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ABSTRACT

The success of reinforcement learning in the real world has been limited to instru-
mented laboratory scenarios, often requiring arduous human supervision to enable
continuous learning. In this work, we discuss the required elements of a robotic
system that can continually and autonomously improve with data collected in the
real world, and propose a particular instantiation of such a system. Subsequently,
we investigate a number of challenges of learning without instrumentation – in-
cluding the lack of episodic resets, state estimation, and hand-engineered rewards
– and propose simple, scalable solutions to these challenges. We demonstrate the
efficacy of our proposed system on dexterous robotic manipulation tasks in sim-
ulation and the real world, and also provide an insightful analysis and ablation
study of the challenges associated with this learning paradigm.

1 INTRODUCTION

Reinforcement learning (RL) can in principle enable real-world autonomous systems, such as robots,
to autonomously acquire large repertoires of skills. Perhaps more importantly, reinforcement learn-
ing can enable such systems to continuously improve the proficiency of their skills from experience.
However, realizing this promise in reality has proven challenging: even with reinforcement learning
methods that can acquire complex behaviors from high-dimensional low-level observations, such as
images, the typical assumptions of the reinforcement learning problem setting do not fit perfectly
into the constraints of the real world. For this reason, most successful robotic learning experiments
have been demonstrated with varying levels of instrumentation, in order to make it practical to de-
fine reward functions (e.g. by using auxiliary sensors (Haarnoja et al., 2018a; Kumar et al., 2016;
Andrychowicz et al., 2018)), and in order to make it practical to reset the environment between trials
(e.g. using manually engineered contraptions (Zhu et al., 2019)). In order to really make it practical
for autonomous learning systems to improve continuously through real-world operation, we must
lift these constraints and design learning systems whose assumptions match the constraints of the
real world, and allow for uninterrupted continuous learning with large amounts of real world experi-
ence. What exactly is holding back our reinforcement learning algorithms from being deployed for
learning robotic tasks (for instance manipulation) directly in the real world?

We hypothesize that our current reinforcement learning algorithms make a number of unrealistic
assumptions that make real world deployment challenging – access to low-dimensional Markovian
state, known reward functions, and availability of episodic resets. In practice, this means that signif-
icant human engineering is required to materialize these assumptions in order to conduct real-world
reinforcement learning, which limits the ability of learning-enabled robots to collect large amounts
of experience automatically in a variety of naturally occuring environments. Even if we can engi-
neer a complex solution for instrumentation in one environment, the same may need to be done for
every environment being learned in. When using deep function approximators, actually collecting
large amounts of real world experience is typically crucial for effective generalization. The inabil-
ity to collect large amounts of real world data autonomously significantly limits the ability of these
robots to learn robust, generalizable behaviors. In this work, we propose that overcoming these
challenges requires designing robotic systems that possess three fundamental capabilities: (1) they
are able to learn from their own raw sensory inputs, (2) they are able to assign rewards to their own
behaviors with minimal human intervention, (3) they are able to learn continuously in non-episodic
settings without requiring human operators to manually reset the environment. We believe that a
system with these capabilities will bring us significantly closer to the goal of continuously improv-
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ing robotic agents that leverage large amounts of their own real world experience, without requiring
significant human instrumentation and engineering effort.

Having laid out these requirements, we propose a practical instantiation of such a learning system,
which afford the above capabilities. While prior works have studied each of these issues in isolation,
combining solutions to these issues is non-trivial and results in a particularly challenging learning
problem. We provide a detailed empirical analysis of these issues, both in simulation and on a
real-world robotic platform, and propose a number of simple but effective solutions that can make
it possible to produce a complete robotic learning system that can learn autonomously, handle raw
sensory inputs, learn reward functions from easily available supervision, and learn without manually
designed reset mechanisms. We show that this system is well suited for learning dexterous robotic
manipulation tasks in the real world, and substantially outperforms ablations and prior work. While
the individual components that we combine to design our robotic learning system are based heavily
on prior work, both the combination of these components and their specific instantiations are novel.
Indeed, we show that without the particular design decisions motivated by our experiments, naı̈ve
designs that follow prior work generally fail to satisfy one of the three requirements that we lay out.

2 THE STRUCTURE OF A REAL-WORLD RL SYSTEM

Let us start by considering the standard reinforcement learning paradigm, where we operate in a
Markov decision process with state space S, action space A, unknown transition dynamics T , un-
known reward function R and an episodic initial state distribution ρ. In RL, the goal is to learn a
policy to maximize the expected sum of rewards via environment interactions.

Figure 1: Our real world system setup.
There is no special object instrumentation
- only an RGB camera and proprioceptive
sensors.

Although this formalism is simple and concise, it does not
capture all of the complexities of real-world robotic learn-
ing problems. If a robotic system is to learn continuously
and autonomously in the real world, we must ensure that
it can learn under all assumptions that are imposed by
the real world. The real world does not have instrumen-
tation available to easily provide low dimensional state
estimates, rewards or episodic resets. To move from the
idealized MDP formulation to the real world, we require
a system that has the following properties. Firstly, all of
the information necessary for learning must be obtained
from the robot’s own sensors. This includes all informa-
tion about the state and necessitates that the policy must
be learned from high-dimensional and low-level sensory
observations, such as camera images. Secondly, the robot
must also obtain the reward signal itself from its own sen-
sor readings. This is exceptionally difficult for all but the simplest tasks, since reward functions that
depend on affecting change in the world to specific objects require perceiving those objects explic-
itly. Thirdly, we must be able to learn in a non-episodic manner, without access to episodic resets.
A setup with explicit resets is increasingly impractical due to the requirement for significant human
engineering or intervention during learning.

While some of the components discussed above can be tackled in isolation by current algorithms,
there are unique challenges inherent to assembling these components into a complete learning sys-
tem for real world robotics, as well as certain challenges associated with individual components. In
the subsequent discussion, we outline the elements that are required to build a robotic system that can
learn in the real world with minimal instrumentation. These elements present interesting challenges
in learning when combined together, which we analyze in Section 3 and address in Section 4.

2.1 LEARNING FROM RAW SENSORY INPUT

To enable learning without complex state estimation systems or instrumenting every environment
the robot operates in, we require our robotic systems to be able to learn from their own raw sensory
observations. Typically, these sensory observations are raw camera images from a camera mounted
on the robot and proprioceptive sensory inputs such as the joint angles. These observations do not
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Figure 2: Schematic comparison of current learning systems versus our proposed instrumentation-free system
- R3L . While traditional robotic applications of RL in the real world require explicit supervision in the form
of resets, rewards and state estimation, R3L gets rid of these requirements and allows us to learn without any
explicit system instrumentation, simply by leveraging interaction with the environment.

directly provide the poses of the objects in the scene, which is the typical assumption in simulated
robotic environments – any such information must be extracted by the learning system.

While in principle many RL frameworks can support learning from raw sensory inputs (Mnih et al.,
2015; Schulman et al., 2015; Lillicrap et al., 2015), it is important to consider the practicalities of
this approach. For instance, we can instantiate vision-based RL with policy gradient algorithms
such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017), but these have high sample
complexities which make them unsuited for real world robotic learning (Haarnoja et al., 2018a),
which is further exacerbated when learning from visual inputs. In our work, we consider adopting
the general framework of off-policy actor-critic reinforcement learning, using a version of the soft
actor critic (SAC) algorithm described by (Haarnoja et al., 2018b). This algorithm effectively uses
off-policy data, and has been shown to learn some tasks directly from visual inputs. However, while
SAC is able to learn directly from raw visual input, most instantiations have required instrumentation
for providing rewards and episodic resets. As we show in Section 3, when these assumptions are
lifted it leads to a number of non-trivial learning challenges which require new techniques to address.

2.2 REWARD FUNCTIONS WITHOUT REWARD ENGINEERING

Vision-based RL algorithms, such as SAC, rely on a proper reward function being provided to the
system, which is typically hand-defined by a user. While this can be simple to provide in simu-
lation, it is significantly harder to implement in uninstrumented real world environments. In the
real world, the robot must obtain reward signal itself from its own sensor readings, which can be
extremely challenging. A few unappealing options have been suggested to tackle this: engineer
complete computer vision systems to detect objects and extract reward signals (Devin et al., 2018;
Nagabandi et al., 2019), engineer reward functions that use various task-specific heuristics to obtain
rewards from pixels (Schenck & Fox, 2017; Kalashnikov et al., 2018), or instrument every envi-
ronment (Chebotar et al., 2017). All are highly manual, tedious processes, and a better solution is
needed to scale real world robotic learning gracefully.

To devise a system that requires minimal human engineering and supervision for providing rewards,
we must use algorithms that are able to assign themselves rewards throughout learning with minimal
reward engineering. One candidate is for a user to specify intended behavior beforehand through
example images of desired goals. The algorithm can then assign itself reward based on a notion of
how well it is accomplishing the specified goals during learning, with no additional human super-
vision. This scheme scales well since it requires minimal human engineering, and goal images are
easy to provide upfront. So how exactly might we design such a reward provision system?

To do this, we use a data-driven reward specification framework called variational inverse control
with events (VICE), introduced by Fu et al. (2018). VICE learns rewards in a task-agnostic way: we
provide the algorithm with success examples in the form of images where the task is accomplished,
and learn a discriminator that is capable of distinguishing successes from failures. This discriminator
can then be used to provide a learning signal to nudge the reinforcement learning agent towards
success. This algorithm has been previously considered in the context of learning some tasks from
raw sensory observations in the real world by (Singh et al., 2019), but we show that it presents unique

3



Under review as a conference paper at ICLR 2020

challenges when used in conjunction with learning without episodic resets. Details and specifics of
the algorithms being considered are described in Appendix A and also in (Fu et al., 2018; Singh
et al., 2019).

2.3 LEARNING WITHOUT RESETS

While the components described in Section 2.1 and 2.2 are essential to building continuously learn-
ing RL systems in the real world, they have often been implemented with the assumption of episodic
learning. Indeed, previous applications of Fu et al. (2018) or Haarnoja et al. (2018b) were imple-
mented with explicitly designed reset mechanisms or human operators performing resets between
trials. However, natural open-world settings do not provide any such reset mechanism, and in or-
der to enable scalable and autonomous real-world learning, we need systems that do not require an
episodic formulation of the learning problem.

In principle, algorithms such as SAC do not actually require episodic learning; however, in practice,
most instantiations of these algorithms have used explicit resets, even in simulation, and removing
resets has resulted in failure to solve challenging tasks. While RL algorithms can handle non-
episodic settings without any modifications in principle, they struggle when applied in practice to
challenging problems. In our experiments in Section 3, we see that simply applying actor-critic
methods to the reset free setting doesn’t learn intended behaviors and requires novel insights when
combined with visual observations and classifier based rewards.

These three components – vision-based RL with actor-critic algorithms, vision-based goal classi-
fier for rewards, and reset-free learning – are the fundamental pieces that we need to build a real
world robotic learning system. However, when we actually combine the individual components in
Sections 3 and 6, we find that learning effective policies is quite challenging. We provide insight
into these challenges in Section 3 and, based on these insights, we propose a number of simple but
important changes in Section 4 that enable R3L to learn effectively and autonomously in the real
world without human intervention.

3 CHALLENGES OF REAL WORLD RL

Figure 3: This is the object repositioning
task. The goal is to move the object from any
starting configuration to a particular goal po-
sition and orientation.

The system design outlined in Section 2, in principle,
gives us a complete system to perform real world rein-
forcement learning without instrumentation. However,
when ported to robotic problems in the real world, we find
this basic design to be largely ineffective. To illustrate
this, we present results for a simulated robotic manipu-
lation task that requires repositioning a free-floating ob-
jects with a three-fingered robotic hand, shown in Fig 3.
We use this task for our investigative analysis, and show
that the same insights extend to several other tasks (in-
cluding real world tasks) in Section 6. The goal in this
task is to reposition the object to a target pose from any
initial pose in the arena. When the system is instantiated
with vision-based SAC, rewards from goal images using
VICE and run without episodic resets, we see that the al-
gorithm fails to make progress (Fig 4). Although it might
appear that this setup fits within the assumptions of all of
the components that are used, the complete system is in-
effective. Which particular components of this problem
make it so difficult?

To investigate this issue, we set up experiments that com-
bine the three main ingredients: varying observation type
(visual vs. low-dimensional state), reward structure (VICE vs. hand-defined rewards that utilize
ground-truth object state) and the ability to reset (episodic resets vs. reset-free, non-episodic learn-
ing). We start by considering the training time rewards obtained under each combination of factors
as shown in Fig 4. This reveals several trends: first, the results in Fig 4 show that learning with resets
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Figure 4: We report the number of samples needed
to achieve a threshold training reward using true re-
wards vs. classifier-based rewards, with vs. without
external resets, and from state vs. from vision on the
object re-positioning task. We observe that learning
without resets is more challenging than with resets
and also gets exacerbated by visual inputs.
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Figure 5: We observe that when training reset free
to reach a single goal, while the pose errors (com-
bined angle and position errors) at training time are
quite low, the pose errors obtained at test-time with
the learned policy are very high. This indicates that
while the object is getting close to the goal at training
time, the policies being learned are still not effective.

gets good training time reward with both vision and state while reset-free only obtains good training
time reward with low-dimensional state; second, we find that the policy is able to pass the threshold
for training time rewards in a non-episodic setting when operating from low-dimensional state, but
not when using image observations. This suggests that combining the reset-free learning problem
with visual observations makes it significantly more challenging than with low-dimensional state.

However, the table in Fig 4 paints an incomplete picture. These numbers represent the position of the
objects at training time, not actually how effective the learned policies are. When we consider the
test-time performance (Fig 5) of the learned policies under reset free conditions, we obtain a different
set of conclusions. While learning from low-dimensional state in the reset free setting is able to
achieve decent training time reward, the test-time performance of the corresponding learned policies
is very poor. This can likely be attributed to the fact that when the agent spends all its time stuck
at the goal, it sees very little diversity of data in other parts of the state space, which significantly
affects the efficacy of the actual policies being learned. This makes it very challenging to learn
policies with completely reset-free schemes, which has prompted prior work to consider schemes
such as learning reset-controllers (Eysenbach et al., 2018). As we discuss in the following section
and in our experiments, theses schemes are often insufficient for learning effective policies in real
world without any resets. These insights prompt us to propose simple solutions for instrumentation
free reinforcement learning in Section 4.

4 R3L: REAL-WORLD ROBOTIC REINFORCEMENT LEARNING

To address the challenges identified in Section 3, we present two improvements to the basic system
outlined above, which we found to be essential for uninstrumented real-world training: randomized
perturbation controllers and unsupervised representation learning. Incorporating these components
into the system in Section 2 results in a method that can learn in uninstrumented environments, as
we will show in Section 6.

4.1 RANDOM PERTURBATION CONTROLLER

From our observations in Fig 4, we can see that it is not effective to simply perform reset-free RL
using a standard actor critic algorithm. Even the policies trained with full state information do not
actually learn how to perform the desired repositioning task, as shown in Fig 5. This is because,
once the policy has performed the task once, it does not need to perform it again, and therefore
not only fails how to learn to perform the task reliably, but in fact tends to forget how to perform
it at all. Prior work has considered addressing this problem by converting the reset-free learning
problem into a more standard episodic problem, by learning a “reset controller,” which is trained to
reset the system to a particular initial state (Eysenbach et al., 2018; Han et al., 2015). However, as
we will show in our experiments in Section 6, this still results in policies that only succeed from a
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very narrow range of initial states. Indeed, prior reset controller methods all reset to a single initial
state (Eysenbach et al., 2018; Han et al., 2015).

We take a different approach to learning in a reset-free setting. Rather than attributing the problem
to the variance of the initial state distribution, we hypothesize that a major problem with reset-free
learning is that the support of the distribution of states visited by the policy is extremely narrow,
which makes the learning problem challenging and doesn’t allow the agent to learn how to perform
the desired task from any state it might find itself in. In this view, the goal should not be to reduce
the variance of the initial state distribution, but instead to increase it.

To this end, we utilize what we call random perturbation controllers: controllers that introduce per-
turbations intermittently into the system through a policy that is trained to explore the environment.
The standard actor π(a|s) is executed for H time-steps, following which we executed the perturba-
tion controller πp(a|s) forH steps, and repeat. The policy π is trained with the VICE-based rewards
for reaching the desired goals, while the perturbation controller πp is trained only with an intrinsic
motivation objective that encourages visiting under-explored states. In our implementation, we use
the random network distillation (RND) objective for training the perturbation controller (Burda et al.,
2018). This procedure is described in detail in Appendix A, and is evaluated on the tasks we con-
sider in Fig 6. The perturbation controller ensures that the support of the training distribution grows,
and as a result the policies can learn the desired behavior much more effectively, as shown in Fig 7.

4.2 UNSUPERVISED REPRESENTATION LEARNING

The perturbation controller discussed above allows us to learn policies that can succeed at the task
from a variety of starting states. However, learning from visual observations still present a chal-
lenge. Our experiments in Fig 4 show that we learning without resets from low-dimensional state is
comparatively easier. We therefore aim to convert the vision-based learning problem into one that
more closely resembles state-based learning, by training a variational autoencoder and sharing the
latent-variable representation across the actor and critic networks. Refer to Appendix B for more
details.

While several prior works have also sought to incorporate unsupervised learning into reinforcement
learning to make learning from images easier (Nair et al., 2018; Lee et al., 2019), we note that this
becomes especially critical in the vision-based, reset-free setting, as motivated by the experiments
in Section 3, which indicate that it is precisely this combination of factors – vision and no resets –
that presents the most difficult learning problem. Therefore, although the particular solution we use
in our system has been studied in prior work, it is brought to bare to address a challenge that arises
in real-world learning that we believe has not been explored in prior studies.

These two improvements – the perturbation controller and joint training with an unsupervised learn-
ing loss, – combined with the general system described above, give us a complete practical system
for real world reinforcement learning, which we term R3L . The overall method uses soft-actor critic
for learning with visual observations and classifier based rewards with VICE, introduces auxiliary
reconstruction objectives for unsupervised representation learning, and uses a perturbation controller
during training to ensure that the learned policy can accomplish the task from a wide variety of states.
Further details on the full system can be found in Appendix A.

5 RELATED WORK

The primary contribution of this work is to propose a paradigm for continual instrumentation-free
real world robotic learning, and a practical instantiations of such a system. Several prior works
have applied policies learned with RL to particular tasks in the real world (Kalashnikov et al., 2018;
Gu et al., 2017; Zhu et al., 2019; Nagabandi et al., 2019; Haarnoja et al., 2018b). While many
of these algorithms simply train in simulation and transfer resulting policies to the real world, this
paradigm is prone to domain shift and extensive simulation efforts (Sadeghi & Levine; Tobin et al.,
2017; Andrychowicz et al., 2018). We instead focus on the paradigm of reinforcement learning
purely in the real world. While algorithms have shown that we can indeed perform RL in the real
world (Kalashnikov et al., 2018; Gu et al., 2017; Zhu et al., 2019; Nagabandi et al., 2019; Haarnoja
et al., 2018b; Kumar et al., 2016), these have been limited to highly instrumented laboratory set-
tings. They have carefully hand-designed reward assignment schemes (Levine & Koltun, 2013),
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reset mechanisms (Gu et al., 2017; Chebotar et al., 2017; Zhu et al., 2019). In contrast, we are
proposing to learn in environments with significantly less human instrumentation. This introduces a
unique set of challenges not considered carefully in prior works.

A key component of our system is learning from raw visual inputs. This has proven to be extremely
difficult for policy gradient style algorithms (Pinto et al., 2017a) due to challenging representation
learning problems. This has been made easier in simulated domains by using modified objectives
such as auxiliary losses (Jaderberg et al., 2016) or by using more efficient algorithms (Haarnoja
et al., 2018a). We show that reinforcement learning on raw visual input, while possible in standard
RL settings, becomes significantly more challenging when considered in conjunction with non-
episodic, reset-free scenarios.

Reward function design is crucial for any RL system, and is non-trivial to provide in the real world.
Prior works have considered instrumenting the environment with additional sensors to evaluate re-
wards (Gu et al., 2017; Chebotar et al., 2017; Zhu et al., 2019), which is a highly manual process,
using demonstrations, which require manual effort to collect (Vecerik et al., 2017; Ng & Russell,
2000; Liu et al., 2018), or using interactive supervision from a user (Christiano et al., 2017). In
this work, we leverage the algorithm introduced by Fu et al. (2018) to assign rewards based on the
likelihood of a goal classifier. While prior work also applied this method to robotic tasks (Singh
et al., 2019), this was done in a setting where manual resets were provided, while we demonstrate
that we can use learned rewards in a fully uninstrumented, reset-free setup.

Learning without resets has been considered in prior works (Eysenbach et al., 2018; Han et al.,
2015), although in different contexts – safe learning and learning compound controllers respectively.
Eysenbach et al. (2018) provide an algorithm to learn a reset controller with the goal of ensuring
safe operation, but makes several assumptions that make it difficult to use in the real world: it
assumes access to a ground truth reward function, it assumes access to an oracle function that can
detect if an attempted reset by the reset policy was successful or not, and it assumes the ability to
perform manual resets if the reset policy fails a certain number of times. In contrast, we propose
an algorithm that allows for fully automated reinforcement learning in the real world. We compare
to an ablation of our method that uses a reset controller similar to Eysenbach et al. (2018), and
show that our method performs substantially better. Our perturbation controller also resembles
the adversarial RL setup Pinto et al. (2017b); Sukhbaatar et al. (2018). However, while these prior
methods explicitly aim to train policies that are robust to perturbations Pinto et al. (2017b) or explore
effectively Sukhbaatar et al. (2018), we are concerned with learning without access to resets.

6 EXPERIMENTS

In our experimental evaluation, we study how well the R3L system, described in Sections 2 and 4,
can learn under realistic settings – visual observations, no hand-specified rewards, and no resets. We
consider the following hypotheses:

1. Can we use R3L to learn complex robotic manipulation tasks without instrumentation?
Does this system learn skills in both simulation and the real world?

2. Do the solutions proposed in Section 4 actually enable R3L to perform tasks without in-
strumentation that would not have been otherwise possible?

6.1 EXPERIMENTAL SETUP

We consider the task of dexterous manipulation with a three fingered robotic hand, called the
D’Claw (Zhu et al., 2019; Ahn et al., 2019), on a number of simulated and real world environments.
These tasks involve complex coordination of three fingers with 3 DoF each in order to manipulate
objects. Prior works that used this robot utilized explicit resets and low-dimensional true state ob-
servations, while we consider settings with visual observations, no hand-specified rewards, and no
resets.

The tasks in our experiments are shown in Fig 6: manipulating beads on an abacus row, valve
rotation, and free object repositioning. These tasks represent a wide class of problems that robots
might encounter in the real world. For each task, we consider the problem of reaching a particular
goal configuration: moving the abacus beads to a particular position, rotating the valve to a particular
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Figure 6: Visualizations of the simulated and real world tasks being considered. From left to right we depict
valve rotation, bead manipulation and free object repositioning in simulation, as well as valve rotation and bead
manipulation manipulation in the real world. Additional task details are in Appendix C.

angle, and repositioning the free object to a particular goal position. We measure success on these
tasks by a hand-defined metric in simulation. The specific architecture of the function approximators
and hyperparameters are provided in Appendix B. Videos and additional details can be found at
https://sites.google.com/view/realworld-rl/

6.2 LEARNING IN SIMULATION WITHOUT INSTRUMENTATION

We compare our entire proposed system implementation (Section 4) with a number of baselines
and ablations. Importantly, all methods must operate under the same assumptions: no system in-
strumentation for state estimation, reward specification, or episodic resets. Firstly, we compare the
performance of R3L to a system which uses SAC for vision-based RL from raw pixels, VICE for
providing rewards and running reset-free. This corresponds to the vanilla version of R3L (Sec-
tion 2), with none of the proposed insights and changes. We then compare with prior reset-free RL
algorithms (Eysenbach et al., 2018). Lastly, we can compare algorithm performance with two clear
ablations - running R3L without the perturbation controller and without the unsupervised learning
learning respectively. This highlights the significance of all the components of R3L .

Figure 7: We show evaluation performance across bead manipulation, free object repositioning, and valve
rotation (left to right). While training a reset controller is sufficient to get good evaluation performance on eas-
ier tasks, harder tasks like object repositioning require random perturbations and unsupervised representation
learning to learn skills reset-free.

From the experimental results in Fig 7, it is clear that R3L is able to reach the best performance
across tasks, while none of the other methods are able to solve all of the tasks. Different prior meth-
ods and ablations fail for different reasons: (1) all methods without the perturbation controller are
ineffective at learning how to reach the goal from novel initialization positions for the more chal-
lenging object repositioning tasks, as discussed in Section 4; (2) methods without the reconstruction
objective struggle at parsing the high-dimensional input and are unable to solve the harder task.

6.3 LEARNING IN THE REAL WORLD WITHOUT INSTRUMENTATION

Since the aim of R3L is to enable uninstrumented training in the real world, we next evaluate our
method on a real-world robotic system, providing evidence that our insights generalize to the real
world without any instrumentation. Since the learning process is uninstrumented, we simply leave
the robot running undisturbed with a set of goal images provided and the algorithm learns the de-
sired behavior through interaction. We see from Fig 8 that our system can learn the valve rotation
and the bead manipulation tasks within 7 and 17 hours, respectively. Since there is no instrumen-
tation, we do not have the means to provide a learning curve in the real world against any ground
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truth reward metric; for this section, we must inspect the final policy performance after training to
ascertain success. See Appendix C for more information on training and testing procedures, and the
supplementary website for videos.

Figure 8: Evaluation rollouts of R3L on the real world tasks, for policies trained without instrumentation.
The top two rows depict successful evaluation rollouts of the bead manipulation task from two distinct initial
configurations. The bottom two rows depict successful rollouts of the valve rotation task. For more details on
the tasks and objectives, refer to Appendix C.

7 CONCLUSION

We presented the design and instantiation of R3L , a system for real world reinforcement learning.
We identify and investigate the various ingredients required for such a system to scale gracefully
with minimal human engineering and supervision. We show that this system must be able to learn
from raw sensory observations, learn from very easily specified reward functions without reward
engineering, and learn without any episodic resets. We describe the basic elements that are required
to construct such a system, and identify unexpected learning challenges that arise from interplay
of these elements. We propose simple and scalable fixes to these challenges through introducing
unsupervised representation learning and a randomized perturbation controller. We show the effec-
tiveness on such a system at learning without instrumentation in several simulated and real world
environments.

The ability to train robots directly in the real world with minimal instrumentation opens a number
of exciting avenues for future research. Robots that can learn unattended, without resets or hand-
designed reward functions, can in principle collect very large amounts of experience autonomously,
which may enable very broad generalization in the future. Furthermore, fully autonomous learning
should make it possible for robots to acquire large behavioral repertoires, since each additional task
requires only the initial examples needed to learn the reward. However, there are also a number
of additional challenges, including sample complexity, optimization and exploration difficulties on
more complex tasks, safe operation, communication latency, sensing and actuation noise, and so
forth, all of which would need to be addressed in future work in order to enable truly scalable real-
world robotic learning.
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A ALGORITHM DETAILS

Algorithm 1 Real-World Robotic Reinforcement Learning (R3L)
1: procedure R3L
2: N ← number of training epochs
3: H ← trajectory length (horizon)
4: nVICE ← number of VICE classifier training iterations per epoch
5: Initialize forward and perturbing policies π0, π1
6: Obtain goal states sEi and initialize as a goal pool G
7: Initialize RND target and predictor networks f(s), f̂(s)
8: Initialize VICE reward classifier rVICE(s)
9: Initialize replay buffer D

10: Collect initial exploration data and add to D
11: for i = 1 to N do
12: k ← i % 2
13: for t = 1 to H do
14: Sample at ∼ πk(st)
15: Sample st+1 ∼ p(st+1|st, at)
16: if k == 0 then
17: rt(st) = cVICE ∗ rVICE(st) + cRND ∗ rRND(st)
18: else if k == 1 then
19: rt(st) = rRND(st)
20: end if
21: Sample batch from D
22: Update πk with batch according to SAC (Haarnoja et al., 2018b)
23: Update RND predictor network with batch
24: Update running estimate of classifier and RND reward standard deviations
25:
26: end for
27: Add experience to the replay buffer with D ← D ∪ τi
28: Sample an equal number of goal examples from G and negative examples from D
29: for t = 1 to nVICE do
30: Train the VICE classifier on this batch with binary labels
31: end for
32: end for
33: end procedure
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B TRAINING DETAILS

B.0.1 HYPERPARAMETERS

General
Standard deviation
update coefficient

0.99

Image Sizes (32, 32, 3)
SAC
Learning Rate 3e-4
γ 0.99
Batch Size 256
Convnet Filters (16, 32, 64)
Stride 2
Kernel Sizes (3, 3)
Pooling None
FC Layers (512, 512)
VICE
nVICE 5
Batch Size 128
Learning Rate 1e-4
Mixup α Uniform(0, 1)
Convnet Filters (64, 64, 64)
Stride 2
Kernel Sizes (3, 3)
Pooling None
FC Layers (512, 512)
RND
Learning Rate 3e-4
Batch Size 256
Convnet Filters (16, 32, 64)
Stride 2
Kernel Sizes (3, 3)
Pooling None
FC Layers (512, 512)
VAE
Learning Rate 1e-4
Batch Size 256
Encoder (Convnet) (64, 64, 32)
Latent Dimension 16/32
β 0.5
Stride 2
Kernel Sizes (3, 3)
Pooling None

B.0.2 VICE

We use a variant of VICE which defines the reward as the logits of the classifier, notably omitting
the−log(π(a|s)) term. We also regularize our classifier with mixup ((Zhang et al., 2018)). We train
all of our experiments using 200 goal images, which takes under an hour to collect in the real world
for each task.

B.0.3 RANDOM NETWORK DISTILLATION (RND)

We found it important to normalize the predictor errors, just as (Burda et al., 2018) did.
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B.0.4 VAE

We train a standard beta-VAE to maximize the evidence lower bound, given by:

Ez∼qφ(z|x)pθ(x|z) + βDKL(qφ(z|x)||pθ(z))

To collect training data, we sampled random states in the observation space. In the real world,
this sampling can be replaced with training an exploratory policy (i.e. using the RND reward as
the policy’s only objective). The features from the encoder of this VAE are frozen and input as
representation into the policy for reset-free RL.

C TASK DETAILS

C.1 SIMULATED TASKS

We evaluated our system across three tasks in simulation: valve rotation, free object repositioning,
and bead manipulation.

C.1.1 VALVE ROTATION

The claw is positioned above a three pronged valve (15 cm in diameter). The objective is to turn the
valve to a given orientation from any initial orientation. The ”true reward” is r = − log(|θstate −
θgoal|).

C.1.2 FREE OBJECT REPOSITIONING

The claw is positioned atop a free object, in our case a three pronged object (15cm in diameter),
which can translate and rotate within a 30cmx30cm box. The goal is specified by a xy-position
as well as a z-angle, where the xy-plane is the plane of the arena. The true reward is defined
as the weighted sum of the angular and translational distances, r = −2 log(||[xstate, ystate] −
[xgoal, ygoal]||2) − log(|θstate − θgoal|). In our single goal experiments, (x, y, θ)goal) = (0, 0, π),
where the origin is centered in the arena. In our two goal experiments: (x, y, θ)goal,1 =
(0, 0, π2 ), (x, y, θ)goal,2 = (0, 0,−π2 ).

C.1.3 BEAD MANIPULATION

The bead manipulation task involves an abacus rod with four beads that can slide freely. The goal is
to position two beads on each end from any initial configuration of beads. This can take the form of
sliding one bead over (if three beads start on one side), two beads over (if all four beads start on one
side), splitting beads apart (all four beads start in the middle), or some intermediate combination of
those. The true reward is defined as the mean goal distance of all four beads.

C.2 REAL WORLD TASKS

For each setup we use an rgb camera to get images. We execute actions on the DClaw at 10Hz.
In order to operate at such a high frequency while also training from images we sample and train
asynchronously, but limit training to not exceed two gradient steps per transition sampled in the
real world. Since direct performance metrics cannot be measured during training due to the lack of
object instrumentation, evaluations of performance are done post-training.

C.2.1 VALVE ROTATION

The task is identical to the one in simulation. Evaluations were done post-training. An evaluation
trajectory was defined as a success if at the last step, the valve was within 10 degrees of the goal.
Performance was evaluated at 7 hours, by starting the valve at increments of 45 degrees. Over 8
evaluation rollouts, the policy achieved 100% success (a random policy achieved a success rate of
12.5%).
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C.2.2 BEAD MANIPULATION

The rod is 22cm in length, and each bead measures 3.5cm in diameter. Evaluations were done
post-training, by randomly sampling initial configurations and manually resetting the beads to those
configurations. An evaluation trajectory was defined as a success if at the last step, all beads were
within 2cm of their goal positions. To evaluate performance, 10 random configurations were sam-
pled uniformly at random within the space of initial states The environment was manually reset to
those configurations at the start of each evaluation rollout. Performance was evaluated at 17 hours,
at which point the policy achieved greater than 80% success on the 10 evaluation rollouts (a random
policy achieved a success rate of 10%).
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