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Abstract

Pre-trained seq2seq models excel at graph se-001
mantic parsing with rich annotated data, but002
generalize worse to out-of-distribution (OOD)003
and long-tail examples. In comparison, sym-004
bolic parsers under-perform on population-005
level metrics, but exhibit unique strength in006
OOD and tail generalization. In this work,007
we study compositionality-aware approach to008
neural-symbolic inference informed by model009
confidence, performing fine-grained neural-010
symbolic reasoning at subgraph level (i.e.,011
nodes and edges) and precisely targeting sub-012
graph components with high uncertainty in the013
neural parser. As a result, the method combines014
the distinct strength of the neural and symbolic015
approaches in capturing different aspects of the016
graph prediction, leading to well-rounded gen-017
eralization performance both across domains018
and in the tail. We empirically investigate the019
approach in the English Resource Grammar020
(ERG) parsing problem on a diverse suite of021
standard in-domain and seven OOD corpora.022
Our approach leads to 35.26% and 35.60% er-023
ror reduction in aggregated SMATCH score over024
neural and symbolic approaches respectively,025
and 14% absolute accuracy gain in key tail lin-026
guistic categories over the neural model, out-027
performing prior state-of-art methods that do028
not account for compositionality or uncertainty.029

1 Introduction030

A structured account of compositional meaning has031

become a longstanding goal for Natural Language032

Processing. To this end, a number of efforts have033

focused on encoding semantic relationships and at-034

tributes into graph-based meaning representations035

(MRs, see Appendix A for details). In particular,036

graph semantic parsing has been an important task037

in almost every Semantic Evaluation (SemEval)038

exercise since 2014. In recent years, we have wit-039

nessed the burgeoning of applying neural networks040

to semantic parsing. Pre-trained language model-041

based approaches have led to significant improve-042

ments across different MRs (Oepen et al., 2019, 043

2020). However, these models often generalize 044

poorly to out-of-distribution (OOD) and tail ex- 045

amples (Cheng et al., 2019; Shaw et al., 2021; 046

Kim, 2021; Lin et al., 2022), while grammar or 047

rule-based parser work relatively robustly across 048

different linguistic phenomena and language do- 049

mains (Cao et al., 2021; Lin et al., 2022). See 050

Appendix B-C for a review of related work. 051

In this paper, we propose a novel compositional 052

neural-symbolic inference for graph semantic pars- 053

ing, which takes advantage of both uncertainty 054

quantification from a seq2seq parser and prior 055

knowledge from a symbolic parser at the subgraph 056

level (i.e., nodes and edges). We take graph seman- 057

tic parsing for English Resource Grammar (ERG) 058

as our case study. ERG is a compositional semantic 059

representation explicitly coupled with the syntactic 060

structure. Compared to other graph-based meaning 061

representations like Abstract Meaning Representa- 062

tion (AMR), ERG has high coverage of English text 063

and strong transferability across domains, render- 064

ing itself has an attractive target formalism for auto- 065

mated semantic parsing. Furthermore, many years 066

of ERG research has led to well-established sym- 067

bolic parser and a rich set of carefully constructed 068

corpus across different application domains and 069

fine-grained linguistic phenomena, making it an 070

ideal candidate for studying cross-domain general- 071

ization of neural-symbolic methods (Oepen et al., 072

2002; Crysmann and Packard, 2012). 073

We start with a novel investigation of the uncer- 074

tainty calibration behaviour of a T5-based state-of- 075

the-art neural ERG parser (Lin et al., 2022) on the 076

subgraph level (Section 3), where we make some 077

key observations: (1) the performance of the neu- 078

ral parser degrades when it become uncertain at 079

the subgraph level, while (2) the symbolic parser 080

works still robustly when the neural parser is un- 081

certain at the subgraph level. This motivates us to 082

develop a compositional neural-symbolic inference 083
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(b) Variable-free PENMAN notation

Figure 1: The EDS representation for ERG and the corresponding linearization of the example sentence “The boy
wants the girl to believe him”.

process where the neural and symbolic parser col-084

laborates at a more fine-grained level and guided085

by model uncertainty, which is an aspect missing in086

the previous neural-symbolic and ensemble parsing087

literature (see Appendix C).088

We then propose a decision-theoretic criteria to089

allow for neural-symbolic inference at subgraph090

level (i.e., nodes and edges) and incorporates the091

neural parser’s fine-grained uncertainty for each092

graph component prediction (Section 4.1). The093

key to this approach is a meta graph GM that enu-094

merates possible candidates for each node/edge095

prediction, and is constructed by merging multiple096

beam predictions from the neural seq2seq model.097

The core challenge here is how to properly quan-098

tify compositional uncertainty using a seq2seq099

model, i.e., assigning model probability for a node100

or edge prediction on the graph. For example, our101

interest is often to express the conditional proba-102

bility of a graph node v with respect to its parent103

p(v|pa(v), x), rather than the likelihood of v con-104

ditioning on the previous tokens in the linearized105

string. As a result, it cannot be achieved by relying106

on the naive token-level autoregressive probabili-107

ties from the beam search. To address this issue, we108

introduce a simple probabilistic formalism termed109

Graph Autoregressive Process (GAP) (Section 4.2).110

GAP adopts a dual representation of a autoregres-111

sive process and a probabilistic graphical model,112

and can be used as a powerful medium for express-113

ing a seq2seq model’s compositional uncertainty114

on the graph.115

We demonstrate the effectiveness of our ap-116

proach in experiments across a diverse suite of117

eight in-domain and OOD evaluatation datasets118

encompassing domains including Wikipedia en-119

tries, news articles, email communications, etc120

(Section 5). We achieve the best results on the121

overall performance across the eight domains, at-122

taining 35.26% and 35.60% error reduction in the123

aggregatexd SMATCH score over the neural and124

symbolic parser, respectively. Our approach also 125

exhibits significantly stronger robustness in gener- 126

alization to OOD datasets and long-tail linguistic 127

phenomena than previous work, while maintaining 128

the state-of-the-art performance on in-domain test. 129

Further study also shows that the compositional- 130

ity aspects of neural-symbolic inference helps the 131

model to assemble novel graph solution that the 132

original inference process (e.g., beam search or 133

symbolic parse) fails to provide (Section 5.4). 134

In summary, our contributions are four-fold: 135

• We present a novel investigation of neural graph 136

parser’s uncertainty calibration performance at 137

subgraph level (Section 3). Our study confirms 138

the seq2seq uncertainty is effective for detecting 139

model error even out-of-distribution, establishing 140

the first empirical basis for the utility of compo- 141

sitional uncertainty in seq2seq graph parsing. 142

• We propose a practical and principled framework 143

for neural-symbolic graph parsing that utilizes 144

model uncertainty and exploits compositionality 145

(Section 4.1). The method is fully compatible 146

with modern large pre-trained seq2seq network 147

using beam decoding, and is general-purpose and 148

applicable to any graph semantic parsing task. 149

• We propose a simple probabilistic formalism 150

(GAP) to express a seq2seq model’s composi- 151

tional uncertainty (Section 4.2). GAP allows 152

us to go beyond the conventional autoregres- 153

sive sequence probability and express long-range 154

parent-child conditional probability on the graph, 155

serving as a useful medium of compositional un- 156

certainty quantification. 157

• We conduct a comprehensive study to evaluate 158

the state-of-art graph parsing approaches across a 159

diverse suite of in-domain and out-of-distribution 160

datasets (Section 5). Our study reveals sur- 161

prising weakness of previous state-of-art neural- 162

symbolic methods in OOD generalization, and 163

confirms the proposed method significantly im- 164

proves models OOD and tail performance. 165

2



0.3947 0.7788 0.9212 0.9764 0.9930 0.9983 0.9996 0.9999 1.0000
T5 Model's Probabilities

0.4

0.5

0.6

0.7

0.8

0.9

1.0
No

de
/E

dg
e 

Ac
cu

ra
cie

s

tanaka
T5
ACE

0.5810 0.8004 0.9150 0.9692 0.9879 0.9967 0.9991 0.9998 1.0000
T5 Model's Probabilities

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
de

/E
dg

e 
Ac

cu
ra

cie
s

brown
T5
ACE

Figure 2: Bar charts for the predictive accuracies of the T5 parser (blue) and ACE parser (orange) for all the node /
edge prediction across different uncertainty buckets based on T5 model’s probabilities. The performance is evaluated
on the Tanaka and Brown datasets. Each bin represents a quantile bucket of the model probability (i.e., they contain
the same number of examples).

Reproducibility. We will release the code on166

Github.167

2 Background168

2.1 English Resource Grammar (ERG)169

In this work, we take the representations from En-170

glish Resource Grammar (ERG; Flickinger et al.,171

2014) as our target meaning representations. ERG172

is a broad-coverage computational grammar of En-173

glish that derives underspecified logical-form rep-174

resentations of meaning (Oepen and Flickinger,175

2019). It is rooted in the general linguistic theory176

of Head-driven Phrase Structure Grammar (HPSG;177

Pollard and Sag, 1994).178

ERG can be presented into different types of an-179

notation formalism (Copestake et al., 2005). This180

work focuses on the Elementary Dependency Struc-181

ture (EDS; Oepen and Lønning, 2006) which is182

a compact representation that can be expressed183

as a directed acyclic graph (DAG) and is widely184

adopted in the neural parsing approaches (Buys and185

Blunsom, 2017; Chen et al., 2018). An example is186

shown in Figure 1(a).187

2.2 Parsing Approaches188

In this section, we review the state-of-the-art sym-189

bolic and neural parsers utilized in our work, i.e.,190

the ACE parser (Crysmann and Packard, 2012) and191

the T5 parser (Lin et al., 2022). Appendix B re-192

views other ERG parsing techniques.193

The symbolic parser: ACE. The ACE parser194

(Crysmann and Packard, 2012) is one of the state-195

of-the-art symbolic parser. It first decompose sen-196

tences into ERG-consistent candidate derivation197

trees, and the parser will rank candidates based on198

the structural features in the nodes of the deriva-199

tion trees via maximum entropy models (Oepen200

and Lønning, 2006; Toutanova et al., 2005). This201

approach fails to parse sentences for which no valid202

derivation is found. 203

The neural parser: T5. Lin et al. (2022) pro- 204

posed a T5-based ERG parser which achieves the 205

best known results on the in-domain DeepBank 206

benchmark. It is the first work that successfully 207

transfers the ERG parsing problem into a pure end- 208

to-end translation problem via compositionality- 209

aware tokenization and a variable-free top-down 210

graph linearization based on the PENMAN nota- 211

tion (Kasper, 1989). Figure 1(b) shows an example 212

of the linearized graph string from the original EDS 213

graph. 214

3 Motivation: Subgraph-level 215

Uncertainty in Seq2seq Graph Parsing 216

We hypothesize that when the neural seq2seq 217

model is uncertain at the subgraph level, it is more 218

likely to make mistakes. Assuming the symbolic 219

parser performs more robustly in these situations, 220

we can then design a procedure to ask the symbolic 221

parser for help when the model is uncertain. To 222

validate this hypothesis, we conduct experiments 223

to empirically explore the following two questions: 224

(1) how does the model perform when it is uncer- 225

tain at the subgraph level? and (2) how does the 226

symbolic parser perform when the model is uncer- 227

tain? 228

First, we compute model probabilities for each 229

graph element (i.e., node and edge) prediction (see 230

Section 4.2 for how to compute these quanitities), 231

and identify the corresponding ACE parser pre- 232

diction using the graph matching algorithm from 233

SMATCH (Cai and Knight, 2013). We then evaluate 234

the accuracies of those graph element predictions 235

with respect to the gold labels, and compare it to 236

that of the ACE parser. 237

In Figure 2, we plot the bar charts compare 238

the neural and symbolic performance in different 239

bucket of seq2seq model uncertainties on the two 240

largest datasets (e.g., Tanaka and Brown, see Ap- 241
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pendix H). Results on other datasets can be found in242

the Appendix L. As shown in the figure, low model243

probability generally corresponds to low T5 per-244

formance, while the corresponding ACE parser’s245

accuracies spread relatively stably (e.g., it attains246

> 90% accuracy in the lowest-confidence buck-247

ets, while T5 accuracy is < 50%). This implies248

that when the model is uncertain, the accuracy of249

the neural model tend to be low, while the ACE250

parser still performs well. This has motivated us251

to develop a compositional neural-symbolic infer-252

ence procedure guided the model’s subgraph level253

uncertainty, such that the T5 and ACE parser can254

collaborate at a more fine-grained level via com-255

postional uncertainty quantification (Section 4).256

4 Methods257

Notation & Problem Statement. For graph se-258

mantic parsing, the input is a natural language259

utterance x, and the output is a directed acyclic260

graph (DAG) G = ⟨N,E⟩, where N is the set261

of nodes and E ∈ N × N is the set of edges262

(e.g., Figure 1(a)). In the case of seq2seq pars-263

ing, G is represented as a linearized graph string264

g = s1s2 · · · sL consists of symbols {sl}Ll=1 (e.g.,265

Figure 1(b)). As the graph prediction is probabilis-266

tic, each of the graph element v ∈ N∪E is a random267

variable whose values are the symbols si observed268

from the beam outputs, leading to marginal prob-269

abilities p(v = si|x) and conditional probabilities270

p(v = si|v′ = sj , x).271

To this end, our goal is to produce a principled272

inference procedure for graph prediction account-273

ing for model uncertainty on predicting graph ele-274

ments v ∈ G. In the sequel, Section 4.1 presents a275

decision-theoretic criteria that leverages the graph-276

ical model likelihood p(G|x) to conduct compo-277

sitional neural-symbolic inference for graph pre-278

diction. To properly express the graphic model279

likelihood p(G|x) =
∏

v∈G p(v|pa(v), x) using280

a learned seq2seq model, Section 4.2 introduces281

a simple probabilistic formalism termed Graph282

Autoregressive Process (GAP) to translate the au-283

toregressive sequence probability from the seq2seq284

model to graphical model probability. Appendix F285

discusses some additional extensions.286

4.1 Compositional Neural-Symbolic Inference287

Previously, an uncertainty-aware decision criteria
was proposed for neural-symbolic inference based
on the Hurwicz pessimism-optimism criteria

R(G|x) (Lin et al., 2022). Specifically, the criteria
is written as:

R(G|x) = α(x)∗Rp(G|x)+(1−α(x))∗R0(G),

where R(G|x) = − log p(G|x) is the neural model 288

likelihood, R0(G) = log p0(G) is the symbolic 289

prior likelihood, and α(x) is a the uncertainty- 290

driven trade-off coefficient to balance between 291

the optimistic MLE criteria Rp(G|x) and the pes- 292

simistic, prior-centered criteria R0(G|x) centered 293

around symbolic prediction G0. 294

A key drawback of this approach is the lack of 295

accounting for the compositionality. This motivates 296

us to consider synthesizing the multiple graph pre- 297

dictions {Gk}Kk=1 from the neural parser to form 298

a meta graph G 1, where we can leverage the dis- 299

entangled uncertainty of p(G|x) to perform fine- 300

grained neural-symbolic inference for each graph 301

component v ∈ G (i.e., nodes or edges). Specifi- 302

cally, we leverage the factorized graphical model 303

likelihood p(G|x) =
∏

v∈G p(v|pa(v), x) to de- 304

compose the overall decision criteria R(G|x) into 305

that of individual components R(v|x): 306

R(v|x) = α(v|x) ∗ log p(v| pa(v), x) 307

+ (1− α(v|x)) ∗ log p0(v), (1) 308

and the overall criteria is written as R(G|x) = 309∑
v∈GR(v|x). Here pa(v) refers to the parents 310

of v in G, and α(v|x) = sigmoid(− 1
T H(v|x) + 311

b) is the component-specific trade-off param- 312

eter driven by model uncertainty H(v|x) = 313

− log p(v| pa(v), x), and (T, b) are scalar calibra- 314

tion hyperparameters that can be tuned on the dev 315

set. 316

Following previous work (Lin et al., 2022), the 317

symbolic prior p0 for each graph component v is 318

defined as a Boltzmann distribution based on the 319

graph output G0 from the symbolic parser, i.e., 320

p0(v = s) ∝ exp(I(s ∈ G0)), so that it is pro- 321

portional to the empirical probability of whether 322

a symbol s appears in G0. Notice that we have 323

ignored the normalizing constants since they do 324

not impact optimization. 325

Algorithm 1 summarizes the full algorithm. 326

As shown, during inference, the method pro- 327

ceeds by starting from the root node v0 328

and selects the optimal prediction v̂0 = 329

1Given a group of candidate graphs {Gk}Kk=1, well-
established algorithm exists to synthesize different graph pre-
dictions into a meta graph G (Cai and Knight, 2013; Hoang
et al., 2021) (see Appendix G for a more detailed review).
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argmaxc0∈Candidate(v0)R(c0|x), where c0 are dif-330

ferent candidates for v0 given by the the meta graph331

G. The algorithm then recursively performs the332

same neural-symbolic inference procedure for the333

children of v0 (i.e., ch(v)). The algorithm termi-334

nates when the optimal candidates for all graph335

variables v ∈ G are determined.336

As a result, the algorithm is able to adap-337

tively combine subgraph predictions across mul-338

tiple beam candidates thanks to the meta graph G,339

and appropriately weight between the local neural340

and symbolic information thanks to the uncertainty-341

aware decision criteria R(v|x). Empirically, this342

also gives the algorithm the ability to synthesize343

novel graph predictions that are distinct from its344

base models (Section 5.4).345

Algorithm 1 Compositional Neural-Symbolic Inference

Inputs:
Meta graph G
Graphical model likelihood log p(G|x)
Symbolic prior p0

Output:
Neural-symbolic graph prediction G

Initialize:
v = root(GM ); G = GM .

if G does not contain undecided candidates then return G
else

for cv ∈ Candidate(v) do
Compute decision criteria R(cv|x) (Equation 1)

Select optimal candidate v̂ = argmaxc R(c|x)
Remove non-optimal candidates of v from G
Recursively perform Algorithm 1 for all v′ ∈ ch(v)

4.2 Compositional Uncertainty Quantification346

with Graph Autogressive Process (GAP)347

To properly model the uncertainty p(G|x) from a348

seq2seq model, we need an intermediate probabilis-349

tic representation to translate the raw token-level350

probability to the distribution over graph elements.351

To this end, we introduce a simple probabilistic352

formalism termed Graph Autoregressive Process353

(GAP), which is a probability distribution assigning354

seq2seq learned probability to the graph elements355

v ∈ G. Specifically, as the seq2seq-predicted graph356

adopts both a sequence-based representation g =357

s1, ..., sL and a graph representation G = ⟨N,E⟩,358

the GAP model adopts both an autoregressive repre-359

sentation p(g|x) =
∏

i p(si|s<i, x) (Section 4.2.1),360

and also a probabilistic graphical model repre-361

sentation p(G|x) =
∏

v∈G p(v|pa(v), x) (Section362

4.2.2). Both representations share the same set of363

underlying probability measures (i.e., the graphical-364

model likelihood p(G|x) can be derived from the365

autoregressive probabilities p(si|s<i, x)) (Figure366

3), rendering itself a useful medium for princi- 367

pled compositional neural-symbolic inference us- 368

ing seq2seq probabilities. 369

4.2.1 Autoregressive Representation for 370

Linearized Sequence g 371

Given an input sequence x and output sequence 372

y = y1y2 · · · yN , the token-level autoregressive 373

distribution from a seq2seq model is p(y|x) = 374∏N
i=1 p(yi|y<i, x). In the context of graph pars- 375

ing, the output sequence describes a linearized 376

graph g = s1s2 · · · sL, where each symbol si = 377

{yi1yi2 · · · yiNi
} represents either a node n ∈ 378

N or an edge e ∈ E of the graph and corre- 379

sponds to a collection of beam-decoded tokens 380

{yi1yi2 · · · yiNi
}, e.g., the node _the_q in Figure 381

1(a) is represented by tokens {_, the, _q}. This 382

process is illustrated in follows: 383

s1 s2 s3 sLg:

y: y1 y2 y3 y4 y5 y6 y7 y8 yN-1 yN…

…

To this end, the Graph Autoregressive 384

Process (GAP) assigns probability to each 385

linearized graph g = s1s2 · · · sL autore- 386

greesviely as p(g|x) =
∏L

i=1 p(si|s<i, x), 387

and the conditional probability p(si|s<i, x) is 388

computed by aggregating the token probability: 389

p(si|s<i, x) = p({yi1 · · · yiNi
}|s<i, x) =

Ni∏
j=1

p(yij |yi<j , s<i, x)
390

Marginal and Conditional Probability. Im- 391

portantly, GAP allows us to compute the 392

marginal and (non-local) conditional probabil- 393

ities for graph elements si. Given the input x, 394

the marginal probability of si is computed as 395

p(si|x) =
∫
s<i

p(si|s<i, x)p(s<i|x)ds<i
396

by integrating over the space of all possible sub- 397

sequences s<i prior to the symbol si. Then, the 398

(non-local) conditional probability between two 399

graph elements (si, sj) with i < j is computed as 400

p(sj |si, x) =∫
si→j ,s<i

p(si, si→j |si, s<i, x)p(si|s<i, x)p(s<i|x)dsi→jds<i

401

by integrating over the space of subsequences si→j 402

between (si, sj) and the subsequence s<i before 403

si. Higher order conditional (e.g., p(sj |(si, sl), x)) 404

can be computed analogously. Notice this gives us 405

the ability to reason about long-range dependencies 406

between non-adjacent symbols on the sequence. 407

Furthermore, the conditional probability on the 408
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e1: L-INDEXn1: _and_c n2: _cathedral_n_1 e2: R-INDEX n4: named "Bazaar"g1

e1: L-INDEXn1: _and_c n2: _cathedral_n_1 e2: R-INDEX n5: named "bazar"

e1: L-INDEXn1: _and_c n3: named "Cathedral" e2: R-INDEX n6: _bazaar_n_1

g2

g3

Autoregressive Sequential Representation (i.e., Beam Sequences)

… … …… …

Graphical Model Representation (i.e., Meta Graph)
v

n1: _and_c e1: L-INDEX
n2: _cathedral_n_1

n3: named "Cathedral"
e2: R-INDEX

n4: named "Bazaar"

n5: named "bazar"

n6: _bazaar_n_1

GM

Figure 3: Visual illustration of constructing graphical
model representation GM from autorepressive represen-
tation {gk}Kk=1. The example here represents the sen-
tence “The Cathedral and the Bazaar” from the Eric
Raymond Essay dataset. Note that here we have omitted
the brackets in g for simplicity (see 1(b)).

reverse direction can also be computed using the409

Bayes’ rule: p(si|sj , x) = p(sj |si,x)p(si|x)
p(sj |x) .410

Efficient Estimation Using Beam Outputs. In411

practice, we can estimate p(si|x) and p(sj |si, x)412

efficiently via importance sampling using the413

output from the beam decoding {gk}Kk=1, where414

K is the beam size (Malinin and Gales, 2020).415

The marginal probability can be computed as416

p̂(si|x) =
K∑
k=1

p(si|sk,<i, x) ∗ πk (2)417

where πk =
exp( 1

t
log p(gk|x))∑K

k=1 exp(
1
t
log p(gk|x))

is the impor-418

tance weight proportional to the beam candidate419

gk’s log likelihoods, and t > 0 is the temperature420

parameter fixed to a small constant (e.g., t = 0.1,421

see Appendix D.1 further discussion) (Malinin and422

Gales, 2020). If the symbol si does not appear in423

the kth beam, we set p(si|sk,<i, x) = 0.424

Then, for two symbols (si, sj) with i < j, we425

can estimate the joint probability as426

p̂(sj |si, x) =
K∑

k=1

p(sj |si, sk,i→j , sk,<i, x) ∗ πi
k (3)

427

where πi
k =

exp( 1
t
log p(gk|x))∗I(si∈gk)∑K

k=1 exp(
1
t
log p(gk|x))∗I(si∈gk)

is the428

importance weight among beam candidates that429

contains si. Notice this is different from Equation430

2 where πk is computed over all beam candidates431

regardless of whether it contains si.432

4.2.2 Probabilistic Graphical Model433

Representation for G434

So far, we have focused on probability computa-435

tion based on the graph’s linearized representation436

p(g|x) =
∏

i p(si|s<i, x). To conduct the compo-437

sitional neural-symbolic inference (Section 4.1),438

we also need to consider GAP’s graphical model439

representation p(G|x) =
∏

v∈G p(v| pa(v), x).440

GAP’s graphical model representation G de-441

pends on the meta graph G constructed from K 442

candidate graphs {Gk}Kk=1 (Section 4.1). Figure 3 443

shows an example, where ni and ej are the candi- 444

dates for the node and edge predictions collected 445

from beam sequences. Compared to the sequence- 446

based representation g, G provides two advantages: 447

it (1) explicitly enumerates different candidates for 448

each node and edge prediction (e.g., n2 v.s. n3 for 449

predicting the third element), and (2) provides an 450

explicit account of the parent-child relationships 451

between variables on the graph (e.g., e2 is a child 452

node of n1 in the predicted graph, which is not re- 453

flected in the autoregressive representation). From 454

the probabilistic learning perspective, G describes 455

the space of possible graphs (i.e., the support) for 456

a graph distribution p(G|x) : G → [0, 1]. 457

To this end, GAP assigns proper graph-level 458

probability p(G|x) to graphs G sampled from the 459

meta graph G via the graphical model likelihood: 460

p(G|x) =
∏
v∈G

p(v| pa(v), x)

=
∏
n∈N

p(n| pa(n), x) ∗
∏
e∈E

p(e|pa(e), x)
461

where p(v| pa(v), x) is the conditional probability 462

for v with respect to their parents pa(v) in 463

G. Given the candidates graphs {Gk}Kk=1, we 464

can express the likelihood for p(v| pa(v), x) 465

by writing down a multinomial likelihood 466

enumerating over different values of pa(v) 467

(Murphy, 2012). This in fact leads to a simple 468

expression for the model likelihood as a sim- 469

ple averaging of the beam-sequence log likelihoods: 470

log p(n|pa(n), x) ∝ 1

K

K∑
k=1

log p(n| pa(n) = ck) (4)
471

where ck is the value of pa(n) in kth beam se- 472

quence, and the conditional probabilities are 473

computed using Equation (3). See Appendix E for 474

a detailed derivation. 475

Algorithm 2 Graph Autoregressive Process
Inputs:

Beam candidates with probabilities {p(gk|x)}Kk=1

Meta graph G
Output:

Marginal probabilities {p(s|x)}
Graph model likelihood log p(G|x)

for v ∈ G do
Compute marginal likelihood:

p(v = s|x) (Equation 2)
Compute graphical model likelihood:

log p(v = s| pa(v), x) (Equation 4)
return {p(v|x)}, log p(G|x)) =

∑
v∈G log p(v| pa(v), x)
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In summary, for each graph element variable476

v ∈ G, GAP allows us to compute the graphical-477

model conditional likelihood p(v|pa(v), x) via its478

graphical model representation, and also to com-479

pute the marginal probability p(v|x) via its autore-480

gressive presentation. The conditional likelihood is481

crucial for neural-symbolic inference (Section 4.1),482

and the marginal probability is useful for sparsity483

regularization in global graph structure inference484

(Appendix F). Algorithm 2 summarizes the full485

GAP computation.486

5 Experiments487

5.1 Experiment Setup488

Datasets. Consistent with previous ERG works,489

we train the neural model on DeepBank v1.1 an-490

notation of the Wall Stree Journal (WSJ), sections491

00-21 (the same text annotated in the Penn Tree492

Bank) that correspond to ERG version 1214.493

For OOD evaluation, we select 7 diverse datasets494

from the Redwoods Treebank corpus: Wikipedia495

(Wiki), the Brown Corpus (Brown), the Eric496

Raymond Essay (Essay), customer emails (E-497

commerce), meeting/hotel scheduling (Verbmobil),498

Norwegian tourism (LOGON) and the Tanaka Cor-499

pus (Tanaka) (See Appendix H for more details).500

Model. Following Lin et al. (2022), We train a501

T5large using the official T5X finetune pipeline2,502

and use beam search with size K = 5 at inference503

time. Further details are collected in Appendix I.504

Evaluation. we use the standard eval metric505

SMATCH (Cai and Knight, 2013), which computes506

the maximum F1-score obtainable from an align-507

ment between the predicted and gold graphs. We508

evaluate the models’ average-case performance on509

all the 8 in-domain and OOD datasets, and also510

conduct fine-grained evaluation of the models’ tail511

generalization performance across 19 important512

linguistic subcategories (Appendix K, Table 2).513

Baselines. We compare with two recent state-514

of-the-art approaches from the neural-symbolic515

and ensemble graph parsing literature, respectively.516

(see Appendix C for a review) (1) Lin et al. (2022)517

is uncertainty-aware neural-symbolic framework518

method attained state-of-the-art performance on the519

in-domain DeepBank test set, and (2) Hoang et al.520

(2021), a majority-voting-based graph ensemble521

method that uses a voting strategy based on beam522

2https://github.com/google-research/t5x/blob/
main/t5x/train.py

# T5 ACE Vote Collab. Ours ACE*

WSJ (in-domain) 1,437 96.56 87.14 88.22 97.01 96.77 90.94
Wiki 1,307 90.12 80.25 80.55 90.58 90.04 90.42
Brown 2,182 92.05 91.74 85.46 93.58 93.11 93.20
Essay 591 92.19 92.64 83.72 93.57 93.76 93.52
E-commerce 1,114 93.15 97.25 87.38 95.44 97.37 98.36
Verbmobil 931 90.06 95.15 84.80 92.24 96.42 97.62
LOGON 1,895 87.13 93.58 80.11 92.88 93.33 94.17
Tanaka 2,796 95.24 98.38 91.03 96.79 98.14 98.55

Mean w/ in-domain - 92.06 92.02 85.16 94.01 94.86 94.60
Mean w/o in-domain - 91.50 92.63 84.72 93.64 94.62 95.05

Table 1: SMATCH for T5, ACE, and collabora-
tive/compostional inference. # refers to the number of
sentences in the dataset. ACE* refers to the evaluation
results only for valid parse. Collb. refers to collabo-
rative inference from Lin et al. (2022). Vote refers to
voting strategy from Hoang et al. (2021). The bold and
underlined refer to the best and the second best results.

sequences from the T5 model and predictions from 523

the ACE parser 3. It doesn’t exploit uncertainty. 524

5.2 Results 525

The results are shown in Table 1. Detailed in- 526

domain comparision with other previous work is in 527

Appendix J. As shown, among the base models, the 528

T5 and ACE parser achieve similar overall perfor- 529

mance, with T5 strongly outperforms on in-domain 530

data but underperforms on the OOD data (see last 531

row in Table 1). Our approach achieves best re- 532

sults on overall performance, which is ∼ 35% er- 533

ror reduction in aggregated SMATCH score over the 534

T5-based and symbolic approaches. 535

We now compare with the previous state-of-the- 536

art methods. Though in-domain performance is not 537

the focus of this work, our approach is still compa- 538

rable to Collab, i.e., the neural-symbolic method 539

from Lin et al. (2022). However, on the challenging 540

out-of-domain eval sets (e.g., E-commerce, Verb- 541

mobil whose topic and style are significantly differ- 542

ent from WSJ), the performance of Collab starts 543

to deteriorate. In comparison, our neural-symbolic 544

approach remains robust out-of-domain. Its perfor- 545

mance stays competitive with and even sometimes 546

outperforms the ACE parser on difficult domains, 547

illustrating the advantage of compositionality. 548

We also notice that the voting-based ensemble 549

method Vote (Hoang et al., 2021) performs poorly 550

in the neural-symbolic setting, despite based a mod- 551

erate number of beam sequences. This is likely 552

because the majority-voting approach requires a 553

3We have tried several other variants for the voting can-
didates, e.g., top K predictions from the T5 parser and top 1
prediction + ACE prediction. It turns out the best one is using
top K predictions from the T5 parser and ACE predictions.
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Essay E-commerce Verbmobil
Type # ACE T5 Collab. Ours # ACE T5 Collab. Ours # ACE T5 Collab. Ours

Compound 671 83.76 73.39 76.75 80.26 844 95.50 67.96 83.22 94.94 308 86.36 67.41 68.13 87.50*
Nominal w/ nominalization 15 80.00 80.00 73.33 80.00 6 100.00 77.78 100.00 100.00 - - - - -
Nominal w/ noun 521 88.68 76.84 80.79 84.56 682 95.60 72.67 86.93 95.45 194 95.88 77.80 83.50 95.15
Verbal 18 72.22 57.89 73.68* 78.95* - - - - - - - - - -
Named entity 74 67.57 71.05* 68.42* 60.53 28 92.86 77.49 80.00 93.33* 80 62.50 56.51 52.50 67.50*

Argument structure 3,314 87.09 82.63 85.52 85.26 5,932 95.79 83.60 88.47 94.73 4,206 95.29 77.52 86.57 94.56
Total verb 1,616 83.66 81.11 83.78* 82.56 4,504 95.12 83.48 87.36 93.90 2,330 95.19 82.25 89.36 94.35
Basic verb 895 83.35 82.01 84.71* 83.50* 2,910 94.85 87.20 90.14 92.77 1,206 94.36 89.15 91.48 94.48*
ARG1 694 88.90 88.26 90.61* 88.62 2,494 96.79 95.64 97.08* 97.31* 1,168 96.75 95.40 95.27 96.90*
ARG2 708 88.28 86.69 89.04* 88.77* 2,660 97.14 91.11 93.36 97.20* 876 95.89 89.34 93.91 95.65
ARG3 69 83.61 78.57 78.57 80.14 382 90.05 70.91 75.13 78.07 62 93.55 67.56 87.50 96.88*

Verb-particle 721 84.05 79.99 65.15 81.41 1,592 95.61 76.94 82.31 95.95* 1,124 96.09 74.14 87.07 94.22
ARG1 620 87.90 84.39 86.53 85.58 1,448 96.27 80.77 84.73 96.62* 1,096 96.53 80.20 90.77 96.90*
ARG2 498 86.14 84.96 86.52* 88.77* 888 96.85 71.30 81.33 95.56 424 94.34 66.73 78.90 92.66
ARG3 62 79.03 65.15 65.15 74.24 208 93.27 69.05 83.02 96.23* 24 83.33 47.17 58.33 58.33

Total noun 189 91.53 82.90 86.01 86.49 90 100.00 76.81 78.26 97.83 26 92.31 69.00 93.33* 93.33*
Total adjective 1,336 90.64 84.36 87.13 88.39 1,116 97.67 84.62 93.07 97.34 1,838 95.43 72.54 82.75 94.81

Reentrancy 850 80.59 78.39 81.26* 77.01 1,686 95.73 75.83 81.59 84.76 800 93.25 60.23 72.77 89.20
passive 173 86.71 83.33 88.89* 86.71 222 98.20 85.56 92.11 97.37 12 100.00 79.10 100.00 100.00

Table 2: Comparing ACE, Collab. (Lin et al., 2022) and our parsers on fine-grained linguistic categories. All scores
are reported in accuracy. The gray colored row means long-tail phenomenon (< 500 cases in the training set). The
bold indicates the best results among neural approaches (T5, Collab. and Ours). * indicates the result is better than
ACE parser.

large number of diverse predictions from distinct554

models. When there are only two models, the abil-555

ity of quantifying uncertainty becomes important.556

557

5.3 Fine-grained Linguistic Evaluation558

ERG provides different levels of linguistic informa-559

tion that can benefit many NLP tasks, e.g., named560

entity recognition and semantic role labeling. This561

rich linguistic annotation provides an oppurtunity562

to evaluate model performance in meaningful pop-563

ulation subgroups. Detailed description of those564

linguistic phenomena is in Appendix K.565

Result is in Table 2. As shown, on OOD datasets,566

the T5 parser underperforms the ACE parser on567

most of the linguistic categories. Our approach568

outperforms both the neural model and the non-569

compositional neural-symbolic method especially570

on long-tail categories (the gray colored rows in the571

table), attaining an > 14% average absolute gain572

compared to the base model. In some categories,573

our method even outperforms the ACE parser while574

all base model underperforms, e.g., ARG3 of basic575

verb on Verbmobil and ARG3 of verb-particle on576

E-commerce.577

5.4 Case Study: Synthesizing Novel Graphs578

To test if our methods can generate optimal graph579

solution which the base models fail to obtain, we580

further explore the percentage of novel graphs581

(graphs that are not identical to any of the can-582

didate predictions of the neural or symbolic model)583

for each dataset, and compare the corresponding584

SMATCH scores on those novel cases. The results585

% Top 1 Top 2 Top 3 Top 4 Top 5 Collab. ACE Ours

In-domain 31.25 94.95 93.01 91.91 89.92 89.58 95.10 82.80 98.44
Wiki 32.29 87.55 86.54 85.56 86.00 83.90 88.77 82.67 92.24
Brown 46.84 90.54 89.34 88.57 88.10 87.11 92.53 96.15 96.56
Essay 50.93 90.71 90.02 89.31 89.02 87.60 92.41 95.73 96.08
E-commerce 34.65 90.03 88.34 86.61 85.56 82.91 92.82 98.96 97.54
Verbmobil 39.96 85.45 83.06 81.54 79.30 78.27 88.42 97.78 96.70
LOGON 58.10 90.75 89.65 88.20 87.90 86.95 92.50 96.70 97.06
Tanaka 24.89 89.35 87.46 85.60 83.55 83.16 92.30 98.23 98.27

All 38.76 90.57 89.18 88.01 87.24 86.13 92.29 93.93 96.28

Table 3: SMATCH performance on novel graphs, where
the results of our inference process are not identical to
any of the candidates from the base model.

are shown in Table 3. We see that our method syn- 586

thesize novel graph parses that are in general of 587

higher quality than that of the base models, thanks 588

to the calibrated uncertainty (Section 4.2). This 589

indicates the compositional neural-symbolic infer- 590

ence can synthesize evidence across neural and 591

symbolic results and produce novel graphs that are 592

closer to ground truth. 593

6 Conclusions 594

We have shown how to perform accurate and ro- 595

bust semantic parsing across a diverse range of gen- 596

res and linguistic categories for English Resource 597

Grammar. We achieve this by taking the advan- 598

tage of both the symbolic parser (ACE) and the 599

neural parser (T5) at a fine-grained subgraph level 600

using compositional uncertainty, an aspect miss- 601

ing in the previous neural-symbolic or ensemble 602

parsing work. Our approach attains the best known 603

result on the aggregated SMATCH score across 604

eight evaluation corpus from Redwoods Treebank, 605

attaining 35.26% and 35.60% error reduction over 606

the neural and symbolic parser, respectively. 607
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Limitation608

Here we discuss a potential limitations of the cur-609

rent study:610

Problem domain. In this work, we have selected611

English Resource Grammar as the target formalism.612

This is a deliberate choice based on the availabil-613

ity of (1) realistic out-of-distribution evaluation614

corpus, and (2) well-established, high-quality sym-615

bolic parser. This is a common setting in indus-616

trial applications, where an practitioner is tempted617

to combine large pre-trained neural model with618

expert-developed symbolic rules to improve perfor-619

mance for a new domain. Unfortunately, we are not620

aware of another popular meaning representation621

for which both resources are available. To over-622

come this challenge, we may consider studying623

collaborative inference between a standard seq2seq624

model and some indirect symbolic supervision, e.g.,625

syntactic parser or CCG parser (Steedman, 2001),626

which is an interesting direction for future work.627

Uncertainty estimation techniques. The naive628

seq2seq model is known to under-estimate the true629

probability of the high-likelihood output sequences,630

wasting a considerable amount of probability mass631

towards the space of improbable outputs (Ott et al.,632

2018; LeBrun et al., 2022). This systematic un-633

derestimation of neural likelihood may lead to a634

conservative neural-symbolic procedure that im-635

plicitly favors the information from the symbolic636

prior. It may also negatively impact calibration637

quality, leading the model to under-detect wrong638

predictions. To this end, it is interesting to ask639

if a more advanced seq2seq uncertainty method640

(e.g., Monte Carlo dropout or Gaussian process641

(Gal and Ghahramani, 2016; Liu et al., 2020)) can642

provide systematically better uncertainty quantifi-643

cation, and consequently improved downstream644

performance.645

Graphical model specification. The GAP646

model presented in this work considers a clas-647

sical graphical model likelihood p(G|x) =648 ∏
v∈G p(v| pa(v), x) , which leads to a clean fac-649

torization between graph elements v and fast prob-650

ability computation. However, it also assumes a651

local Markov property that v is conditional inde-652

pendent to its ancestors given the parent pa(v). In653

theory, the probability learned by a seq2seq model654

is capable of modeling higher order conditionals655

between arbitrary elements on the graph. Therefore656

it is interesting to ask if a more sophisticated graph-657

ical model with higher-order dependency structure658

can lead to better performance in practice while 659

maintaining reasonable computational complexity. 660

Understanding different types of uncertainty. 661

There exists many different types of uncertainties 662

occur in a machine learning system (Hüllermeier 663

and Waegeman, 2021). This includes data uncer- 664

tainty (e.g., erroneously annotated training labels, 665

ill-formedness of the input sentence, or inherent 666

ambiguity in the example-to-label mapping), and 667

also model uncertainty which occurs the test ex- 668

ample not containing familiar patterns the model 669

learned from the training data. In this work, we 670

quantifies uncertainty using mean log likelihood, 671

which broadly captures both types of uncertainty 672

and does not make a distinction between these dif- 673

ferent subtypes. As different source of uncertainty 674

may lead to different strategy in neural-symbolic 675

parsing, the future work should look into more 676

fine-grained uncertainty signal that can decompose 677

these different sources of error and uncertainty, and 678

propose adaptive strategy to handle different sce- 679

narios. 680

Ethical Consideration 681

This paper focused on neural-symbolic semantic 682

parsing for the English Resource Grammar (ERG). 683

Our architecture are built based on open-source 684

models and datasets (all available online). We do 685

not anticipate any major ethical concerns. 686
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A Graph-based Meaning Representation949

Considerable NLP research has been devoted to950

the transformation of natural language utterances951

into a desired linguistically motivated semantic rep-952

resentation. Such a representation can be under-953

stood as a class of discrete structures that describe954

lexical, syntactic, semantic, pragmatic, as well as955

many other aspects of the phenomenon of human956

language. In this domain, graph-based representa-957

tions provide a light-weight yet effective way to en-958

code rich semantic information of natural language959

sentences and have been receiving heightened at-960

tention in recent years. Popular frameworks un-961

der this umbrella includes Bi-lexical Semantic De-962

pendency Graphs (SDG; Bos et al., 2004; Ivanova963

et al., 2012; Oepen et al., 2015), Abstract Mean-964

ing Representation (AMR; Banarescu et al., 2013),965

Graph-based Representations for English Resource966

Grammar (ERG; Oepen and Lønning, 2006; Copes-967

take, 2009), and Universal Conceptual Cognitive968

Annotation (UCCA; Abend and Rappoport, 2013).969

B Literature Review on Graph Semantic970

Parsing971

In this section, we present a summary of different972

parsing technologies for graph-based meaning rep-973

resentations in addition to the ones discussed in974

2.2, with a focus on English Resource Grammar975

(ERG).976

Grammar-based approach In this type of ap-977

proach, a semantic graph is derived according to978

a set of lexical and syntactico-semantic rules. For979

ERG parsing, sentences are parsed to HPSG deriva- 980

tions consistent with ERG. The nodes in the deriva- 981

tion trees are feature structures, from which MRS 982

is extracted through unification. The parser has a 983

default parse ranking procedure trained on a tree- 984

bank, where maximum entropy models are used 985

to score the derivations in order to find the most 986

likely parse. However, this approach fails to parse 987

sentences for which no valid derivation is found 988

(Toutanova et al., 2005). There are two main exist- 989

ing grammar-based parsers for ERG parsing: the 990

PET system (Callmeier, 2000) and the ACE system 991

(Crysmann and Packard, 2012). The core algo- 992

rithms implemented by both systems are the same, 993

but ACE is faster in certain common configurations. 994

We choose ACE as the symbolic parser in our work. 995

Factorization-based approach This type of ap- 996

proach is inspired by graph-based dependency tree 997

parsing (McDonald, 2006). A factorization-based 998

parser explicitly models the target semantic struc- 999

tures by defining a score function that can eval- 1000

uate the probability of any candidate graph. For 1001

ERG parsing, Cao et al. (2021) implemented a two- 1002

step pipeline architecture that identifies the concept 1003

nodes and dependencies by solving two optimiza- 1004

tion problems, where prediction of the first step is 1005

utilized as the input for the second step. Chen et al. 1006

(2019) presented a four-stage pipeline to incremen- 1007

tally construct an ERG graph, whose core idea is 1008

similar to previous work. 1009

Transition-based approach In these parsing sys- 1010

tems, the meaning representations graph is gener- 1011

ated via a series of actions, in a process that is 1012

very similar to dependency tree parsing (Yamada 1013

and Matsumoto, 2003; Nivre, 2008), with the dif- 1014

ference being that the actions for graph parsing 1015

need to allow reentrancies. For ERG parsing, Buys 1016

and Blunsom (2017) proposed a neural encoder- 1017

decoder transition-based parser, which uses stack- 1018

based embedding features to predict graphs jointly 1019

with unlexicalized predicates and their token align- 1020

ments. 1021

Composition-based approach Following a prin- 1022

ciple of compositionality, a semantic graph can 1023

be viewed as the result of a derivation process, in 1024

which a set of lexical and syntactico-semantic rules 1025

are iteratively applied and evaluated. For ERG pars- 1026

ing, based on Chen et al. (2018), Chen et al. (2019) 1027

proposed a composition-based parser whose core 1028

engine is a graph rewriting system that explicitly 1029
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explores the syntactico-semantic recursive deriva-1030

tions that are governed by a synchronous SHRG.1031

Translation-based approach This type of ap-1032

proach is inspired by the success of seq2seq mod-1033

els which are the heart of modern Neural Machine1034

Translation. A translation-based parser encodes1035

and views a target semantic graph as a string from1036

another language. In a broader context of graph1037

semantic parsing, simply applying seq2seq models1038

is not successful, in part because effective lineariza-1039

tion (encoding graphs as linear sequences) and data1040

sparsity were thought to pose significant challenges1041

(Konstas et al., 2017). Alternatively, some specifi-1042

cally designed preprocessing procedures for vocab-1043

ulary and entities can help to address these issues1044

(Konstas et al., 2017; Peng et al., 2017). These pre-1045

processing procedures are very specific to a certain1046

type of meaning representation and are difficult1047

to transfer to others. To address this, Lin et al.1048

(2022) propose a variable-free top-down lineariza-1049

tion and a compositionality-aware tokenization for1050

ERG graph preprocessing, and successfully trans-1051

fer the ERG parsing into a translation problem that1052

can be solved by a state-of-the-art seq2seq model1053

T5 (Raffel et al., 2020). The parser achieves the1054

best known results on the in-domain test set from1055

the DeepBank benchmark.1056

C Related Work1057

Neural-Symbolic Graph Semantic Parsing.1058

Though neural models excel at semantic parsing,1059

they have been shown to struggle with out-of-1060

distribution compositional generalization, while1061

grammar or rule-based approaches work relatively1062

robustly. This has motivated the work in neural-1063

symbolic parsing where symbolic approaches are1064

imported as inductive bias (Shaw et al., 2021; Kim,1065

2021; Cheng et al., 2019; Cole et al., 2021). For1066

graph meaning representations, importing induc-1067

tive bias into neural model was somehow difficult1068

due to the much more complicated structure com-1069

pared to pure syntactic rules or logical formalism1070

(Peng et al., 2015; Peng and Gildea, 2016). To1071

address this, Lin et al. (2022) proposes a collabora-1072

tive framework by designing a decision criterion for1073

beam search that incorporates the prior knowledge1074

from a symbolic parser and accounts for model un-1075

certainty, which achieves the state-of-the-art results1076

on the in-domain test set.1077

Ensemble Learning for Graph Parsing. Ensem-1078

ble learning is a popular machine learning approach1079

that combines predictions from multiple candidates 1080

to create a new one that is more robust and ac- 1081

curate than individual predictions. Previous stud- 1082

ies have explored various ensemble learning ap- 1083

proaches for graph parsing (Green and Žabokrtský, 1084

2012; Barzdins and Gosko, 2016). Specifically, for 1085

graph semantic parsing at subgraph level, Hoang 1086

et al. (2021) make use of checkpoints from models 1087

of different architectures, and mining the largest 1088

graph that is the most supported by a collection of 1089

graph predictions. They then propose a heuristic 1090

algorithm to approximate the optimal solution. 1091

Compare to the previous ensemble work, our 1092

work differ in three ways: (1) Our decision rule is 1093

based on neural model confidence, so the decision 1094

is driven not by model consensus, but by model 1095

confidence which indicates when the main (neural) 1096

result is untrustworthy and needs to be comple- 1097

mented by symbolic result. Model consensus is 1098

effective when there exists a large number of candi- 1099

date models. However, in the neural-symbolic set- 1100

ting when there are only two models, the ability of 1101

quantifying model uncertainty becomes important. 1102

(2) A secondary contribution of our work is to pro- 1103

duce an parsing approach for the ERG community 1104

that not only exhibits strong average-case perfor- 1105

mance on in-domain and OOD environments, but 1106

also generalizes robustly in important categories of 1107

tail linguistic phenomena. Therefore, our investi- 1108

gation goes beyond average-case performance and 1109

evaluates in tail generalization as well. (3) We re- 1110

veal a more nuance picture of neural models’ OOD 1111

performance: a neural model’s top K parses in fact 1112

often contains subgraphs that generalize well to 1113

OOD scenarios, but the vanilla MLE-based infer- 1114

ence fails to select them (see Section 5.4 for more 1115

details). 1116

D Additional Methods Discussions 1117

D.1 Efficient Probability Estimation Using 1118

Beam Outputs 1119

The marginalized probability p̂(si|x) provides a 1120

way to reason about the global importance of si by 1121

integrating the probabilistic evidence p(si|sk,<i, x) 1122

over the whole beam-sampled posterior space. It is 1123

able to capture the cases of spurious graph elements 1124

si with high local probability p(si|sk,<i, x) but low 1125

global likelihood (i.e., only appear in a few low- 1126

probability beam candidates), which is useful for 1127

inferring sparse global structures for the meta graph 1128

(Appendix F). 1129
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In the importance weight πk, the temperature pa-1130

rameter t controls how evidence for p(si|x) is ag-1131

gregated across beam samples {gk}Kk=1. When t →1132

0, the above is equivalent to selecting p(si|sk,<i, x)1133

from the most probable subsequence sk,<i; when1134

t → ∞, the above is equivalent to simple averaging1135

of p(si|sk,<i, x) from all beam candidates. In the1136

experiments, we find that the value of t does not1137

have a significant impact on the final performance.1138

In general, we recommend fixing it to a small value1139

(e.g., t = 0.1) to suitably downweighting the con-1140

tribution from improbable beam candidates.1141

E Simplified Expression for Graphical1142

Model Likelihood1143

Given the candidates graphs {Gk}Kk=1, we can1144

express the likelihood for p(v| pa(v), x) by writing1145

down a multinomial likelihood enumerating over1146

different values of pa(v) (Murphy, 2012). For1147

example, say pa(n) = (e1, e2) which represents1148

a subgraph of two edges (e1, e2) pointing into1149

a node n. Then the conditional probability1150

p(n| pa(n), x) can be computed by enumer-1151

ating over the observed values of (e1, e2) pair:1152

p(n|pa(n), x) = p(n|(e1, e2), x)

∝
∏

c∈Candidate(e1,e2)

p(n|(e1, e2) = c, x)Kc
1153

where Candidate(e) is the collection of possi-1154

ble symbols s the variable e can take, and1155

Kc is the number of times (e1, e2) takes a1156

particular value c ∈ Candidate(e1, e2) =1157

Candidate(e1)× Candidate(e2).1158

Then, the log likelihood becomes:1159

log p(n| pa(n), x)1160

=
∑
c

Kc ∗ log p(n|(e1, e2) = c)1161

To simplify this above expression, we notice that1162

log p(n| pa(n), x) can be divided by the constant1163

beam size K without impacting the inference. As1164

a result, the log probability can be computed by1165

simplify averaging the values of log p(v|pa(v) =1166

ck) across the beam candidates:1167

log p(n| pa(n), x)1168

∝
∑
c

Kc

K
log p(n|(e1, e2) = c)1169

=
1

K

K∑
k=1

log p(n|(e1, e2) = ck)1170

where ck is the value of (e1, e2) in kth beam candi- 1171

date. 1172

F Extensions and Practical 1173

Implementation 1174

F.1 Infer Sparse Global Structure via 1175

Likelihood-based Pruning 1176

In practice, the meta graphG can contain spuri- 1177

ous elements v that have a high local likelihoods 1178

log p(v| pa(v), x) but very low global probabili- 1179

ties p(v|x). This happens when the element v 1180

only appears in a few low-probability beam se- 1181

quences. These spurious nodes and edges often 1182

adds redundancy to the generated graph (i.e., hurt- 1183

ing precision), and cannot be eliminated by the 1184

neural-symbolic inference procedure, due to their 1185

high local conditional probability p(v|pa(v), x). 1186

Consequently, we find it empirically effective to 1187

perform sparse structure inference forG based on 1188

global probabilities p(v|x) before diving into local 1189

neural-symbolic prediction for graph components. 1190

In this work, we carry out this global structure 1191

inference by considering a simple threshold-and- 1192

project procedure, i.e., pruning out all the graph 1193

elements whose global probability ||p(v|x)||∞ = 1194

maxs∈Candidate(v) p(v = s|x) is lower than a thresh- 1195

old t, but will keep v if its removal will lead to an 1196

invalid graph with disconnected subcomponents. 1197

Here ||p(v|x)||∞ is the total variation metric that 1198

returns the maximum probability. 1199

Algorithm 3 summarizes this procedure. From a 1200

theoretical perspective, this is equivalent to finding 1201

the most sparse solution with respect to threshold t 1202

within the space of valid (i.e., connected) subgraphs 1203

ofG. 1204

Algorithm 3 Likelihood-based Pruning
Inputs:

Meta Graph GM

Marginal probabilities {p(s|x)}s∈G

Threshold t
Output:

Pruned graph G′
M

Initialize:
G′
M = GM

for v ∈ G′
M do

if ||p(v|x)||∞ < t AND G′
M \ {v} is connected then

Prune v : G′
M = G′

M \ {v}
return G′

M

F.2 Handle Multi-modality via Mixture 1205

Modeling 1206

In some rare cases where the input sentence is frag- 1207

mented or ill-formed, the neural model may output 1208
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ARGunknown _abstract_n_1 BV-of udef_qg1

ARGunknown named "Abstract" BV-of proper_qg2

ARG1-ofunknown _abstract_a_1g3

ARG1_abstract_a_1 unknowng4

ARG1_abstract_v_1 prong5 BV-of pronoun_q

Figure 4: Autoregressive Representation (i.e., beam
sequences) for the sentence “Abstract” from the Eric
Raymond Essay dataset. Note that g3 and g4 are actually
the same graph but with different linearization orders.

multiple beam sequences with drastically differ-1209

ent high-level structures, creating difficulty for the1210

graph merging procedure (See Figure 4 for an ex-1211

ample).1212

We can handle this multi-modality in observed1213

graph structure by extending p(G|x) to be a mix-1214

ture of GAP distributions, so that the graphical1215

model likelihood becomes:1216

p(G|x) =
∑
m∈M

p(G|m,x)p(m|x)1217

where p(m|x) is a categorical distribution over1218

the mixture components m ∈ M . Here each1219

component m induce a meta graph Gm for graph1220

Gm = ⟨Nm,Em⟩, such that1221

p(G|m,x) = p(Gm|x) =
∏

v∈Gm

p(v| pa(v), x)1222

=
∏

n∈Nm

p(n|pa(n), x) ∗
∏

e∈Em

p(e| pa(e), x)1223

Given beam sequences {gk}Kk=1, the mixture com-1224

ponents can be estimated using a standard cluster-1225

ing algorithm based on an edit distance between1226

beam candidate gk. Based on our experiments, hier-1227

archical agglomerative clustering (HAC) combined1228

with the longest common subsequence (LCS) dis-1229

tance often leads to the best result. After clustering,1230

p(m|x) is computed as the empirical probability of1231

beam sequences belonging the mth cluster, and the1232

meta graph Gm is computed by applying the graph1233

merging procedure to the beam sequences in the1234

mth cluster.1235

To conduct neural symbolic inference, we also1236

need to define the symbolic prior p0 for the mixture1237

distribution:1238

p0(G) =
∑
m∈M

p0(G|m) ∗ p0(m)1239

=
∑
m∈M

[
∏

v∈Gm

p0(v) ∗ p0(m)]1240

where p0(v = s) ∝ exp(I(s ∈ G0)) as 1241

define previously, and we define p0(m) = 1242

exp(−SMATCH(Gm, G0)) following the previous 1243

work (Lin et al., 2022). 1244

As a result, the decision criteria for neural- 1245

symbolic inference under the mixture model be- 1246

comes: 1247

R(Gm|x) = R(m|x) +
∑
v∈Gm

R(v|x) 1248

where
∑

v∈Gm
R(v|x) is the component-wise de- 1249

cision criteria as defined in the main text, and 1250

R(m|x) is the additional term for the mixture com- 1251

ponents: 1252

R(m|x) = α(m|x) ∗ log p(m|x) 1253

+ (1− α(m|x)) ∗ log p0(m) 1254

where α(m|x) = σ(− 1
T H(m|x) + b) is the trade- 1255

off parameter driven by the average log likelihood 1256

of beam sequences in the mth cluster Cm, i.e., 1257

H(m|x) = 1
|Cm|

∑
gk∈Cm

− log(gk|x). 1258

During inference, we can again proceed in a 1259

greedy fashion, first select the optimal m̂ based on 1260

R(m|x), and then perform compositional neural- 1261

symbolic inference with respect to Gm̂ using 1262∑
v∈Gm̂

R(v|x). 1263

Algorithm 4 Complete Procedure with All Extensions
Inputs:

Beam candidates and associated token-level
probabilities {p(gk|x)}Kk=1

Output:
Neural-symbolic graph prediction G

(Optional) Estimate:
Mixture components {Gm}Mm=1, {p(m|x)Mm=1}
from Cluster {p(gk|x)}Kk=1

Optimal mixture components G = Gm̂, where
m̂ = argmaxR(m|x)

Estimate:
Marginal probability and graphical model likelihood
(Algorithm 2):

{p(v|x)}v∈G, log p(G|x) = GAP(G)
Infer:

Global graph structure via likelihood-based pruning
(Algorithm 3)

G′ = ThresholdAndProject(G, {p(v|x)}v∈G)

Local node / edge prediction via compostitional
neural-symbolic inference (Algorithm 1)

G = NeuralSymbolicInference(G’)

As a result, the complete precedure with all op- 1264

tional extensions are shown in Algorithm 4. 1265
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G Graph Matching Algorithm1266

In general, finding the largest common subgraph1267

is a well-known computationally intractable prob-1268

lem in graph theory. However, for graph parsing1269

problems where graphs have labels and a simple1270

tree-like structure, some efficient heuristics are1271

proposed to approximate the best match by a hill-1272

climbing algorithm (Cai and Knight, 2013). The1273

initial match is modified iteratively to optimize the1274

total number of matches with a predefined number1275

of iterations (default value set to 5). This algorithm1276

is very efficient and effective, it was also used to1277

calculate the SMATCH score in Cai and Knight1278

(2013).1279

H Details for OOD Datasets1280

Wikipedia (Wiki) The DeepBank team con-1281

structed a treebank for 100 Wikipedia articles on1282

Computational Linguistics and closely related top-1283

ics. The treebank of 11,558 sentences comprises 161284

sets of articles. The corpus contains mostly declar-1285

ative, relatively long sentences, along with some1286

fragments.1287

The Brown Corpus (Brown) The Brown Cor-1288

pus was a carefully compiled selection of current1289

American English, totalling about a million words1290

drawn from a wide variety of sources.1291

The Eric Raymond Essay (Essay) The treebank1292

is based on translations of the essay “The Cathedral1293

and the Bazaar” by Eric Raymond. The average1294

length and the linguistic complexity of these sen-1295

tences is markedly higher than the other treebanked1296

corpora.1297

E-commerce While the ERG was being used in1298

a commercial software product developed by the1299

YY Software Corporation for automated response1300

to customer emails, a corpus of training and test1301

data was constructed and made freely available,1302

consisting of email messages composed by people1303

pretending to be customers of a fictional consumer1304

products online store. The messages in the corpus1305

fall into four roughly equal-sized categories: Prod-1306

uct Availability, Order Status, Order Cancellation,1307

and Product Return.1308

Meeting/hotel scheduling (Verbmobil) This1309

dataset is a collection of transcriptions of spoken1310

dialogues, each of which reflected a negotiation1311

either to schedule a meeting, or to plan a hotel stay.1312

One dialogue usually consists of 20-30 turns, with1313

most of the utterances relatively short, including 1314

greetings and closings, and not surprisingly with 1315

a high frequency of time and date expressions as 1316

well as questions and sentence fragments. 1317

Norwegian tourism (LOGON) The Norwe- 1318

gian/English machine translation research project 1319

LOGON acquired for its development and evalu- 1320

ation corpus a set of tourism brochures originally 1321

written in Norwegian and then professionally trans- 1322

lated into English. The corpus consists almost en- 1323

tirely of declarative sentences and many sentence 1324

fragments, where the average number of tokens 1325

per item is higher than in the Verbmobil and E- 1326

commerce data. 1327

The Tanaka Corpus (Tanaka) This treebank 1328

is based on parallel Japanese-English sentences, 1329

which was adopted to be used with in the 1330

WWWJDIC dictionary server as a set of example 1331

sentences associated within words in the dictio- 1332

nary. 1333

I Implementation and Hyperparameters 1334

T5 Model We use the open-sourced T5X 4, 1335

which is a new and improved implementation of 1336

T5 codebase in JAX and Flax. Specifically, we 1337

use the official pretrained T5-Large (770 million 1338

parameters), which is the same size as the one used 1339

in Lin et al. (2022), and finetuned it on DeepBank 1340

in-domain training set. Specifically, the total train- 1341

ing step is 1,750,000 including 1,000,000 pretrain 1342

steps. For fine-tuning the T5 model on ERG pars- 1343

ing, batch size is set to 128, the output and input 1344

sequence length is set to 512, and dropout rate is 1345

set to 0.1. 1346

Hyperparameters For the trade-off parameter 1347

α(v|x) = σ(− 1
T H(v|x) + b), we set temperature 1348

T = 0.1 and bias b = 0.25. 1349

J In-domain Evaluation 1350

Table 4 shows the in-domain performance, where 1351

we compare our parser with the grammar-based 1352

ACE parser and other data-driven parsers. The 1353

baseline models also include a similar practice with 1354

(Shaw et al., 2021) and (Hoang et al., 2021). The 1355

former one takes T5 as a backup for grammar-based 1356

parser (ACE), and the latter gets ensembled graph 1357

via a voting strategy based on the candidates from 1358

the T5 parser and ACE parser. 1359

4https://github.com/google-research/t5x
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Figure 5: Diagrams for the T5 model’s probabilities verses the T5 model’s and ACE parser’s accuracies at subgraph
level on the other datasets. Each bin contains the same number of examples. Since at most of the subgraphs, the
model is pretty certain (logP > −1e− 5), we exclude these pretty certain predictions in the figures.

Model Node Edge SMATCH

ACE 89.30 85.05 87.14
ACE* 93.18 88.76 90.94
Buys and Blunsom (2017) 89.06 84.96 87.00
Chen et al. (2018) 94.51 87.29 90.86
Chen et al. (2019) 95.63 91.43 93.56
Chen et al. (2019) 97.28 94.03 95.67
Cao et al. (2021) 96.42 93.73 95.05
ACE-T5 (following Shaw et al. (2021)) 93.46 89.19 91.30

T5-based (Lin et al., 2022) 97.34 95.80 96.56
+ Hoang et al. (2021) 88.89 87.67 88.22
+ Lin et al. (2022) 97.64 96.41 97.01
+ Ours 97.50 96.07 96.77

Table 4: F1 score for node and edge predictions and the
SMATCH scores on the in-domain test set. ACE* refers
to evaluation results only for valid parse.

From the table we can see that our methods out-1360

performs the base model (T5-based) and most of1361

the previous work. Specifically, we achieves a1362

SMATCH score of 96.77, which is a 6.11% error1363

reduction compared to the base T5 parser.1364

K Fine-grained Linguistic Phenomena1365

Lexical construction ERG uses the abstract1366

node compound to denote compound words. The1367

edge labeled with ARG1 refers to the root of the 1368

compound word, and thus can help to further dis- 1369

tinguish the type of the compound into (1) nominal 1370

with normalization, e.g., “flag burning”; (2) nomi- 1371

nal with noun, e.g., “pilot union”; (3) verbal, e.g., 1372

“state-owned”; (4) named entities, e.g., “West Ger- 1373

many”. 1374

Argument structure In ERG, there are differ- 1375

ent types of core predicates in argument structures, 1376

specifically, verbs, nouns and adjectives. We also 1377

categorize verb in to basic verb (e.g., _look_v_1) 1378

and verb particle constructions (e.g., _look_v_up). 1379

The verb particle construction is handled semanti- 1380

cally by having the verb contribute a relation par- 1381

ticular to the combination. 1382

Coreference ERG resolves sentence-level coref- 1383

erence, i.e., if the sentence referring to the same 1384

entity, the entity will be an argument for all the 1385

nodes that it is an argument of, e.g., in the sen- 1386

tence, “What we want to do is take a more aggres- 1387

sive stance”, the predicates “want” (_want_v_1) 1388

and “take” (_take_v_1) share the same agent “we” 1389

(pron). Coreference can be presented as reentran- 1390
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cies in the ERG graph, we notice that one important1391

type of reentrancies is the passive construction, so1392

we also report evaluation on passive construction1393

in Table 2.1394

L Calibration Performance on Other1395

Datasets1396

The correlations between the subgraph’s probabil-1397

ity and performance on other datasets are shown in1398

Figure 5. The conclusions drew from the figure is1399

similar to the one discussed in Section 3.1400
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