

Learning an iTM MLP model

and embedding it as metadata

(a) HDR/WCG Distribution

Image-wise iTM

(500FPS)

Storage: 20MB

SDRTV

HDRTV

HDRTV

SDRTV

HDRTV

SDRTV

Storage: 2MB

Storage: 2MB+40KB
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(b) SDR Distribution

(c) Our Framework

Display

Display

Display

Figure 1: HDR/WCG media compatibility solutions. a) Trans-
mission in original quality, and applying Tone Mapping (TM)
to HDR/WCG content for SDRTV compatibility. b) Trans-
mission in SDR and employing inverse Tone Map (iTM) for
HDRTV compatibility. c) Our framework: Learning an MLP,
embedding it as metadata, and conducting image-wise iTM
with the embedded MLP.

a noteworthy milestone in the multimedia sector, offering unpar-
alleled richness and vibrancy in visual experiences. However, the
widespread adoption of HDR/WCG technology encounters substan-
tial challenges, primarily due to its extensive storage and bandwidth
requirements during distribution [32]. For instance, as depicted in
Fig. 1(a), a typical 4K HDR/WCG media requires 20MB for storage
and a bandwidth of 25Mbps for real-time streaming.

At present, the concurrent usage of HDR/WCG and SDR me-
dia remains the prevailing practice. On one hand, owing to the
prevalence of SDR displays, HDR/WCG contents are frequently
tone-mapped (TM) to their SDR counterparts to ensure compatibil-
ity [11, 34]. On the other hand, there exists a considerable amount
of SDR content that requires conversion into HDR/WCG versions
for display on HDR/WCG screens [33]. Consequently, there is a
substantial demand for inverse Tone Mapping (iTM) methods that
aim to predict lost HDR/WCG information from SDR versions, as
illustrated in Fig. 1(b).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Existing iTM methods encounter several significant challenges.
Rule-based iTM methods often suffer from artifacts and inadequate
detail reconstruction, particularly in poorly exposed areas [14, 34].
Learning-based methods, on the other hand, rely on an external
dataset to model the iTM task as a mapping problem between SDR
and HDR/WCG domains [3, 4, 7, 9, 12–14, 42]. However, these
methods usually assume a predefined TM operator, which may not
consistently align with SDR inputs from various sources. Further-
more, due to the inherently ill-posed nature of domain-wise iTM,
these methods often require significant computational resources,
thereby failing to meet the requirements for real-time presentation
of high-definition HDR/WCG content.

In this work, as shown in Fig. 1(c), we present a novel meta-
transfer framework for the practical transmission of HDR/WCG
media by embedding a learned multilayer perceptron (MLP) model
as metadata into their SDR versions, where the embedded MLP
is employed for image-wise iTM reconstruction. Specifically, our
framework contains three stages, i.e., meta-training, transfer, and
reconstruction stages. Firstly, in the meta-training stage, we take
advantage of an external dataset to train a lightweight MLP model
that maps SDR pixels to HDR/WCG ones. This MLP serves as a
domain-wise iTM model, and we devise a meta-learning strategy
to prepare it as an initialization point for fast adaptation to an
image-wise one. Secondly, in the transfer stage, we utilize pixel
samples from the current HDR/WCG-SDR pair to fine-tune the
meta-trained MLP and embed it as metadata in the SDR image.
We adopt an online hard example mining (OHEM) mechanism to
select training pixel pairs according to spatial-aware feedback from
the loss function, improving the adaptation performance to the
current image. Finally, in the reconstruction stage, we restore the
HDR/WCG content from the SDR version with the embedded MLP
model for image-wise iTM.

We evaluate the proposed framework with diverse metrics, in-
cluding perceptual uniform, HDR-tailored, chromaticity, and con-
ventional ones. Compared with existing solutions, our framework
shows superior performance in fidelity (up to 3dB gain in perceptual-
uniform PSNR), minimal latency (1.2s for adaptation and 2ms for
reconstruction of a 4K image), and negligible overhead (40KB). Be-
sides, we show that our framework enjoys better generalization
capacity to different TM operators and an application of our frame-
work to accelerate domain-wise iTM methods via distillation.

To summarize, our contributions are three-fold:
• Wepropose ameta-transfer learning framework forHDR/WCG
media transmission by embedding a learned image-wise iTM
MLP as metadata to SDR versions.
• We devise a meta-learning strategy and a spatial-aware on-
line mining mechanism to improve the generalization and
adaptation capacity of the iTM model.
• Compared to existing methods, our framework exhibits supe-
rior performance, lower latency, and less overhead, showing
its effectiveness and practicability.

2 RELATEDWORKS
2.1 Inverse Tone Mapping
The objective of iTM is to transform SDR images into HDR/WCG
images. The traditional iTM methods mainly focus on adjusting

the parameters of the global mapping function based on the im-
age content [1, 21, 27] and employ edge enhancement in saturated
regions [15]. Recently, learning-based iTM boasts superior perfor-
mance compared to traditional methods. Initially, researchers [12–
14] attempt to address both iTM and super-resolution jointly. Chen
et al. [3] are the pioneers in treating the iTM task as an indepen-
dent task and utilizing Unet [29] for end-to-end iTM. Chen et al.
[4] propose HDRTVNet which consists of global color mapping,
local enhancement, and highlight generation stages. Recently, Xu
et al. [42] propose FMNet that incorporates frequency analysis to
improve the reconstruction performance. Huang et al. [9] propose
ICtCpNet to further improve the iTM performance by separating
the chromaticity and luminance channels. Guo et al. [7] propose
a segmentation-based solution with various TM operators. While
existing methods have demonstrated promising performance, they
often assume a predefined TM operator and model the iTM task
as a domain-wise mapping problem. In this work, we introduce
the idea of embedding metadata to SDR images and extend the
concept of iTM from domain-wise level (pre-defined TM operator)
to image-wise level (both TM operator and image content).

2.2 Metadata Based Reconstruction
Recently, the idea of embedding metadata into low-quality data
(e.g., sRGB image) for later reconstruction of high-quality data
(e.g., RAW image) has been explored in other tasks, i.e., RAW im-
age reconstruction and color gamut expansion. Rang and Brown
[26] store a set of RAW reconstruction parameters, which model
the typical operations in image processing pipeline. Punnappurath
and Brown [25] present an algorithm that estimates interpolation
parameters in reconstruction stage, utilizing uniformly sampled
RAW image pixels stored as metadata. Nam et al. [22] propose a
sampling strategy that selects representative RAW pixels based on
superpixels using a pre-trained Unet [29]. Another Unet is trained
to reconstruct RAW images from sRGB images and sampled pix-
els. Li et al. [17] attempt to employ an implicit neural function
to map coordinates to RAW pixels conditioned with sRGB pixels.
Beyond RAW reconstruction, metadata-based techniques are also
applied in the domain of color gamut expansion, as demonstrated
by GamutMLP [16]. In this method, pixels in WCG (BT.2020 [32])
but out of standard color gamut (BT.709 [2]) are randomly sampled
to train an MLP. The fine-tuned weights are embedded as metadata
to assist in the reconstruction of WCG images. We introduce this
idea into the iTM task. Further, we propose a meta-learning pre-
training strategy and spatial-aware OHEM mechanism to further
improve its performance and efficiency for image-wise iTM.

2.3 Meta Learning
Meta-learning, also known as learning to learn, facilitates rapid
adaptation to new tasks. It is widely integrated in various computer
vision tasks, e.g., classification [28, 30], detection [39], segmenta-
tion [18], and tracking [38]. Finn et al. [6] initialize model parame-
ters and adapt them to support sets in the inner loop. Then, they
use these adapted parameters to measure the loss in query sets
and finally update the original parameters with this loss, namely
the outer loop. Nichol et al. [23] simplify meta-learning by directly
updating meta-network parameters using the difference between
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Figure 2: Overview of our proposed framework. 1) Meta-training stage: We leverage an external HDR/WCG-SDR dataset to
pre-train a lightweight MLP that maps SDR pixels to HDR/WCG ones with a meta-learning strategy, obtaining the pre-trained
weights 𝜃𝑖𝑛𝑖𝑡 . 2) Transfer stage: We sample a portion of pixels with the proposed spatial-aware OHEMmechanism from the
HDR/WCG image 𝐼𝐻𝐷𝑅 and the SDR image 𝐼𝑆𝐷𝑅 to construct pixels sets 𝐻𝑖𝑛 and 𝐻𝑔𝑡 , respectively. Then, 𝐻𝑖𝑛 and 𝐻𝑔𝑡 are utilized
to fine-tune the MLPmodel𝑀𝜃𝑖𝑛𝑖𝑡 , which is initialized with 𝜃𝑖𝑛𝑖𝑡 , yielding the image-wise weights 𝜃𝑖𝑚 . 𝜃𝑖𝑚 is then embedded into
𝐼𝑆𝐷𝑅 as metadata. 3) Reconstruction stage: For HDRTV compatibility, the HDR/WCG representation 𝐼

′
𝐻𝐷𝑅

can be reconstructed
with the embedded MLP from 𝐼𝑆𝐷𝑅 .

original and inner updated parameters. In our framework, we treat
each image’s iTM task as an individual task. Different from the
pre-training strategy in GamutMLP, we introduce a fast-adaptation
step before the outer loop, integrating the procedure prior to the
transfer stage into our meta-training stage.

2.4 Online Hard Example Mining
OHEM [35] is a methodology aimed at enhancing model perfor-
mance through the selective inclusion of challenging samples. In
contrast to conventional uniform sampling mechanisms, OHEM
prioritizes samples that significantly contribute to enhancing model
performance. Shrivastava et al. [35] first apply it in the object detec-
tion domain. After that, OHEM is widely integrated with classifica-
tion tasks [5, 8]. In our framework, we adapt OHEM by introducing
spatial-aware feedback from pixel-level error maps.

3 MLP EMBEDDED INVERSE TONE MAPPING
3.1 Framework Overview
As shown in Fig. 2, our framework contains three principal stages:
the meta-training stage, the transfer stage, and the reconstruction
stage. During the meta-training stage, we leverage an external

HDR/WCG dataset and randomly sample HDR/WCG images, which
are used to generate data pairs via a predefined TM operator. These
data pairs are subsequently employed in a meta-learning manner
to pre-train a lightweight MLP that maps SDR pixels to HDR/WCG
pixels, resulting in pre-trained domain-wise weights 𝜃𝑖𝑛𝑖𝑡 .

In the transfer stage, taking advantage of pre-trained 𝜃𝑖𝑛𝑖𝑡 , the
initialized MLP𝑀𝜃𝑖𝑛𝑖𝑡 is enabled to be fine-tuned from a universal
MLP to an image-wise one easily. For each HDR/WCG image 𝐼𝐻𝐷𝑅

and SDR image 𝐼𝑆𝐷𝑅 pair, we sample a small portion of pixels to
construct the pixel sets 𝐻𝑔𝑡 and 𝐻𝑖𝑛 , respectively. 𝐻𝑖𝑛 is then fed
into𝑀𝜃𝑖𝑛𝑖𝑡 , yielding with prediction pixel set 𝐻𝑜𝑢𝑡 . Finally, the loss
L between 𝐻𝑔𝑡 and 𝐻𝑜𝑢𝑡 is used to fine-tune𝑀𝜃𝑖𝑛𝑖𝑡 . What’s more,
we adopt an OHEM mechanism to select challenging training pixel
pairs according to spatial-aware feedback from the loss function,
improving the adaptation performance to the current image. After
adaptation on the current HDR/WCG-SDR pair, we get the image-
wise weights 𝜃𝑖𝑚 and embed them into 𝐼𝑆𝐷𝑅 as metadata.

As to the reconstruction stage, for HDRTV compatibility, we
input 𝐼𝑆𝐷𝑅 into the MLP, which is loaded with image-wise weights
𝜃𝑖𝑚 embedded in the 𝐼𝑆𝐷𝑅 . Consequently, the 4K HDR/WCG image
𝐼
′
𝐻𝐷𝑅

can be reconstructed with high efficiency.
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Figure 3: The network structure of the MLP. Inspired by
INF [17], we adopt simplified version of its MLP architec-
ture where the implicit neural function mapping coordinate
(𝑥,𝑦) to pixel (𝑅𝐻𝐷𝑅,𝐺𝐻𝐷𝑅, 𝐵𝐻𝐷𝑅) is conditioned by SDR pixel
(𝑅𝑆𝐷𝑅,𝐺𝑆𝐷𝑅, 𝐵𝑆𝐷𝑅).

Algorithm 1Meta-learning pre-training.
Require: external HDR/WCG-SDR pairs, max epoch 𝑁 .

Randomly initialize an MLP with 𝜃0
𝑛 ← 0
while 𝑛 < 𝑁 do

Sample a support set 𝑆𝑛 and a query set 𝑄𝑛

L𝑆𝑛 =
∑
(𝐼𝑆𝐷𝑅 ,𝐼𝐻𝐷𝑅 ) ∈𝑆𝑛 D𝑀𝑆𝐸 (𝐼𝐻𝐷𝑅, 𝑀𝜃𝑛 (𝐼𝑆𝐷𝑅))

Inner update: 𝜃
′
𝑛 = 𝜃𝑛 + L𝑆𝑛

Initialize an image-wise MLP𝑀 with 𝜃
′
𝑛

while not converged do
L𝑄𝑛

=
∑
(𝐼𝑆𝐷𝑅 ,𝐼𝐻𝐷𝑅 ) ∈𝑄𝑛

D𝑀𝑆𝐸 (𝐼𝐻𝐷𝑅, 𝑀𝜃
′
𝑛
(𝐼𝑆𝐷𝑅))

𝜃
′
𝑛 = 𝜃

′
𝑛 + L𝑄𝑛

end while
L𝑚𝑒𝑡𝑎 =

∑
(𝐼𝑆𝐷𝑅 ,𝐼𝐻𝐷𝑅 ) ∈𝑄𝑛

D𝑀𝑆𝐸 (𝐼𝐻𝐷𝑅, 𝑀𝜃
′
𝑛
(𝐼𝑆𝐷𝑅))

Outer update: 𝜃𝑛+1 = 𝜃𝑛 + L𝑚𝑒𝑡𝑎

𝑛 ← 𝑛 + 1
end while
Save the meta-trained MLP model𝑀𝜃𝑖𝑛𝑖𝑡

3.2 Pre-training with Meta-Learning
Inspired by INF [17], we adopt an MLP architecture where the
implicit neural function mapping coordinate (𝑥,𝑦) to pixel (𝑅𝐻𝐷𝑅 ,
𝐺𝐻𝐷𝑅 , 𝐵𝐻𝐷𝑅 ) is conditioned by the input SDR pixel (𝑅𝑆𝐷𝑅 , 𝐺𝑆𝐷𝑅 ,
𝐵𝑆𝐷𝑅 ). As shown in Fig. 3, we input the coordinate and SDR pixel
into two branches respectively, resulting in coordinate features and
RGB features. Then all the features are concatenated up to fusion
features which finally output HDR pixels.

In order to make our framework more adaptive and maximize
the benefits of image-wise adaptation, we propose a meta-learning
pre-training strategy, as shown in Fig. 4. For each iteration, we
construct a task by randomly sampling a support set 𝑆𝑛 and a query
set𝑄𝑛 from external HDR/WCG-SDR data pairs. Initially, our focus

Inner Update
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Outer Update

𝜃0

𝜃1

𝑆𝑛

𝑄𝑛

𝑆1
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…

𝑇1
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Domain-wise
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Image-wise
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Domain-wise
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Image-wise

iTM

Inner Update

Adaptation & 
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Figure 4: Meta-learning Pre-training. We construct a task
by randomly sampling a support set 𝑆𝑛 and a query set 𝑄𝑛

from external HDR/WCG-SDR data pairs. In each iteration,
the MLP is firstly trained on 𝑆𝑛 , obtaining an inner-updated
model with parameter 𝜃

′
𝑛 . Then, we adapt this model to 𝑄𝑛

and conduct outer updating.

lies on facilitating the MLP’s acquisition of a universal domain
mapping capability from SDR pixels to HDR/WCG ones, termed
a domain-wise iTM task. So we update 𝜃𝑛 to 𝜃

′
𝑛 via 𝑆𝑛 , namely

the inner update. In the common meta-learning paradigm [6], 𝜃𝑛
is updated 𝜃𝑛+1 directly with 𝑄𝑛 and 𝜃

′
𝑛 , i.e., the outer update.

But, in our framework, we aim at image-wise iTM, where the iTM
model is adapted to the HDR/WCG-SDR image pair before inference.
Thus, we introduce a fast-adaptation step before the outer update,
integrating the procedure prior to the transfer stage into our meta-
train stage. In this step, we adapt 𝜃

′
𝑛 to 𝑄𝑛 and then we update the

𝜃𝑛 to 𝜃𝑛+1, via the reconstruction loss calculated by applying the
MLP with 𝜃

′
𝑛 on 𝑄𝑛 . Finally, we can get a meta-trained MLP model

𝑀𝜃𝑖𝑛𝑖𝑡 , which can be easily adapted from a domain-wise iTM model
to an image-wise one. We summarize this strategy in Algorithm 1.

3.3 Transfer with Spatial-aware OHEM
After getting the initialization weights 𝜃𝑖𝑛𝑖𝑡 and loading it into
𝑀𝜃𝑖𝑛𝑖𝑡 , for each HDR/WCG-SDR image pair, we fine-tune a domain-
wiseMLP to an image-wise one. In detail, as shown in Fig. 2, we sam-
ple pixels from the HDR/WCG image 𝐼𝐻𝐷𝑅 and the SDR image 𝐼𝑆𝐷𝑅

to construct pixel sets 𝐻𝑖𝑛 and 𝐻𝑔𝑡 . Then 𝐻𝑖𝑛 and 𝐻𝑔𝑡 are utilized
to fine-tune𝑀𝜃𝑖𝑛𝑖𝑡 , yielding the image-wise weights 𝜃𝑖𝑚 , which are
embedded into 𝐼𝑆𝐷𝑅 as metadata. Previous metadata-based recon-
struction methods, either uniform [17, 25] or non-uniform [16, 22],
only utilize a very limited portion of the HDR pixels (2%) in the
sampling process. This limitation leads to poor reconstruction qual-
ity in hard examples, i.e., saturated regions (as shown later in Fig. 8).
Thus, inspired by the seminal work of OHEM [35], we propose
the spatial-aware OHEM mechanism, as shown in Fig. 5. For a cer-
tain interval during fine-tuning, we get spatial-aware feedback via
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Figure 5: Spatial-aware OHEMmechanism. For a certain interval during fine-tuning, we get spatial-aware feedback by applying
the MLP model and obtaining an error map 𝐸, indicating the current reconstruction performance for each pixel. Then, we
sample HDR/WCG-SDR pixels (𝐻𝑔𝑡 and 𝐻𝑖𝑛) according to 𝐸. This way, the following training process is more focused on poorly
reconstructed regions.

Algorithm 2 Image-wise adaptation.
Require: SDR image 𝐼𝑆𝐷𝑅 , HDR/WCG image 𝐼𝐻𝐷𝑅 , meta-trained

MLP model𝑀𝜃𝑖𝑛𝑖𝑡
while not converged do

if Resample then
𝐸 = D𝐿1 (𝑀𝜃𝑖𝑛𝑖𝑡 (𝐼𝑆𝐷𝑅), 𝐼𝐻𝐷𝑅)
Sample 𝐻𝑖𝑛 and 𝐻𝑔𝑡 from 𝐼𝑆𝐷𝑅 and 𝐼𝐻𝐷𝑅 based on 𝐸

end if
𝐻𝑜𝑢𝑡 ← {𝑀𝜃𝑖𝑛𝑖𝑡 (𝑃𝑖𝑛)} 𝑓 𝑜𝑟 𝑃𝑖𝑛 ∈ 𝐻𝑖𝑛

L = D𝑀𝑆𝐸 (𝐻𝑜𝑢𝑡 , 𝐻𝑔𝑡 )
update MLP parameter 𝜃 with L

end while
Save the adapted MLP model𝑀𝜃𝑖𝑚

applying the MLP model and obtaining an error map 𝐸, which indi-
cates the current reconstruction performance of each pixel. Then
we prioritize selecting pixels with larger errors, e.g., the pixels in the
red circle of Fig. 5. Such mechanism make our fine-tuning process
more focused on poorly reconstructed regions. Our spatial-aware
OHEM mechanism is summarized as Algorithm 2.

3.4 Reconstruction with Embedded MLP
As shown in Fig. 2, the image-wise weights 𝜃𝑖𝑚 are embedded into
SDR image 𝐼𝑆𝐷𝑅 for transmission and distribution. Our framework
is naturally compatible with SDR displays. For HDRTV compatibil-
ity, we input 𝐼𝑆𝐷𝑅 into the MLP, which is loaded with 𝜃𝑖𝑚 . Hence,
our framework not only ensures compatibility with SDRTV but also
excels in the high-quality and efficient reconstruction of HDR/WCG
content for seamless integration with HDRTV, all achieved within
the constraints of a mere 2% increase in data.

4 EXPERIMENTS
4.1 Settings
Datasets. We utilize the HDRTV4K dataset [7] to evaluate the effec-
tiveness of our proposed framework. This dataset consists of 3,878
BT.2020/PQ1000 4K HDR images. Following previous works [4, 7,

42], we adopt YouTube TM operator to generate data pairs. We split
them according to the official split [7] into a training set and a test
set, which includes 3,478 and 400 images, respectively.
Evaluation metrics. Conventional image quality metrics, such
as PSNR and SSIM [40], can not be directly computed on linear
high dynamic range color values because such values are non-
linearly related to the perception of visible differences [19]. In-
stead, in our experiments, we adopt the perceptual uniform (PU)
encoder [19] to convert the absolute values of HDR/WCG images
into PU values. In this PU space, we employ metrics, including
PSNR, PSNR (Y), MS-SSIM [41], feature similarity (FSIM) [44], and
visual saliency-induced index (VSI) [43], to evaluate the perfor-
mance of our framework and comparison methods. Additionally,
we report the HDR-VDP3 [20] metric that is tailored for HDR/WCG
image quality assessment. However, most of the metrics mentioned
above operate in the luminance domain (HDR), so we introduce
the chromaticity metric Δ𝐼𝑇𝑃 [10] to evaluate the reconstruction
results in terms of chromaticity (WCG). Finally, we also report the
conventional metrics, PSNR and SSIM[40], as a reference. We report
running latency and model size for efficiency evaluation.
Comparison methods. We compare our framework with several
state-of-the-art domain-wise iTMmethods, includingHDRTVNet [4],
FMNet [42], and ICtCpNet [9]. Moreover, we include metadata-
based reconstruction methods designed for other tasks, including
GamutMLP [16] for color gamut expansion, CAM [22], and INF [17]
for RAW reconstruction.
Implementation details. Our MLP consists of four layers and the
channel numbers are 64, 32, 64, and 3. In the meta-training stage,
each task consists of 3 data pairs in the support set and 1 data pair in
the query set. For each task, we fine-tune the model for 500 epochs
at a learning rate of 1 × 10−4. In the transfer stage, we resample
the pixel sets in the last 25 percent of the adaptation epochs at an
interval of 50 epochs. We get the official codes of domain-wise iTM
methods and fully retrain their models. As to the metadata-based
reconstruction methods, we make necessary modifications based
on the official codes to adapt them to the iTM task. Our code is
based on PyTorch [24] and will be made publicly available upon
acceptance.
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Method Perceptual Uniform HDR Chromaticity Conventional

PSNR↑ PSNR (Y)↑ MS-SSIM↑ FSIM↑ VSI↑ HDR-VDP3↑ Δ𝐸𝐼𝑇𝑃↓ PSNR↑ SSIM↑
HDRTVNet [4] 31.20 32.31 0.9738 0.9766 0.9899 8.798 8.493 35.57 0.9539
FMNet [42] 32.13 33.16 0.9701 0.9719 0.9889 8.633 6.550 36.11 0.9552
ICTCPNet [9] 33.12 34.46 0.9770 0.9783 0.9909 8.895 6.749 36.75 0.9565

GamutMLP [16] 34.44 36.26 0.9754 0.9811 0.9961 9.041 9.680 35.23 0.8841
INF [17] 36.93 37.86 0.9825 0.9886 0.9958 9.340 4.295 40.55 0.9660
Ours 38.62 39.62 0.9900 0.9900 0.9967 9.463 4.005 41.77 0.9689

Table 1: Quantitative comparsion on the HDRTV4K dataset [7]. The perceptual uniform metrics are obtained with the PU
encoding [19]. The conventional metrics are evaluated directly within the PQ-encoded HDR/WCG space.

Input SDR HDRTVNet FMNet ICtCpNet

GamutMLP INF OursGround Truth

Figure 6: Qualitative comparison between the input SDR, Ground Truth, and results of HDRTVNet [4], FMNet [42], ICtCpNet [9],
GamutMLP [16], INF [17] and our framework. We visualize the error maps below the results.

Method Latency Extra Data
Transfer Reconstruction

HDRTVNet [4] - 3752.00ms -
FMNet [42] - 724.10ms -
ICTCPNet [9] - 3136.00ms -

GamutMLP [16] 8.58s 70.80ms 23KB
INF [17] 13.46s 4.13ms 2.9MB
Ours 1.22s 2.13ms 40KB

Table 2: Efficiency results on an NVIDIA RTX 4090 GPU.

4.2 Performance Evaluation
Quantitative results. Table 1 summarizes the performance of our
framework and comparison methods. Our framework has signifi-
cant improvement in all metrics, even compared with the most com-
petitive domain-wise iTMmethod ICtCpNet (38.62dB vs. 33.12dB in
PU PSNR) and metadata-based method INF (38.62 dB vs. 36.93 dB in
PU PSNR). What’s more, we should note that GamutMLP performs

quite well in the HDR-VDP3 and PSNR (Y) metrics, but performs
poorly in the Δ𝐼𝑇𝑃 , which indicates the quality of chromaticity ac-
curacy. We attribute this phenomenon to that its sampling strategy
where most of the training pairs are sampled from out-of-gamut re-
gions is not suitable for the iTM task, which requires the algorithm
to model the luminance and chromaticity mapping relationship
between SDR and HDR/WCG simultaneously. In addition, because
CAM [22] consumes more than 64GB of GPU memory for 4K reso-
lution, we compare our framework with CAM on a 1080p down-
sampled version of the HDRTV4K dataset. Our framework achieves
37.88dB, 9.529, 4.467 in PU PSNR, HDR-VDP3, and Δ𝐼𝑇𝑃 , while
those of CAM are 34.25dB, 9.266, and 6.639.

Qualitative results.We show reconstructed HDR/WCG images
and error maps in Fig. 6. Existing domain-wise methods suffer from
a lack of highlighted pixels and color shifts, while metadata-based
methods, especially our framework, could reconstruct the overex-
posure regions accurately. In Fig. 7, for the input SDR image, the
ground truth HDR/WCG image, and reconstruction results, the
pixel distributions are visualized in the CIE xyY space [31]. Com-
pared to HDR/WCG images, SDR images suffer significant loss of
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Figure 7: Qualitative comparison between input SDR, ground truth, and results of HDRTVNet [4], FMNet [42], ICtCpNet [9],
GamutMLP [16], INF [17] and our framework. The pixel distributions are visualized in the CIE xyY space [31]. Illustrations
within the red depict the distribution in terms of chromaticity (xy), while those within the blue in terms of luminance (Y).

information in both the luminance and color gamut. HDRTVNet,
FMNET, and ICtCpNet have demonstrated notable performance in
chromaticity domain reconstruction. However, in terms of lumi-
nance domain reconstruction, these methods exhibit shortcomings
in reconstructing high-luminance pixels adequately. GamutMLP
suffers from inaccurate chromaticity domain reconstruction, while
INF exhibits relative weaknesses in luminance domain. More visual
comparisons are available in supplementary materials.

4.3 Efficiency Evaluation
In practical HDR/WCG media transmission, latency and storage
consumption are also essential metrics. As listed in Table 2, we
evaluate the efficiency of our framework. Compared with domain-
wise iTMmethods, our framework only needs 2.13ms to reconstruct
a 4K resolution image, while FMNet needs 724.10ms. Our advantage
will be even more pronounced, when compared with metadata-
based methods, like INF (1.22s vs. 13.46s in transfer time and 40KB
vs. 2.9MB in extra data). Our framework has a comparable scale in

the size of extra data compared to GamutMLP (40KB vs. 23KB) and
exhibits a significant superiority of over 30 times faster in terms of
reconstruction latency (2.13ms vs. 70.8ms).

4.4 Generalization Evaluation
As shown in Table 3, when the inference (OCIO [37]) TM opera-
tor is different from training (YouTube), domain-wise iTM meth-
ods perform poorly, showing the limitation of domain-wise iTM
methods. In comparison, metadata-based methods can reconstruct
the HDR/WCG images accurately. Compared with other metadata-
based methods, our framework still has a significant lead in metrics
(especially in PU PSNR and Δ𝐼𝑇𝑃 ), demonstrating the superior gen-
eralization capacity of our framework.

4.5 Ablation Analysis
The effectiveness of the meta-learning strategy.We evaluate
the performance of our framework with the naive pre-training
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Methods PSNR↑ HDR-VDP3↑ Δ𝐼𝑇𝑃↓
HDRTVNet [4] 19.54 8.158 32.89
FMNet [42] 19.79 8.088 31.65
ICtCpNet [9] 19.95 8.231 31.35

GamutMLP [16] 36.23 9.354 7.816
INF [17] 38.12 9.637 5.003
Ours(w/o meta learning) 38.57 9.600 5.883
Ours 39.42 9.684 4.448

Table 3: Generalization evaluation results. Methods are
trainedwith YouTube TMoperator, but testedwithOCIO [37].
The PNSR value is evaluated in PU [19] encoded domain.

Ours without OHEM Ours with OHEM

Naive Pre-train without OHEM Naive Pre-train with OHEM

Figure 8: The ablation results of the spatial-aware OHEM
mechanism. The reconstructed HDR/WCG images are placed
in the bottom-left corners of error maps.

strategy, GamutMLP pre-training strategy, and our meta-training
strategy. As shown in Table 4, our meta-learning pre-training strat-
egy significantly improves the performance of the reconstruction.
The pre-training strategy in GamutMLP [16] is similar to ours,
but lacks the adaptation step before outer update, leading to infe-
rior performance. The generalization evaluation results, shown in
Table 3, also reveal the effectiveness of the meta-training strategy.
The effectiveness of the spatial-aware OHEMmechanism.We
evaluate the performance of the spatial-aware OHEM mechanism
and the uniform sample strategy in our framework. The results,
shown in Table 4, reveal that our spatial-aware OHEM mecha-
nism efficiently improves the performance across all pre-training
strategies. Additionally, we visualize error maps for different com-
binations in Fig. 8. It can be observed that the utilization of the
spatial-aware OHEM mechanism yields superior reconstruction
results and overall exhibits greater uniformity. Particularly, the
challenging reconstruction region within the red frame further
highlights the effectiveness of the spatial-aware OHEM sample
mechanism.

4.6 Application: Image-wise iTM Distillation
There exists a considerable amount of SDR content that the ground
truth HDR/WCG counterparts are not available. In such scenarios,

Pre-training Sampling PSNR↑ HDR-VDP3↑
No Pre-train Uniform 33.70 9.034

Naive Pre-train Uniform 37.22 9.237
Naive Pre-train Spatial-aware OHEM 38.30 9.430

GamutMLP Pre-train Uniform 37.90 9.423
GamutMLP Pre-train Spatial-aware OHEM 38.15 9.432

Meta Learning Uniform 38.47 9.457
Meta Learning Spatial-aware OHEM 38.62 9.463

Table 4: Ablation results of the proposed meta-learning pre-
training strategy and spatial-aware OHEM mechanism. The
PNSR value is evaluated in PU [19] encoded domain.

FMNet Image-wise iTM Distillation

30.71dB 30.61dB

724.1ms 2ms

Ground TruthInput SDR

Figure 9: The results of iTM acceleration application. Our
framework could achieve comparable performance with ex-
isting methods [42] in significantly less time.

we show that our framework is capable of working with exist-
ing iTM methods for the acceleration of HDR/WCG prediction
by “distilling” them from a domain-wise model to an image-wise
one. Specifically, we replace the ground truth HDR/WCG image in
the transfer stage with results reconstructed by existing domain-
wise iTM methods. Fig. 9 presents an example of the image-wise
distillation results, demonstrating that our framework achieves
comparable performance with significantly less latency.

5 CONCLUSION
In this work, we propose a meta-transfer learning framework for
HDR/WCG media transmission by embedding an image-wise iTM
model as metadata in the SDR version. To improve the general-
ization and adaptation capacity of our framework, we introduce a
meta-learning strategy and a spatial-aware online mining mecha-
nism. Through comprehensive experiments, our framework demon-
strates significant superiority over existing solutions in terms of
both performance and efficiency. Furthermore, our framework also
generalizes well to different TM operators and can be utilized for
iTM acceleration. Our future work includes extending our frame-
work to the video iTM task, which has higher requirements for
inter-frame coherence as well as latency.
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