
Under review as a conference paper at ICLR 2020

LIPSCHITZ CONSTANT ESTIMATION FOR NEURAL NET-
WORKS VIA SPARSE POLYNOMIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce LiPopt, a polynomial optimization framework for computing in-
creasingly tighter upper bounds on the Lipschitz constant of neural networks. The
underlying optimization problems boil down to either linear (LP) or semidefinite
(SDP) programming. We show how to use structural properties of the network,
such as sparsity, to significantly reduce the complexity of computation. This is
specially useful for convolutional as well as pruned neural networks. We con-
duct experiments on networks with random weights as well as networks trained
on MNIST, showing that in the particular case of the `∞-Lipschitz constant, our
approach yields superior estimates as compared to other baselines available in the
literature.

1 INTRODUCTION

We consider a neural network fd defined by the recursion:

f1(x) :=W1x fi(x) :=Wiσ(fi−1(x)), i = 2, . . . , d (1)

for an integer d larger than 1, matrices {Wi}di=1 of appropriate dimensions and an activation function
σ, understood to be applied element-wise. We refer to d as the depth, and we we focus on the case
where fd has a single real value as output.

In this work, we address the problem of estimating the Lipschitz constant of the network fd. A
function f is Lipschitz continuous with respect to a norm ‖·‖ if there exists a constant L such that
for all x, y we have |f(x) − f(y)| ≤ L‖x − y‖. The minimum over all such values satisfying this
condition is called the Lipschitz constant of f and is denoted by L(f).

The Lipschitz constant of a neural network is of major importance in many successful applications
of deep learning. In the context of supervised learning, Bartlett et al. (2017) show how it directly
correlates with the generalization ability of neural network classifiers, suggesting it as model com-
plexity measure. It also provides a measure of robustness against adversarial perturbations (Szegedy
et al., 2014) and can be used to improve such metric (Cisse et al., 2017). Moreover, an upper bound
on L(fd) provides a certificate of robust classification around data points (Weng et al., 2018).

Another example is the discriminator network of the Wasserstein GAN (Arjovsky et al., 2017),
whose Lipschitz constant is constrained to be at most 1. To handle this constraint, researchers have
proposed different methods like heuristic penalties (Gulrajani et al., 2017), upper bounds (Miyato
et al., 2018), choice of activation function (Anil et al., 2019), among many others. This line of work
has shown that accurate estimation of such constant is key to generating high quality images.

Lower bounds or heuristic estimates of L(fd) can be used to provide a general sense of how robust a
network is, but fail to provide true certificates of robustness to input perturbations. Such certificates
require true upper bounds, and are paramount when deploying safety-critical deep reinforcement
learning applications (Berkenkamp et al., 2017; Jin & Lavaei, 2018). The trivial upper bound given
by the product of layer-wise Lipschitz constants is easy to compute but rather loose and overly
pessimistic, providing poor insight into the true robustness of a network (Huster et al., 2018).

Indeed, there is a growing need for methods that provide tighter upper bounds on L(fd), even at the
expense of increased complexity. For example Raghunathan et al. (2018a); Jin & Lavaei (2018); Fa-
zlyab et al. (2019) derive upper bounds based on semidefinite programming (SDP). While expensive

1

Under review as a conference paper at ICLR 2020

to compute, these type of certificates are in practice surprisingly tight. Our work belongs in this vein
of research, and aims to overcome some limitations in the current state-of-the-art.

Our Contributions.

. We present LiPopt, a general approach for upper bounding the Lipschitz constant of a neu-
ral network based on a relaxation to a polynomial optimization problem (POP) (Lasserre,
2015). This approach requires only that the unit ball be described with polynomial inequal-
ities, which covers the common `2- and `∞-norms.

. Based on a theorem due to Weisser et al. (2018), we exploit the sparse connectivity of
neural network architectures to derive a sequence of linear programs (LPs) of considerably
smaller size than their vanilla counterparts. We provide an asymptotic analysis of the size
of such programs, in terms of the number of neurons, depth and sparsity of the network.

. Focusing on the `∞-norm, we experiment on networks with random weights and networks
trained on MNIST (Lecun et al., 1998). We evaluate different configurations of depth,
width and sparsity and we show that the proposed sequence of LPs can provide tighter
upper bounds on L(fd) compared to other baselines available in the literature.

Notation. We denote by ni the number of columns of the matrix Wi in the definition (1) of the
network. This corresponds to the size of the i-th layer, where we identify the input as the first layer.
We let n = n1 + . . . + nd be the total number of neurons in the network. For a vector x, Diag(x)
denotes the square matrix with x in its diagonal and zeros everywhere else. For an array X , vec(X)
is the flattened array. The support of a sequence supp(α) is defined as the set of indices j such that
αj is nonzero. For x = [x1, . . . , xn] and a sequence of nonnegative integers γ = [γ1, . . . , γn] we
denote by xγ the monomial xγ11 x

γ2
2 . . . xγnn . The set of nonnegative integers is denoted by N.

Remark. The definition of network (1) covers typical architectures composed of dense and convo-
lutional layers. In general, our proposed approach can be readily extended with minor modifications
to any directed acyclic computation graph e.g., residual network architectures (He et al., 2016).

Structure of the paper. Section 2 describes an upper bound on L(fd) as a POP. Section 3 presents
the general approach of LiPopt, and a particular instance providing a hierarchy of LPs solving
the POP to arbitrary accuracy. Section 4 describes how to exploit the sparsity of the network to
obtain smaller LPs, and contains the schematics of LiPopt (1). Section 5 describes a solution via
a quadratically constrained quadratic program (QCQP) reformulation. In Section 6 we discuss
related work. Section 7 presents numerical experiments comparing the proposed approach with
state-of-the-art baselines. Finally, Section 8 presents some conclusions and possible future directions
of research.

2 POLYNOMIAL OPTIMIZATION FORMULATION

In this section we derive an upper bound on L(fd) given by the value of a POP, i.e. the minimum
value of a polynomial subject to polynomial inequalities. Our starting point is the following theorem,
which casts L(f) as an optimization problem:
Theorem 1. Let f be a differentiable and Lipschitz continuous function on an open, convex subset
X of an euclidean space. Let ‖·‖∗ be the dual norm. The Lipschitz constant of f is given by

L(f) = sup
x∈X
‖∇f(x)‖∗ (2)

For completeness we provide a proof in appendix A. In our setting, we assume that the activation
function σ is Lipschitz continuous and differentiable. In this case, the assumptions of Theorem 1 are
fulfilled because fd is a composition of activations and linear transformations. The differentiability
assumption rules out the common ReLU activation σ(x) = max{0, x} but allows many others such
as the exponential linear unit (ELU) (Clevert et al., 2015) or the softplus.

Using the chain rule, the compositional structure of fd yields the following formula for its gradient:

∇fd(x) =WT
1

d−1∏
i=1

Diag(σ′(fi(x)))W
T
i+1 (3)

2

Under review as a conference paper at ICLR 2020

For every i = 1, . . . , d− 1 introduce a new variable si = σ′(fi(x)) corresponding to the derivative
of σ at the i-th hidden layer of the network. For common activation functions like ELU or softplus,
their derivative is globally bounded between 0 and 1, which implies the inequalities 0 ≤ si ≤ 1.
This bound together with the definition of the dual norm ‖x‖∗ := sup‖t‖≤1 t

Tx implies that we can
upper bound L(fd) as follows:

L(fd) ≤ max

{
tTWT

1

d−1∏
i=1

Diag(si)W
T
i+1 : 0 ≤ si ≤ 1, ‖t‖ ≤ 1

}
(4)

We will refer to the polynomial objective of this problem as the norm-gradient polynomial of the
network fd, a central object of study in this work.

For some frequently used `p-norms the constraint ‖t‖p ≤ 1 can be written with polynomial inequal-
ities. In the rest of this work, we use exclusively the `∞-norm for which ‖t‖∞ ≤ 1 is equivalent
to the polynomial inequalities −1 ≤ ti ≤ 1, for i = 1, . . . , n1. However, note that when p ≥ 2 is
a positive even integer, ‖t‖p ≤ 1 is equivalent to a single polynomial inequality ‖t‖pp ≤ 1, and our
proposed approach can be adapted with minimal modifications.

In such cases, the optimization problem in the right-hand side of (4) is a POP. Optimization of
polynomials is a NP-hard problem and we do not expect to have efficient algorithms for solving (4)
in this general form. In the next sections we describe LiPopt: a systematic way of obtaining an
upper bound on L(fd) via tractable approximation methods of the POP (4).

Local estimation. In many practical escenarios we have additional bounds on the input of the net-
work. For example in the case of image classification tasks, valid input is constrained in a hypercube.
In the robustness certification task, we are interested in all possible input in a ε-ball around some
data point. In those cases, it is interesting to compute a local Lipschitz constant, that is, the Lipschitz
constant of a function restricted to a subset.

We can achieve this by deriving tighter bounds 0 ≤ li ≤ si ≤ ui ≤ 1, as a consequence of the
restricted input (see for example, Algorithm 1 in Wong & Kolter (2018)). By incorporating this
knowledge in the optimization problem (4) we obtain bounds on local Lipschitz constants of fd.

Choice of norm. We highlight the importance of computing good upper bounds on L(fd) with
respect to the `∞-norm. It is one of the most commonly used norms to assess robustness in the
adversarial examples literature. Moreover, it has been shown that in practice `∞-norm robust net-
works are also robust in other more plausible measures of perceptibility like the Wasserstein distance
(Wong et al., 2019). This motivates our focus on this choice.

3 HIERARCHICAL SOLUTION BASED ON A POLYNOMIAL POSITIVITY
CERTIFICATE

For ease of exposition, we rewrite (4) as a POP constrained in the hypercube [0, 1]n using the sub-
stitution s0 := (t+ 1)/2. Denote by p the norm-gradient polynomial, and let x = [s0, . . . , sd−1] be
the concatenation of all variables. Polynomial optimization methods (Lasserre, 2015) start from the
simple observation that a value λ is an upper bound for p over a set K if and only if the polynomial
λ− p is positive over K.

In LiPopt we will employ the so-called Krivine’s positivity certificate1 (Krivine, 1964; Stengle,
1974; Handelman, 1988), but in theory we could use any polynomial positivity certificate like sum-
of-squares (SOS). The following is a straightforward adaptation of Krivine’s certificate to our par-
ticular setting:

Theorem 2. If the polynomial λ − p is strictly positive on [0, 1]n, then there exist finitely many
positive weights cαβ such that

λ− p =
∑

(α,β)∈N2n

cαβhαβ , hαβ(x) :=

n∏
j=1

x
αj

j (1− xj)βj (5)

1also known as Krivine’s Positivstellensatz

3

Under review as a conference paper at ICLR 2020

By truncating the degree of Krivine’s positivity certificate (Theorem 2) and minimizing over all
possible upper bounds λ we obtain a hierarchy of LP problems (Lasserre, 2015, Section 9):

θk := min
c≥0,λ

λ : λ− p =
∑

(α,β)∈N2n
k

cαβhαβ

 (6)

where N2n
k is the set of nonnegative integer sequences of length 2n adding up to at most k. This

is indeed a sequence of LPs as the polynomial equality constraint can be implemented by equating
coefficients in the canonical monomial basis. For this polynomial equality to be feasible, the degree
of the certificate has to be at least that of the norm-gradient polynomial p, which is equal to the depth
d. This implies that the first nontrivial bound (θk <∞) corresponds to k = d.

The sequence {θk}∞k=1 is non-incresing and converges to the maximum of the upper bound (4).
Note however that for any level of the hierarchy, the solution of the LP (6) still provides a valid
upper bound on L(fd).

An advantage of using the Krivine’s positivity certificate over SOS is that one obtains an LP hier-
archy (rather than SDP), for which state-of-the-art commercial solvers can reliably handle a large
number of variables and constraints. Other positivity certificates that offer a similar advantage are
the DSOS and SDSOS hierarchies (Ahmadi & Majumdar, 2019), which boil down to LP or second
order cone programming (SOCP), respectively.

Drawback. The size of the LPs given by Krivine’s positivity certificate can become quite large. The
dimension of the variable c is |N2n

k | = O(nk). For reference, if we consider the MNIST dataset and
a one-hidden-layer network with 100 neurons we have

∣∣N2n
2

∣∣ ≈ 1.5× 106 while
∣∣N2n

3

∣∣ ≈ 9.3× 108.
In order to make this approach more scalable, in the next section we exploit the structure and sparsity
of the polynomial p to find LPs of drastically smaller size than (6), but with similar approximation
properties.

Remark. In order to compute upper bounds for local Lipschitz constants, first obtain tighter bounds
0 ≤ li ≤ si ≤ ui and then perform the change of variables s̃i = (si − li)/(ui − li) to rewrite the
problem (4) as a POP constrained on [0, 1]n.

4 REDUCING THE NUMBER OF VARIABLES

Many neural network architectures, like those composed of convolutional layers, have a highly
sparse connectivity between neurons. Moreover, it has been empirically observed that up to 90% of
network weights can be pruned (set to zero) without harming accuracy (Frankle & Carbin, 2019). In
such cases their norm-gradient polynomial has a special structure that allows polynomial positivity
certificates of smaller size than the one given by Krivine’s positivity certificate (Theorem 2).

In this section we describe an implementation of LiPopt (Algorithm 1). It exploits the sparsity of
the network to decrease the complexity of the LPs (6) given by the Krivine’s positivity certificate. In
this way we obtain upper bounds on L(fd) that require less computation and memory. Let us start
with the definition of a valid sparsity pattern:

Definition 1. Let I = {1, . . . , n} and p be a polynomial with variable x ∈ Rn. A valid sparsity
pattern of p is a sequence {Ii}mi=1 of subsets of I , called cliques, such that

.
⋃m
i=1 Ii = I

. p =
∑m
i=1 pi where pi is a polynomial that depends only on the variables {xj : j ∈ Ii}

. for all i = 1, . . . ,m− 1 there is an l ≤ i such that (Ii+1 ∩
⋃i
r=1 Ir) ⊆ Il

When the polynomial objective p in a POP has a valid sparsity pattern, there is an extension of
Theorem 2 providing a smaller positivity certificate for λ − p over [0, 1]n. We refer to it as the
sparse Krivine’s certificate.

Theorem 3 (Adapted from Weisser et al. (2018)). Let a polynomial p have a valid sparsity pattern
{Ii}mi=1. Define Ni as the set of sequences (α, β) ∈ N2n where the support of both α and β is

4

Under review as a conference paper at ICLR 2020

Figure 1: Sparsity pattern of Proposition 1 for
a network of depth three.

Figure 2: Structure of one set in the sparsity
pattern from Proposition 1 for a network with
2D convolutional layers with 3× 3 filters.

contained in Ii. If λ − p is strictly positive over K = [0, 1]n, there exist finitely many positive
weights cαβ such that

λ− p =
m∑
i=1

hi, hi =
∑

(α,β)∈Ni

cαβhαβ (7)

where the polynomials hαβ are defined as in (5).

The sparse Krivine’s certificate can be used like the general version (Theorem 2) to derive a sequence
of LPs approximating the upper bound on L(fd) stated in (4). However, the number of different
polynomials hαβ of degree at most k appearing in the sparse certificate can be drastically smaller,
the amount of which determines how good the sparsity pattern is.

We introduce a graph that depends on the network fd, from which we will extract a sparsity pattern
for the norm-gradient polynomial of a network.
Definition 2. Let fd be a network with weights {Wi}di=1. Define a directed graph Gd = (V,E) as:

V = {si,j : 0 ≤ i ≤ d− 1, 1 ≤ j ≤ ni}
E = {(si,j , si+1,k) : 0 ≤ i ≤ d− 2, [Wi]k,j 6= 0} (8)

which we call the computational graph of the network fd.

In the graph Gd the vertex s(i,j) represents the j-th neuron in the i-th layer. There is a directed edge
between two neurons in consecutive layers if they are joined by a nonzero weight in the network.
The following result shows that for fully connected networks we can extract a valid sparsity pattern
from this graph. We relegate the proof to appendix B.
Proposition 1. Let fd be a dense network (all weights are nonzero). The following sets, indexed by
i = 1, . . . , nd, form a valid sparsity pattern for the norm-gradient polynomial of the network fd:

Ii :=
{
s(d−1,i)} ∪ {s(j,k) : there exists a directed path from s(j,k) to s(d−1,i) in Gd

}
(9)

We refer to this as the sparsity pattern induced by Gd. An example is depicted in in Figure 1.

Remark. When the network is not dense, the the third condition (Definition 1) for the sparsity
pattern (9) to be valid might not hold. In that case we lose the guarantee that the values of the
corresponding LPs converge to the maximum of the POP (4). Nevertheless, it still provides a valid
positivity certificate that we can use to upper bound L(fd). In Section 7 we show that in practice it
provides upper bounds of good enough quality. If needed, a valid sparsity pattern can be obtained
via a chordal completion of the correlative sparsity graph of the norm-gradient polynomial (Waki
et al., 2006).

We now quantify how good this sparsity pattern is. Let s be the size of the largest clique in a sparsity
pattern, and let Ni,k be the subset of Ni (defined in Theorem 3) composed of sequences summing
up to k. The number of different polynomials for the k-th LP in the hierarchy given by the sparse
Krivine’s certificate can be bounded as follows:∣∣∣∣∣

m⋃
i=1

Ni,k

∣∣∣∣∣ ≤
m∑
i=1

(
2|Ii|+ k

k

)
= O

(
msk

)
(10)

5

Under review as a conference paper at ICLR 2020

We immediately see that the dependence on the number of cliques m is really mild (linear) but the
size of the cliques as well as the degree of the hierarchy can really impact the size of the optimization
problem. Nevertheless, this upper bound can be quite loose; polynomials hαβ that depend only on
variables in the intersection of two or more cliques are counted more than once.

The number of cliques given in the sparsity pattern induced by Gd is equal to the size of the last
layer m = nd and the size of each clique depends on the particular implementation of the net-
work. We now study different architectures that could arise in practice, and determine the amount
of polynomials in their sparse Krivine’s certificate.

Fully connected networks. Even in the case of a network with all nonzero connections, the sparsity
pattern induced by Gd decreases the size of the LPs when compared to Krivine’s certificate. In this
case the cliques have size n1+ . . .+nd−1+1 but they all have the same common intersection equal
to all neurons up to the second-to-last hidden layer. A straightforward counting argument shows that
the total number of polynomials isO(n(n1+ . . .+nd−1+1)k−1), improving the upper bound (10).

Unstructured sparsity. In the case of networks obtained by pruning (Hanson & Pratt, 1989) or
generated randomly from a distribution over graphs (Xie et al., 2019), the sparsity pattern can be
highly irregular. In this case the size of the resulting LPs varies at runtime. Under the layer-wise
assumption that any neuron is connected to at most r neurons in the previous layer, the size of
the cliques in (9) is bounded as s = O(rd). This estimate has an exponential dependency on the
depth but completely ignores that many neurons might share connections to the same inputs in the
previous layer, thus being potentially loose. Using the bound (10) we get that the number of different
polynomials is O(ndrdk).
2D Convolutional networks. The sparsity in the weight matrices of convolutional layers has a
certain local structure; neurons are connected to contiguous inputs in the previous layer. Adjacent
neurons also have many input pixels in common (see Figure 2). Assuming a constant number of
channels per layer, the size of the cliques in (9) isO(d3). Intuitively, such number is proportional to
the volume of the pyramid depicted in Figure 2 where each dimension depends linearly on d. Using
(10) we get that there are O(ndd3k) different polynomials in the sparse Krivine’s certificate. This is
a drastic decrease in complexity when compared to the unstructured sparsity case.

Algorithm 1 LiPopt for ELU activations and sparsity pattern
Input: matrices {Wi}di=1, sparsity pattern {Ii}mi=1, hierarchy degree k.

1: p← (2s0 − 1)TWT
1

∏d−1
i=1 Diag(si)W

T
i+1 . compute norm-gradient polynomial

2: x← [s0, . . . , sd−1]
3: b← [bγ : γ ∈ Nnk] where p(x) =

∑
γ∈Nn

k
bγx

γ . compute coefficients of p in basis
4: for i = 1, . . . ,m do
5: Ni,k ← {(α, β) ∈ N2n

k : supp(α) ∩ supp(β) ⊆ Ii}
6: Ñk ← ∪mi=1Ni,k
7: h←

∑
(α,β)∈Ñ cαβhαβ . compute positivity certificate

8: c← [cαβ : (α, β) ∈ Ñk]; y ← [λ, c] . linear program variables
9: Z ← [zγ]γ∈Nn

k
where λ− h(x) =

∑
γ∈Nn

k
(zTγ y)x

γ . compute coefficients of λ− h in basis
return min{λ : b = Zy, y = [λ, c], c ≥ 0} . solve LP

5 QCQP REFORMULATION AND SHOR’S SDP RELAXATION

Another way of upper boundingL(fd) comes from a further relaxation of (4) to an SDP. We consider
the following equivalent formulation where the variables si are normalized to lie in the interval
[−1, 1], and we rename t = s0:

L(fd) ≤ max

{
1

2d−1
sT0W

T
1

d−1∏
i=1

Diag(si + 1)WT
i+1 : −1 ≤ si ≤ 1

}
(11)

Any polynomial optimization problem like (11) can be cast as a (possibly non-convex) quadratically
constrained quadratic program (QCQP) by introducing new variables and quadratic constraints.

6

Under review as a conference paper at ICLR 2020

This is a well-known procedure described in Park & Boyd (2017, Section 2.1). Note that when
d = 2 problem (11) is already a QCQP (for the `∞ and `2-norm cases) and no modification is
necessary.

QCQP reformulation. We illustrate the case d = 3 where we have the variables s1, s2 corre-
sponding to the first and second hidden layer and a variable s0 corresponding to the input. The
norm-gradient polynomial in this case is cubic, and it can be rewritten as a quadratic polynomial by
introducing new variables corresponding to the product of the first and second hidden layer variables.

More precisely the introduction of a variable s1,2 with quadratic constraint s1,2 = vec(s1s
T
2) allows

us to write the objective (11) as a quadratic polynomial. The problem then becomes a QCQP with
variable y = [1, s0, s1, s2, s1,2] of dimension 1 + n+ n1n2.

SDP relaxation. Any quadratic objective and constraints can then be relaxed to linear constraints
on the positive semidefinite variable yyT = X < 0 yielding the so-called Shor’s relaxation of (11)
(Park & Boyd, 2017, Section 3.3). When d = 2 the resulting SDP corresponds precisely to the one
studied in Raghunathan et al. (2018a). This resolves a common misconception (Raghunathan et al.,
2018b) that this approach is only limited to networks with one hidden layer.

Note that in our setting we are only interested in the optimal value rather than the optimizers, so
there is no need to extract a solution for (11) from that of the SDP relaxation.

Drawback. This approach includes a further relaxation step from (11), thus being fundamentally
limited in how tightly it can upper bound the value of L(fd). Moreover when compared to LP
solvers, off-the-shelf semidefinite programming solvers are, in general, much more limited in the
number of variables they can efficiently handle.

Nevertheless, we remark that in the case d = 2 this relaxation provides a constant factor approxima-
tion to the original QCQP (Ye, 1999). The approximation qualities of such hierarchical optimization
approaches to NP-hard problems are a big topic of research in theoretical computer science and are
out of the scope of this work.

Relation to sum-of-squares. On the surface, this approach might appear fundamentaly different to
the hierarchical optimization approaches to POPs, like the one described in Section 3. However, it
is known that Shor’s SDP relaxation corresponds exactly to the first degree of the SOS hierarchical
SDP solution to the QCQP relaxation (Lasserre, 2000). Thus, the solution described in section 3
and the one in this section are, in essence, the same; they only differ in the choice of polynomial
positivity certificate.

6 RELATED WORK

Estimation of L(fd) with `2-norm is studied by Virmaux & Scaman (2018); Combettes & Pesquet
(2019); Fazlyab et al. (2019); Jin & Lavaei (2018). The method SeqLip proposed in Virmaux
& Scaman (2018) has the drawback of not providing true upper bounds. It is in fact a heuristic
method for solving (4) but which provides no guarantees and thus can not be used for robustness
certification. In contrast the LipSDP method of Jin & Lavaei (2018); Fazlyab et al. (2019) provides
true upper bounds on L(fd) and in practice shows superior performance over both SeqLip and
CPLip (Combettes & Pesquet, 2019).

Despite the accurate estimation of LipSDP, its formulation is limited to the `2-norm. The only
estimate available for other `p-norms comes from the equivalence of norms in euclidean spaces. For
instance, we can obtain an upper bound for the `∞-norm after multiplying the `2 Lipschitz constant
upper bound by the square root of the input dimension. The resulting bound can be rather loose
and our experiments in section 7 confirm the issue. In contrast, our proposed approach LiPopt can
acommodate any norm whose unit ball can be described via polynomial inequalities.

Let us point to one key advantage of LiPopt, compared to LipSDP (Jin & Lavaei, 2018; Fazlyab
et al., 2019). In the context of robustness certification we are given a sample x\ and a ball of radius
ε around it. Computing an upper bound on the local Lipschitz constant in this subset, rather than
a global one, can provide a larger region of certified robustness. Taking into account the restricted
domain we can refine the bounds in our POP (see remark in section 1). This potentially yields a
tighter estimate of the local Lipschitz constant. On the other hand, it is not clear how to include such

7

Under review as a conference paper at ICLR 2020

additional information in LipSDP, which only computes one global bound on the Lipschitz constant
for the unconstrained network.

Raghunathan et al. (2018a) find an upper bound for L(fd) with `∞ metric starting from problem
(4) but only in the context of one-hidden-layer networks (d = 2). To compute such bound they
use its corresponding Shor’s relaxation and obtain as a byproduct a differentiable regularizer for
training networks. They claim such approach is limited to the setting d = 2 but, as we remark in
section 5, it is just a particular instance of the SDP relaxation method for QCQPs arising from a
polynomial optimization problem. We find that this method fits into the LiPopt framework, using
SOS certificates instead of Krivine’s. We expect that the SDP-based bounds described in 5 can also
be used as regularizers promoting robustness.

Weng et al. (2018) provide an upper bound on the local Lipschitz constant for networks based on
a sequence of ad-hoc bounding arguments, which are particular to the choice of ReLU activation
function. In contrast, our approach applies in general to activations whose derivative is bounded.

7 EXPERIMENTS

We consider the following estimators of L(fd) with respect to the `∞ norm:

Name Description
SDP Upper bound arising from the solution of the SDP relaxation described in 5

LipOpt-k Upper bound arising from the k-th degree of the LP hierarchy (6) based on the
sparse Krivine Positivstellenstatz.

Lip-SDP Upper bound from Jin & Lavaei (2018); Fazlyab et al. (2019) multiplied
√
d

where d is the input dimension of the network.
UBP Upper bound determined by the product of the layer-wise Lipschitz constants

with `∞ metric
LBS Lower bound obtained by sampling 50000 random points and evaluating the

dual norm of the gradient

7.1 EXPERIMENTS ON RANDOM NETWORKS

We first compare the various bounds obtained by the algorithms described above on networks with
random weights. We use feedforward networks with either one or two hidden layers. In addition, we
define the sparsity level of a network as the maximum number of neurons any neuron in one layer
is connected to in the next layer. For example, the network represented on Figure 1 has sparsity 2.
The non-zero weights of network’s i-th layer are generated using the default pytorch initializations,
i.e., independently sampled from Unif(− 1√

ni
, 1√

ni
) where ni is the number of neurons in layer i.

We computed the Lipschitz bounds obtained by these different methods for various network sizes
and sparsities. For each configuration, we generated 10 different random networks on which to test
the various methods, and average the obtain Lipschitz bounds. Figures 3 and 4 show the results in
the case of 1 and 2 hidden layers respectively.

When the chosen degree for LiPopt-k is the smallest as possible, i.e., equal to the depth of the
network, we observe that the method is already competitive with the SDP method, especially in
the case of 2 hidden layers. Moreover, when incrementing the degree by 1, LiPopt-k becomes
uniformly better than SDP over all tested configurations.

Remark: The upper bounds given by UBP are much too large to be shown on the plots. Similarly,
for the 1-hidden layer networks, the bounds from LipSDP are also too large to be plotted.

7.2 EXPERIMENTS ON TRAINED NETWORKS

Similarly, we compare these methods on networks trained on MNIST. The architecture we use is a
fully connected network with two hidden layers with 300 and 100 neurons respectively, and with
one-hot output of size 10. Since the output is multi-dimensional, we restrict the network to a single
output, and estimate the Lipschitz constant with respect to label 8.

8

Under review as a conference paper at ICLR 2020

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.1

0.2

0.3

0.4

Lip
sc

hi
tz

 b
ou

nd

LiPopt_2
LiPopt_3
SDP
LBS

(a) 40× 40

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.05

0.10

0.15

0.20

Lip
sc

hi
tz

 b
ou

nd

(b) 80× 80

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.02

0.04

0.06

0.08

0.10

Lip
sc

hi
tz

 b
ou

nd

(c) 160× 160

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.01

0.02

0.03

0.04

0.05

0.06

Lip
sc

hi
tz

 b
ou

nd

(d) 320× 320

Figure 3: Lipschitz bound comparison for 1-hidden layer networks

4 6 8 10 12 14
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

Lip
sc

hi
tz

 b
ou

nd

LiPopt_3
LiPopt_4
SDP
LipSDP
LBS

(a) 5× 5× 10

4 6 8 10 12 14
Sparsity

0.2

0.4

0.6

0.8

1.0

Lip
sc

hi
tz

 b
ou

nd

(b) 10× 10× 10

4 6 8 10 12 14
Sparsity

0.2

0.4

0.6

Lip
sc

hi
tz

 b
ou

nd

(c) 20× 20× 10

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 b
ou

nd

(d) 40× 40× 10

Figure 4: Lipschitz bound comparison for 2-hidden layer networks

Moreover, in order to improve the scalability of our method, we train the network using the pruning
strategy described in Han et al. (2015). After training the full network using a standard technique,
the weights of smallest magnitude are set to zero. Then, the network is trained for additional itera-
tions, only updating the nonzero parameters. Doing so, we were able to remove 95% of the weights,
while preserving the same test accuracy. The code that we used for training is the one provided
in the paper Han et al. (2015) and can be found here: https://github.com/mightydeveloper/Deep-
Compression-PyTorch.

We recorded the Lipschitz bounds for various methods in Table 7.2. We observe clear improvement
of the Lipschitz bound obtained from LiPopt-k compared to SDP method, even when using k = 3.
Also note that the input dimension is too large for the method Lip-SDP to provide competitive
bound, so we do not provide the obtained bound for this method.

Algorithm LBS LiPopt-3 SDP UBP
Lipschitz bound 93.2 94.6 98.8 691.5

8 CONCLUSION AND FUTURE WORK

In this work, we have introduced a general approach for computing an upper bound on the Lipschitz
constant of neural networks. This approach is based on polynomial positivity certificates and gen-
eralizes some existing methods available in the literature. We have empirically demonstrated that
it can tightly upper bound such constant. The resulting optimization problems are computationally
expensive but the sparsity of the network can reduce this burden.

In order to further scale such methods to larger and deeper networks, we are interested in several
possible directions: (i) divide-and-conquer approaches splitting the computation on sub-networks in
the same spirit of Fazlyab et al. (2019), (ii) exploiting parallel optimization algorithms leveraging
the structure of the polynomials, (iii) custom optimization algorithms with low-memory costs such
as Frank-wolfe-type methods for SDP (Yurtsever et al., 2019) as well as stochastic handling of
constraints (Fercoq et al., 2019) and (iv), exploting the symmetries in the polynomial that arise from
weight sharing in typical network architectures to further reduce the size of the problems.

REFERENCES

A. Ahmadi and A. Majumdar. Dsos and sdsos optimization: More tractable alternatives to sum
of squares and semidefinite optimization. SIAM Journal on Applied Algebra and Geometry,
3(2):193–230, 2019. doi: 10.1137/18M118935X. URL https://doi.org/10.1137/
18M118935X.

9

https://doi.org/10.1137/18M118935X
https://doi.org/10.1137/18M118935X

Under review as a conference paper at ICLR 2020

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 291–301, Long Beach, California, USA, 09–15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/anil19a.html.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 214–223, International Convention Centre, Syd-
ney, Australia, 06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/
arjovsky17a.html.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems 30, pp.
6240–6249. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7204-spectrally-normalized-margin-bounds-for-neural-networks.
pdf.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.
Safe model-based reinforcement learning with stability guarantees. In Ad-
vances in Neural Information Processing Systems 30, pp. 908–918. Cur-
ran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6692-safe-model-based-reinforcement-learning-with-stability-guarantees.
pdf.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
854–863, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/cisse17a.html.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). arXiv e-prints, art. arXiv:1511.07289, Nov 2015.

Patrick L. Combettes and Jean-Christophe Pesquet. Lipschitz Certificates for Neural Network Struc-
tures Driven by Averaged Activation Operators. arXiv e-prints, art. arXiv:1903.01014, Mar 2019.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Effi-
cient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. arXiv e-prints,
art. arXiv:1906.04893, Jun 2019.

Olivier Fercoq, Ahmet Alacaoglu, Ion Necoara, and Volkan Cevher. Almost surely constrained con-
vex optimization. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 1910–1919, Long Beach, Cali-
fornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
fercoq19a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems 30,
pp. 5767–5777. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7159-improved-training-of-wasserstein-gans.pdf.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

David Handelman. Representing polynomials by positive linear functions on compact convex
polyhedra. Pacific J. Math., 132(1):35–62, 1988. URL https://projecteuclid.org:
443/euclid.pjm/1102689794.

10

http://proceedings.mlr.press/v97/anil19a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://papers.nips.cc/paper/6692-safe-model-based-reinforcement-learning-with-stability-guarantees.pdf
http://papers.nips.cc/paper/6692-safe-model-based-reinforcement-learning-with-stability-guarantees.pdf
http://papers.nips.cc/paper/6692-safe-model-based-reinforcement-learning-with-stability-guarantees.pdf
http://proceedings.mlr.press/v70/cisse17a.html
http://proceedings.mlr.press/v97/fercoq19a.html
http://proceedings.mlr.press/v97/fercoq19a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
https://projecteuclid.org:443/euclid.pjm/1102689794
https://projecteuclid.org:443/euclid.pjm/1102689794

Under review as a conference paper at ICLR 2020

Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network construc-
tion with back-propagation. In Advances in Neural Information Processing Systems 1,
pp. 177–185. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/
156-comparing-biases-for-minimal-network-construction-with-back-propagation.
pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition, pp. 770–778, 06 2016. doi:
10.1109/CVPR.2016.90.

Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the Lipschitz constant as a
defense against adversarial examples. arXiv e-prints, art. arXiv:1807.09705, Jul 2018.

Ming Jin and Javad Lavaei. Stability-certified reinforcement learning: A control-theoretic perspec-
tive. arXiv e-prints, art. arXiv:1810.11505, Oct 2018.

Jean-Louis Krivine. Anneaux préordonnés. Journal d’analyse mathématique, 12:p. 307–326, 1964.
URL https://hal.archives-ouvertes.fr/hal-00165658.

J. B. Lasserre. Convergent lmi relaxations for nonconvex quadratic programs. In Proceedings of the
39th IEEE Conference on Decision and Control (Cat. No.00CH37187), volume 5, pp. 5041–5046
vol.5, Dec 2000. doi: 10.1109/CDC.2001.914738.

Jean B Lasserre. Convergent sdp-relaxations in polynomial optimization with sparsity. SIAM Jour-
nal on Optimization, 17(3):822–843, 2006.

Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press, 2015. doi: 10.1017/
CBO9781107447226.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. doi: 10.1109/5.726791.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=B1QRgziT-.

Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically constrained
quadratic programming. arXiv preprint arXiv:1703.07870, 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018a. URL https:
//openreview.net/forum?id=Bys4ob-Rb.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Advances in Neural Information Processing Systems, pp.
10877–10887, 2018b.

Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry. Mathematische
Annalen, 207(2):87–97, Jun 1974. ISSN 1432-1807. doi: 10.1007/BF01362149. URL https:
//doi.org/10.1007/BF01362149.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems 31, pp. 3835–3844.
Curran Associates, Inc., 2018.

H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite program
relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on
Optimization, 17(1):218–242, 2006. doi: 10.1137/050623802.

11

http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
https://hal.archives-ouvertes.fr/hal-00165658
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.1007/BF01362149
https://doi.org/10.1007/BF01362149
http://arxiv.org/abs/1312.6199

Under review as a conference paper at ICLR 2020

Tillmann Weisser, Jean B Lasserre, and Kim-Chuan Toh. Sparse-bsos: a bounded degree sos hierar-
chy for large scale polynomial optimization with sparsity. Mathematical Programming Compu-
tation, 10(1):1–32, 2018.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU networks. In Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5276–5285, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/weng18a.html.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5286–5295, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via projected
Sinkhorn iterations. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 6808–6817, Long Beach, Cali-
fornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
wong19a.html.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring Randomly Wired
Neural Networks for Image Recognition. International Conference on Computer Vision, Apr
2019.

Yinyu Ye. Approximating quadratic programming with bound and quadratic constraints. Mathemat-
ical Programming, 84(2):219–226, Feb 1999. ISSN 1436-4646. doi: 10.1007/s10107980012a.
URL https://doi.org/10.1007/s10107980012a.

Alp Yurtsever, Olivier Fercoq, and Volkan Cevher. A conditional-gradient-based augmented la-
grangian framework. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 7272–7281, Long Beach, Cali-
fornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
yurtsever19a.html.

A PROOF OF THEOREM 1

Theorem. Let f be a differentiable and Lipschitz continuous function on an open, convex subset X
of a euclidean space. Let ‖ · ‖ be the dual norm. The Lipschitz constant of f is given by

L(f) = sup
x∈X
‖∇f(x)‖∗ (12)

Proof. First we show that L(f) ≤ supx∈X ‖∇f(x)‖∗.

|f(y)− f(x)| =
∣∣∣∣∫ 1

0

∇f((1− t)x+ ty)T (y − x) dt
∣∣∣∣

≤
∫ 1

0

∣∣∇f((1− t)x+ ty)T (y − x)
∣∣ dt

≤
∫ 1

0

‖∇f((1− t)x+ ty)‖∗ dt ‖y − x‖

≤ sup
x∈X
‖∇f(x)‖∗‖y − x‖

were we have used the convexity of X .

Now we show the reverse inequality L(f) ≥ supx∈X ‖∇f(x)‖∗. To this end, we show that for any
positive ε, we have that L(f) ≥ supx∈X ‖∇f(x)‖∗ − ε.
Let z ∈ X be such that ‖∇f(z)‖∗ ≥ supx∈X ‖∇f(x)‖∗ − ε. Because X is open, there exists a
sequence {hk}∞k=1 with the following properties:

12

http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v97/wong19a.html
http://proceedings.mlr.press/v97/wong19a.html
https://doi.org/10.1007/s10107980012a
http://proceedings.mlr.press/v97/yurtsever19a.html
http://proceedings.mlr.press/v97/yurtsever19a.html

Under review as a conference paper at ICLR 2020

1. 〈hk,∇f(z)〉 = ‖hk‖‖∇f(z)‖∗

2. z + hk ∈ X

3. limk→∞ hk = 0.

By definition of the gradient, there exists a function δ such that limh→0 δ(h) = 0 and the following
holds:

f(z + h) = f(z) + 〈h,∇f(z)〉+ δ(h)‖h‖

For our previously defined iterates hk we then have

⇒ |f(z + hk)− f(z)| = |‖hk‖‖∇f(z)‖∗ + δ(hk)‖hk‖|

Dividing both sides by ‖hk‖ and using the definition of L(f) we finally get

⇒ L(f) ≥
∣∣∣∣f(z + hk)− f(z)

‖hk‖

∣∣∣∣ = |‖f(z)‖∗ + δ(hk)|

⇒ L(f) ≥ lim
k→∞

|‖f(z)‖∗ + δ(hk)| = ‖f(z)‖∗

⇒ L(f) ≥ sup
x∈X
‖∇f(x)‖∗ − ε

13

Under review as a conference paper at ICLR 2020

B PROOF OF PROPOSITION 1

Proposition. Let fd be a dense network (all weights are nonzero). The following sets, indexed by
i = 1, . . . , nd, form a valid sparsity pattern for the norm-gradient polynomial of the network fd:

Ii :=
{
s(d−1,i)} ∪ {s(j,k) : there exists a directed path from s(j,k) to s(d−1,i) in Gd

}
(13)

Proof. First we show that ∪mi=1Ii = I . This comes from the fact that any neuron in the network is
connected to at least one neuron in the last layer. Otherwise such neuron could be removed from the
network altogether.

Now we show the second property of a valid sparsity pattern. Note that the norm-gradient polyno-
mial is composed of monomials corresponding to the product of variables in a path from input to a
final neuron. This imples that if we let pi be the sum of all the terms that involve the neuron s(d−1,i)
we have that p =

∑
i pi, and pi only depends on the variables in Ii.

We now show the last property of the valid sparsity pattern. This is the only part where we use that
the network is dense. For any network architecture the first two conditions hold. We will use the fact
that the maximal cliques of a chordal graph form a valid sparsity pattern (see for example Lasserre
(2006)).

Because the network is dense, we see that the clique Ii is composed of the neuron in the last layer
s(d−1,i) and all neurons in the previous layers. Now consider the extension of the computational
graph Ĝd = (V, Ê) where

Ê = E ∪ {(sj,k, sl,m) : j, l ≤ d− 2)}

which consists of adding all the edges between the neurons that are not in the last layer. We show
that this graph is chordal. Let (a1, . . . , ar, a1) be a cycle of length at least 4 (r ≥ 4). notice that
because neurons in the last layer are not connected between them in Ĝ, no two consecutive neurons
in this cycle belong to the last layer. This implies that in the subsequence (a1, a2, a3, a4, a5) at most
three belong to the last layer. A simple analysis of all cases implies that it contains at least two
nonconsecutive neurons not in the last layer. Neurons not in the last layer are always connected in
Ĝ. This constitutes a chord. This shows that Ĝd is a chordal graph. Its maximal cliques correspond
exactly to the sets in proposition.

14

	Introduction
	Polynomial optimization formulation
	Hierarchical solution based on a Polynomial Positivity certificate
	Reducing the number of variables
	QCQP reformulation and Shor's SDP relaxation
	Related work
	Experiments
	Experiments on random networks
	Experiments on trained networks

	Conclusion and future work
	Proof of Theorem 1
	Proof of Proposition 1

