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A Proof of Proposition 1

We first prove the first inequality using Jensen’s inequality, which states that for a real-valued, convex
function φ with its domain as a subset of R and numbers t1, . . . , tn in its domain, the inequality
φ
(
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n

∑n
i=1 ti

)
≤ 1

n

∑n
i=1 φ(ti) holds. Given that − log is convex, and assuming m > 1 with

candidate models having different parameter weights θ, resulting in distinct discriminative mappings
of f(x, θ), we can strictly obtain l( 1

m

∑m
i=1 f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θi), y) without the equal

situation. Next, we leverage the property of inequalities to prove the second inequality. Here, θworst

denotes the worst candidate model, i.e., the model with the largest loss. For any other candidate
model θi, we have l(f(x, θi), y) < l(f(x, θworst), y). This ensures that 1

m

∑m
i=1 l(f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θworst), y), or explicitly, 1

m

∑m
i=1 l(f(x, θi), y) < l(f(x, θworst), y). Substituting

the NLL loss with any strongly convex loss function would still uphold the proposition.

B Model Selection Baselines

Let {pit}
nt
i=1 represent the output probability vectors of all nt target samples, and let P ∈ Rnt×C

denote the total probability matrix. We introduce the respective computation involved in the existing
model selection approaches.

Source risk. The SourceRisk approach [1] utilizes a held-out validation set from the source
domain to select the model θk that performs best on this set as the final decision. However, this
method has limited effectiveness in scenarios with severe domain shifts between the source and
target domains. Additionally, it introduces additional hyperparameters for dataset splitting, which
can further complicate the model selection process.

Importance-weighted source risk. Directly taking source risk as target risk is unreliable due to
domain distribution shifts between domains. To address this challenge, [2] propose Importance-
Weighted Cross Validation (IWCV), which re-weights the source risk using a source-target density
ratio estimated in the input space. [3] further enhance IWCV by introducing Deep Embedded
Validation (DEV), which estimates the density ratio in the feature space using a domain discriminator
and controls the variance. Both IWCV and DEV rely on the importance weighting technique [4],
which assumes that the target distribution is included in the source distribution [2], making the
weighting unreliable in scenarios with severe covariate shift and label shift. In addition, both IWCV
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and DEV involve hyperparameters and extra model training during the density ratio estimation
process.

Reversed source risk. Building upon the concept of reverse cross-validation [5], [6] propose a
novel Reverse Validation approach (RV). This method first conducts source-to-target adaptation to
obtain a UDA model, which enables the acquisition of pseudo labels for the target unlabeled data.
Subsequently, Reverse Validation performs a reversed adaptation from the pseudo-labeled target
to the source and utilizes the source risk in this reversed adaptation task for validation. Reverse
Validation relies on the symmetry between domains and cannot handle label shifts. Additionally, this
approach involves hyperparameters for dataset splitting.

Entropy. [7] propose using the mean Shannon’s Entropy of target-domain predictions as a validation
metric, prioritizing predictions with high certainty. The underlying intuition is that a good decision
boundary should avoid crossing high-density regions in the target structure [8, 9]. Lower Entropy
scores indicate better model performance for this metric.

Entropy = − 1

nt

nt∑
i=1

C∑
j=1

Pij logPij

Information maximization. The Entropy score only considers sample-wise certainty, which can be
misleading when high-certainty predictions are biased towards a small fraction of classes [10]. To
address this challenge, [11] utilize input-output mutual information maximization (InfoMax) [12] as a
validation metric. In contrast to Entropy, InfoMax includes an additional class-balance regularization
by encouraging the averaged prediction p̄ = 1

nt

∑nt
i=1 Pij , p̄ ∈ RC to be even. Higher InfoMax

scores indicate better model performance according to this metric.

InfoMax = −
C∑

j=1

p̄ log p̄+
1
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Neighborhood consistency. [10] introduce Soft Neighborhood Density (SND), a novel metric
that focuses on the property of neighborhood consistency. SND leverages softmax predictions as
features and constructs a sample-to-sample similarity matrix. This matrix is transformed into a
probabilistic distribution using the softmax function: S = softmax(PPT /τ), S ∈ Rnt×nt . Here,
τ is a small temperature parameter that sharpens the distribution, enabling the difference between
nearby and distant samples. SND favors high neighborhood consistency by prioritizing samples
whose predictions are similar to other samples within the same neighborhood, resulting in higher
SND scores.

SND = − 1

nt

nt∑
i=1

nt∑
j=1

Sij logSij

Class correlation. [13] introduce Corr-C, a class correlation-based metric that evaluates both class
diversity and prediction certainty. Corr-C calculates the cosine similarity between the class correlation
matrix and an identity matrix. Lower Corr-C scores are indicative of better model performance based
on this metric.

Corr-C =
sum(diag(PTP ))

∥PTP∥F

We can generally classify model selection baselines into two categories: source domain-based meth-
ods, including SourceRisk, IWCV, DEV, and RV, and target domain-specific methods, encompassing
Entropy, InfoMax, SND, and Corr-C. Recent model selection studies [10, 11, 13] predominantly align
with the target domain-specific approach. This trend arises because access to source data restricts
UDA to closed-set UDA and often involves additional model training, making the validation process
even more complex than UDA model training. In contrast, target domain-specific methods are more
straightforward and effective [10]. EnsV, our proposed method, also falls within the category of target
domain-specific methods, but fortunately with enhanced reliability due to a theoretical guarantee
designed to avert worst-case model selection scenarios.
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C Hyperparameter Configurations

In our main experiments, we adopt the setting of previous studies [3, 10] by tuning a single hyper-
parameter for various UDA methods. The comprehensive hyperparameter settings can be found in
Table 1.

Table 1: Hyperparameter settings for all considered UDA methods. The settings are partially based
on [10], with an expanded search space size from 5 to 7 and the inclusion of additional UDA methods
across diverse UDA scenarios.

UDA method UDA type Hyperparameter Search space Default value

ATDOC [14] CDA loss coefficient {0.02, 0.05, 0.1,
0.2self-training λ 0.2, 0.5, 1.0, 2.0}

BNM [15] CDA loss coefficient {0.02, 0.05, 0.1,
1.0output regularization λ 0.2, 0.5, 1.0, 2.0}

CDAN [16] CDA loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

MCC [17] CDA temperature {1.0, 1.5, 2.0,
2.5output regularization T 2.5, 3.0, 3.5, 4.0}

MDD [18] CDA margin factor {0.5, 1.0, 2.0,
4.0output alignment γ 3.0, 4.0, 5.0, 6.0}

SAFN [19] CDA/PDA loss coefficient {0.002, 0.005, 0.01,
0.05feature regularization λ 0.02, 0.05, 0.1, 0.2}

PADA [20] PDA loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

DANCE [21] OPDA loss coefficient {0.02, 0.05, 0.1,
0.05self-supervision η 0.2, 0.5, 1.0, 2.0}

SHOT [22] white-box SFUDA loss coefficient {0.03, 0.05, 0.1,
0.3hypothesis transfer β 0.3, 0.5, 1.0, 3.0}

DINE [14] black-box SFUDA loss coefficient {0.05, 0.1, 0.2,
1.0knowledge distillation β 0.5, 1.0, 2.0, 5.0}

AdaptSeg [23] segmentation loss coefficient {0.0001, 0.0003, 0.001,
0.0002output alignment λ 0.003, 0.01, 0.03}

AdvEnt [24] segmentation loss coefficient {0.0001, 0.0003, 0.001,
0.001output alignment λ 0.003, 0.01, 0.03}

D Full Model Selection Results

For a comprehensive study, we further consider the parameter weight-based ensemble [25] as our role
model, and the EnsV variant based on this role model is denoted as ‘EnsV-W’. While the parameter
weight-based ensemble also shows competitiveness, it requires all candidate models to share the same
architecture and lacks a theoretical guarantee of the ensemble performance. Thus, we recommend the
simple and generic prediction-based ensemble, i.e., the default ‘EnsV’.

In our experiments, we perform hyperparameter selection for both classification and segmentation
tasks. For open-partial-set UDA experiments, we utilize the H-score (%) [26, 27] metric, which
combines the accuracy of known classes and unknown samples. For semantic segmentation tasks,
we employ the mean intersection-over-union (mIoU) (%) [23, 24] metric. As for other classification
tasks, we adopt the accuracy (%) metric. Kindly refer to Table 2 to Table 17 for the complete model
selection results.
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Table 2: Validation accuracy (%) of a closed-set UDA method ATDOC [14] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 51.41 77.31 78.17 66.87 74.36 75.60 61.85 48.04 76.06 71.16 58.14 84.05 68.59
IWCV [2] 55.88 76.57 78.88 66.25 74.50 78.33 65.60 48.04 80.58 72.06 58.14 83.87 69.89
DEV [3] 51.41 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 69.70
RV [6] 56.38 76.12 80.01 66.25 76.80 78.33 67.82 55.62 80.58 71.98 56.40 83.87 70.85
Entropy [7] 55.88 74.14 78.88 59.25 74.52 77.67 64.19 54.39 78.54 67.57 57.23 80.96 68.60
InfoMax [11] 55.88 74.14 78.88 59.25 77.74 77.67 64.19 54.39 78.54 67.57 56.61 80.96 68.82
SND [10] 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 68.34
Corr-C [13] 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 65.42
EnsV-W 57.85 76.57 81.04 66.25 79.48 78.52 67.94 55.62 82.17 71.9 59.24 84.03 71.72
EnsV 57.85 76.57 80.54 66.25 78.82 78.52 67.94 57.07 82.17 71.9 59.24 84.03 71.74
Worst 51.41 72.00 76.04 59.25 69.36 69.54 61.85 48.04 76.06 67.57 51.71 80.31 65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 72.04

Table 3: Validation accuracy (%) of a closed-set UDA method BNM [15] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 56.93 77.00 77.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 66.37
IWCV [2] 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 65.52
DEV [3] 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 68.41
RV [6] 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 70.44
Entropy [7] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
InfoMax [11] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
SND [10] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
Corr-C [13] 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.76
EnsV-W 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 57.59 83.92 70.74
EnsV 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 59.54 83.92 70.90
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 71.11

Table 4: Validation accuracy (%) of a closed-set UDA method CDAN [16] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.50 73.22 67.28 47.01 84.39 58.99
IWCV [2] 43.14 62.51 77.81 44.71 54.58 56.14 65.14 37.50 81.85 74.08 43.02 84.39 60.41
DEV [3] 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 57.43 78.89 67.49
RV [6] 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 69.52
Entropy [7] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
InfoMax [11] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
SND [10] 57.55 72.43 77.78 64.61 73.73 73.40 65.14 56.66 81.85 74.08 58.47 84.73 70.04
Corr-C [13] 43.14 63.05 73.61 43.96 54.58 56.12 51.75 37.50 73.22 65.80 43.00 77.25 56.91
EnsV-W 57.18 73.30 77.78 63.37 73.89 73.38 65.14 55.44 81.36 73.88 58.56 84.39 69.81
EnsV 57.55 73.71 78.33 64.61 73.73 74.39 65.14 56.56 81.85 73.88 58.56 84.73 70.25
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 37.50 73.22 65.80 43.00 77.25 56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 70.43

Table 5: Validation accuracy (%) of a closed-set UDA method MCC [17] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 70.89
IWCV [2] 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 72.02
DEV [3] 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 71.38
RV [6] 59.34 78.53 80.70 69.10 77.83 78.22 67.20 57.85 82.24 74.91 59.20 85.54 72.56
Entropy [7] 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 72.55
InfoMax [11] 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 71.25
SND [10] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
Corr-C [13] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
EnsV-W 59.31 77.86 81.59 69.10 78.51 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.70
EnsV 59.31 77.86 81.59 69.10 77.83 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.65
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 67.90 58.49 82.51 74.91 61.35 85.74 73.14

Table 6: Validation accuracy (%) of a closed-set UDA method MDD [18] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 66.94
IWCV [2] 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 67.19
DEV [3] 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 68.54
RV [6] 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 68.96
Entropy [7] 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.72
InfoMax [11] 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.75
SND [10] 58.05 75.42 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 58.86
Corr-C [13] 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
EnsV-W 54.89 75.42 78.01 61.89 72.99 72.23 63.08 56.43 79.66 72.23 60.02 83.96 69.23
EnsV 56.40 75.42 77.05 64.07 72.99 72.23 63.08 57.02 80.26 72.23 60.02 84.43 69.60
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 70.04
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Table 7: Validation accuracy (%) of a closed-set UDA method SAFN [19] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 50.78 69.72 76.06 59.66 70.29 69.86 60.90 46.07 77.71 70.05 57.16 80.96 65.77
IWCV [2] 50.24 69.72 77.28 62.63 67.24 69.86 58.84 49.69 75.72 71.45 57.16 79.97 65.82
DEV [3] 51.07 69.72 76.64 59.66 67.24 71.26 58.84 49.69 75.72 70.95 50.65 76.64 64.84
RV [6] 51.07 71.41 76.64 62.63 68.44 70.44 58.84 44.49 77.71 71.45 54.82 81.46 65.78
Entropy [7] 45.93 69.72 75.49 55.29 67.22 68.35 54.26 43.30 75.69 70.00 49.99 80.60 62.99
InfoMax [11] 50.47 69.72 75.49 62.46 70.98 68.35 61.23 43.30 75.69 70.00 55.37 80.60 65.31
SND [10] 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Corr-C [13] 45.93 69.72 70.60 55.29 60.13 62.50 61.23 43.30 71.43 71.45 49.99 76.64 61.52
EnsV-W 51.73 72.07 76.64 64.65 70.98 71.26 63.66 50.52 77.48 70.99 57.16 81.46 67.38
EnsV 51.07 72.27 77.30 63.58 70.29 71.70 62.71 49.69 77.71 71.45 55.78 80.96 67.04
Worst 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Best 51.73 72.27 77.30 64.65 70.98 71.70 63.66 50.52 77.71 71.45 57.16 81.46 67.55

Table 8: Validation accuracy (%) of closed-set UDA methods on Office-31.

Method ATDOC [14] BNM [15] CDAN [16]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [1] 88.96 87.80 73.65 71.46 80.47 90.36 89.43 73.13 72.70 81.41 91.16 89.06 66.33 61.46 77.00
IWCV [2] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 69.08 58.74 66.33 61.46 63.90
DEV [3] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 91.16 88.30 66.33 61.46 76.81
RV [6] 89.96 87.23 74.28 75.58 81.76 88.55 89.43 74.90 66.52 79.85 91.16 88.30 76.18 70.36 81.50
Entropy [7] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 74.26 78.50 91.16 89.06 72.88 70.36 80.87
InfoMax [11] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 69.97 77.43 91.16 88.30 72.88 70.36 80.68
SND [10] 92.37 87.80 73.87 72.70 81.69 85.54 83.14 74.62 74.26 79.39 92.37 88.55 72.88 70.22 81.01
Corr-C [13] 90.96 84.40 71.88 70.22 79.37 84.34 78.99 67.80 66.52 74.41 67.67 59.62 58.15 58.43 60.97
EnsV-W 92.37 87.80 74.65 75.01 82.46 88.55 89.43 75.43 75.29 82.18 92.77 88.55 76.18 70.22 81.93
EnsV 90.96 87.80 74.65 75.01 82.11 90.36 89.43 75.43 74.30 82.38 92.77 88.55 76.18 70.22 81.93
Worst 86.14 84.40 71.88 70.22 78.16 84.34 78.99 67.80 66.52 74.41 67.67 57.11 58.15 58.43 60.34
Best 92.37 87.80 75.04 75.58 82.70 90.36 89.43 75.75 75.29 82.71 92.77 89.06 76.18 70.57 82.15

Table 9: Validation accuracy (%) of closed-set UDA methods on Office-31.

Method MCC [17] MDD [18] SAFN [19]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [1] 90.96 91.07 73.33 72.89 82.06 91.06 86.23 76.68 74.76 82.18 83.73 87.17 68.96 69.44 77.33
IWCV [2] 91.16 88.55 73.33 72.89 81.48 91.16 89.18 76.68 74.30 82.83 86.55 80.38 68.96 69.68 76.39
DEV [3] 89.16 93.08 73.33 72.06 81.91 91.16 89.18 76.68 74.62 82.91 86.55 80.38 68.96 67.45 75.84
RV [6] 89.06 93.08 74.42 73.52 82.52 92.57 86.79 73.91 74.97 82.07 90.83 87.17 68.76 68.62 78.85
Entropy [7] 90.56 93.46 74.83 73.02 82.97 92.57 90.82 78.03 74.58 84.00 91.57 85.66 67.20 69.26 78.42
InfoMax [11] 89.16 88.55 74.16 73.70 81.39 92.57 90.82 78.03 74.97 84.10 91.57 87.42 67.20 69.26 78.86
SND [10] 91.97 93.46 74.83 73.02 83.32 92.17 90.82 78.03 74.97 84.00 89.96 85.66 67.20 69.26 78.02
Corr-C [13] 91.37 93.46 74.83 73.02 83.17 91.57 85.66 73.91 74.58 81.43 86.75 80.38 67.09 69.68 75.98
EnsV-W 90.56 91.07 74.16 73.70 82.37 92.57 90.82 77.53 74.30 83.80 91.57 87.17 70.22 69.12 79.52
EnsV 90.56 91.45 73.80 73.70 82.38 92.57 90.82 77.53 74.30 83.80 90.96 87.17 70.22 69.12 79.37
Worst 86.75 87.17 71.18 69.93 78.76 87.35 85.66 73.91 72.20 79.78 83.73 80.38 67.09 67.45 74.66
Best 91.97 93.46 74.83 74.01 83.57 92.57 92.20 78.03 75.01 84.45 91.57 87.42 70.43 69.68 79.78

Table 10: Validation accuracy (%) of a closed-set UDA method CDAN [16] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [7] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
InfoMax [11] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
SND [10] 58.04 64.78 74.42 69.39 68.65 60.63 60.70 65.23
Corr-C [13] 58.04 57.73 74.42 56.98 65.07 51.23 60.70 60.60
EnsV-W 55.15 60.98 73.86 60.99 65.07 55.50 60.27 61.69
EnsV 56.73 64.67 74.44 67.08 67.97 58.12 62.57 64.51
Worst 51.59 57.73 73.44 56.98 63.06 51.23 58.46 58.93
Best 58.04 64.78 74.44 69.39 68.65 60.63 62.94 65.55

Table 11: Validation accuracy (%) of a closed-set UDA method BNM [15] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [7] 56.42 61.57 74.31 65.15 65.15 40.95 63.42 61.00
InfoMax [11] 56.42 68.95 74.31 65.15 65.15 54.93 63.42 64.05
SND [10] 43.78 61.57 74.31 51.55 54.40 40.95 54.59 54.45
Corr-C [13] 43.78 60.03 77.62 59.47 67.19 40.95 59.64 58.38
EnsV-W 58.48 68.42 77.62 66.05 67.79 57.65 64.34 65.76
EnsV 57.73 69.63 77.62 66.10 67.79 57.65 64.34 65.84
Worst 43.78 60.03 74.31 51.55 54.40 40.95 54.59 54.23
Best 58.48 69.63 78.68 66.10 67.79 58.50 65.20 66.34

Table 12: Validation accuracy (%) of a closed-set UDA method ATDOC [14] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [7] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
InfoMax [11] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
SND [10] 46.43 65.98 79.60 61.52 64.24 47.58 59.46 60.69
Corr-C [13] 54.71 60.63 74.42 59.33 64.58 52.66 59.95 60.90
EnsV-W 63.12 69.57 78.33 67.93 69.32 60.85 66.33 67.92
EnsV 62.11 71.14 80.01 69.45 69.79 61.35 67.10 68.71
Worst 46.43 60.63 74.42 59.33 64.24 47.58 59.46 58.87
Best 63.12 71.14 80.38 69.45 69.79 61.35 67.10 68.90
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Table 13: Validation accuracy (%) of a partial-set UDA method PADA [20] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 45.03 68.85 81.89 43.25 46.83 57.26 57.21 36.42 76.53 71.26 44.30 77.76 58.87
IWCV [2] 55.58 65.10 84.54 51.42 61.29 53.01 56.93 35.16 81.34 70.52 60.78 74.12 62.49
DEV [3] 54.81 78.15 78.02 58.13 61.29 50.14 67.86 35.16 83.21 74.66 57.91 77.76 64.76
RV [6] 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.30 77.76 58.34
Entropy [7] 40.12 40.11 55.94 52.43 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 55.56
InfoMax [11] 54.81 69.24 78.02 52.43 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 59.59
SND [10] 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 61.27
Corr-C [13] 40.12 40.11 55.94 54.18 46.89 53.01 58.59 38.93 77.80 71.26 57.91 77.70 56.04
EnsV-W 55.58 77.25 86.14 58.13 60.17 67.86 73.00 37.97 84.04 76.77 57.91 83.75 68.21
EnsV 54.81 69.24 86.53 58.13 56.13 64.11 70.62 51.22 84.04 76.86 60.78 84.20 68.06
Worst 40.12 40.11 55.94 41.41 37.25 50.14 56.93 34.87 71.84 70.52 44.24 74.12 51.46
Best 55.58 78.15 86.53 58.13 61.29 68.19 73.00 51.22 84.04 76.86 60.78 84.20 69.83

Table 14: Validation accuracy (%) of a partial-set UDA method SAFN [19] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [1] 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 68.11
IWCV [2] 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 67.86
DEV [3] 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 68.58
RV [6] 53.67 71.60 81.34 67.58 67.00 73.27 65.70 48.54 76.81 73.65 56.00 79.89 67.92
Entropy [7] 58.93 74.90 80.73 70.98 74.12 69.80 70.16 50.09 79.24 74.10 57.85 80.06 70.08
InfoMax [11] 51.82 67.62 76.97 64.65 65.77 69.80 59.69 50.09 74.10 66.67 53.31 75.52 64.67
SND [10] 51.82 74.90 80.73 70.98 74.12 75.10 70.16 50.09 79.24 74.10 53.31 80.06 69.55
Corr-C [13] 59.40 77.20 82.16 67.58 72.89 75.10 70.16 55.70 80.12 75.94 52.00 80.73 70.75
EnsV-W 59.40 77.20 82.16 71.72 72.89 74.82 72.45 55.70 80.73 75.94 59.16 80.73 71.91
EnsV 55.22 76.30 81.28 67.58 70.31 74.05 70.16 54.63 80.12 75.21 58.51 80.39 70.31
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 72.03

Table 15: H-score [26, 27] (%) of an open-partial-set UDA method DANCE [21] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [7] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [11] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [10] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [13] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV-W 67.00 75.15 66.57 67.87 67.35 59.05 66.41 62.59 69.40 59.86 67.54 73.40 66.85
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98

Table 16: Validation accuracy (%) of a white-box source-free UDA method SHOT [22] on Office-
Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [7] 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
InfoMax [11] 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
SND [10] 49.14 76.17 79.23 60.57 76.59 74.00 64.28 54.55 79.73 68.89 58.81 81.93 68.66
Corr-C [13] 55.60 76.66 79.83 67.04 76.59 76.86 66.63 54.55 80.74 73.71 58.81 84.61 70.97
EnsV-W 56.36 77.81 81.36 68.27 78.78 78.91 65.80 54.52 82.01 73.01 59.45 84.61 71.74
EnsV 56.36 77.81 81.36 68.27 78.78 78.91 67.12 54.52 82.01 73.34 59.45 84.61 71.88
Worst 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
Best 56.36 77.95 81.36 68.27 79.05 78.91 67.33 55.33 82.01 73.88 59.54 84.66 72.05

Table 17: Validation accuracy (%) of a white-box source-free UDA method SHOT [22] on Office-31.

Method A → D A → W D → A W → A avg
Entropy [7] 90.76 88.68 71.21 72.13 80.69
InfoMax [11] 90.76 88.68 71.21 72.13 80.69
SND [10] 90.76 88.68 71.21 72.13 80.69
Corr-C [13] 90.76 90.19 71.21 71.96 81.03
EnsV-W 94.78 91.82 75.15 74.55 84.08
EnsV 94.78 91.82 75.15 74.55 84.08
Worst 90.76 88.68 71.21 71.92 80.64
Best 94.78 93.33 75.58 74.55 84.56
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