Under review as a conference paper at ICLR 2020

AHASH: A LOAD-BALANCED ONE PERMUTATION
HASH

Anonymous authors
Paper under double-blind review

ABSTRACT

Minwise Hashing (MinHash) is a fundamental method to compute set similar-
ities and compact high-dimensional data for efficient learning and searching.
The bottleneck of MinHash is computing & (usually hundreds) MinHash
values. One Permutation Hashing (OPH) only requires one permutation
(hash function) to get k MinHash values by dividing elements into & bins.
One drawback of OPH is that the load of the bins (the number of elements
in a bin) could be unbalanced, which leads to the existence of empty bins
and false similarity computation. Several strategies for densification, that
is, filling empty bins, have been proposed. However, the densification is
just a remedial strategy and cannot eliminate the error incurred by the
unbalanced load. Unlike the densification to fill the empty bins after they
undesirably occur, our design goal is to balance the load so as to reduce the
empty bins in advance. In this paper, we propose a load-balanced hashing,
Amortization Hashing (AHash), which can generate as few empty bins as
possible. Therefore, AHash is more load-balanced and accurate without
hurting runtime efficiency compared with OPH and densification strategies.
Our experiments on real datasets validate the claim. All source codes and
datasets have been released on GitHub anonymously (IJ).

1 INTRODUCTION

1.1 BACKGROUND

MinHash (2 [3]) is a powerful tool in processing high-dimensional data (e.g., texts) that is
often viewed as a set. For a set, MinHash produces & minimum hash values, which are called
MinHash values. MinHash values can support similarity computing (3; 4 Bt 6]), large-scale
linear learning (7 [8 [9% [10), fast near neighbour searching (11} 12} 13} [14) and so on. Due to
the importance of MinHash, many recent works strive to improve its performance such as
OPH (9), DOPH (11)), and OOPH (15).

1.2 PRIOR ART AND THEIR LIMITATIONS

MinHash (2 [3)) is the most classical method but has unacceptable computation
cost. Given a set S € % (% is the universe of all elements), MinHash applies k random
permutations (hash functions) m; : — %, on all elements in S (see Figure |1)). For each
hash function, it computes |S| hash values but only maintains the minimum one. Then we
get the k& MinHash values. In practice, to achieve high accuracy, users need to compute a
large number of MinHash values, i.e., k needs to be very large. Unfortunately, computing k
hash functions for each element is a computational and resource bottleneck when k is large.
It is showed that some large-scale learning applications need to compute more than 4000
MinHash values, which takes a non-negligible portion of the total computation time (16} [17).

One Permutation Hash (OPH) (9) overcomes the drawback of MinHash, but the
produced MinHash values may be less than the demand. To overcome the drawback
of MinHash, OPH reduces the number of hash computations per element from k to 1. As
shown in Figure [I} the key idea of OPH is that all elements are divided into k£ bins by
hashing, and each bin maintains the minimum hash value respectively. Ideally, each bin will

Under review as a conference paper at ICLR 2020

produce a MinHash value. Unfortunately, if the data is skewed or sparse, some bins could
have many elements, but some bins could be empty. As a result, the number of produced
MinHash values could be smaller than k.

(c)
Q 9.S‘ez‘Q G

welol{o]>]
00000
SO0V O
> Q0000
HOPO00®

Q | @ ‘G Q
9L 99| @B 9990l

MinHash OPH w Design Goal
OOPH

Figure 1: A toy example of existing works and our design goal with k = 5. The hash values
of elements at the bottom are MinHash values.

Existence of empty bins is fatal for some applications. To compute similarities, it is
known that the existence of empty bins leads to the false similarity estimation (see detailed
reasons in Section [2]) (15} 1T} [16). To search near neighbours, using the empty bins as indexes
leads to the false positives (see detailed reasons in Section [2)) (14 [I1)). Therefore, every
empty bin needs a MinHash value, and how to appropriately fill empty bins attracts research

interests in recent years (95 [15; [TT} [18).

Densification is helpful for filling empty bins but does not fairly use the original
data. Densification, proposed by (I1), is to fill the empty bins by reusing the minimum
values of the non-empty bins to fix the drawback of OPH. Many densification strategies have
been proposed (9; [IT; I8 [15). Among all densification strategies, OOPH (15) achieves the
smallest variance. It hashes IDs of empty bins to select a non-empty bin to reuse (See Figure
. Although it achieves the smallest variance, it is often impossible to choose the optimal
value to fill each empty bin. As shown as Figure [, OOPH just reuses the MinHash values of
non-empty bins. Because OPH only involves three elements {4, D, C} to compute MinHash
values, it places the constrains on OOPH which can only reuse these three elements. Such
a reuse is unfair: the Minhash values could be reused multiple times, but other elements
({B, E}) will never be reused. Unfairness probably incurs error.

1.3 OUR SOLUTION: AMORTIZATION HASHING

Instead of filling empty bins, this paper proposes, Amortization Hashing (AHash), which can
produce fewer empty bins, so as to achieve high accuracy. As shown in Figure[I] to minimize
the unfairness of the densification, we aim to design a load-balanced hash (AHash) which
produces as few empty bins as possible. After using Amortization Hashing, there could be
still empty bins for very sparse sets, and we use OOPH to fill the remaining empty bins.
We have proved (see Theorem 3) that the lower the number of empty bins is, the higher
accuracy will be. This paper is the first attempt to design a load-balanced hash for OPH.

Intuitively, if a bin holds too many elements, it is wasted. In contrast, if a bin holds no
element, it is starved. Therefore, if we can pair up a wasted bin and a starved bin, and
amortize the elements between them, we can eliminate the unfairness of using densification.
The details of amortization hashing are provided in Section [3]

AHash is a novel solution which is orthogonal with densification, and can improve accuracy
of all densification strategies. For densification strategies, filling each empty bin could incur
small error. Filling more empty bins will incur larger error. To minimize the error of filling
empty bins, we are expected to minimize the number of empty bins during dividing elements
into bins. It is worth mentioning that AHash does not incur additional computation cost.

Under review as a conference paper at ICLR 2020

1.4 KEY CONTRIBUTIONS

1) We propose a load-balanced hashing, Amortization Hashing, which can improve accuracy
while retaining the same runtime efficiency. (Section

2) We conduct theoretical analysis and extensive experiments, and results show that AHash
can achieve higher accuracy. (Section

3) We apply AHash for two data mining tasks, linear SVM, and near neighbour search, and
results show AHash significantly outperforms the state-of-the-art in practical applications.

(Section

2 PRELIMINARIES

2.1 ForMAL DEFNITIONS OF MINHAsH, OPH AND OOPH
Formal definitions of MinHash, OPH and OOPH are as follows:

e MinHash (3} 2): the i** MinHash value of S is defined as:

hM ”gfj: 155) =min{m;(S)} (1)

where ;(S) denotes the i" hashing on S.
e One Permutation Hashing (9): the i** MinHash value of S is defined as:

" o<i<k Empty no element falls in this bin

(2)

where 7(S) denotes the hashing on S and €; denotes ‘" partition of the rang space of
7(S).

e One Permutation Hashing with Optimal Densification (I5)): the " MinHash value of S is
defined as:

RPOPH(S) =
0<i<k

{min{ﬂ(S) NQ;} if {m(S)NQ; # 0}

h;_)op H(8) no element falls in this bin 3)

where hypip (1) denotes 2-universal hashing (I5)) and j = hynio (7).

2.2 UseE MINHASH VALUES FOR COMPUTING SIMILARITIES

Computing similarities is a key step for many applications like duplicate detection (3; [19)),
semantic similarity estimation (4)), frequent pattern mining (20} 21]) and more. In the
applications, the data (e.g., texts) can be viewed as 0/1 binary data (e.g., the absence/presence
of a word), which is equivalent to a set. Given two sets, S; and S, the similarity is usually
measured by Jaccard Similarity, which is defined as J(S1, S2) = |S1 N S2|/|S1 U S2|. For Sy
and Sy with the same hashing, the probability of the two minimum hash values being the
same is equal to Jaccard Similarity of S; and Ss, which is formally shown as follow:

_ |S1 N S|

|Sl U Sgl
Such a property is called Locality Sensitive Hash (LSH) Property (13 22). Note that, if
h(Sy) and h(Ss) are simultaneously empty, they are certain to collide, which violates the

LSH Property. So we must handle empty bins. Given MinHash values of S; and Ss, the
J(S1,S2) can be approximated as:

Pr[h(S1) = h(S2)] = J(51,52) (4)

1 k

J(S1,82) = z > 1{h;(S1) = h;(Sa)} (5)

Jj=1

with 1{z} being the indicator function that takes value 1 when z is true and otherwise 0.

1
2

3

N o o s

© ®

Under review as a conference paper at ICLR 2020

2.3 Use MINHASH VALUES FOR LARGE-SCALE LEARNING

Large-scale linear learning like training SVM (23} 24 [25) is faced with extremely high-
dimensional data, which emphasizes the application of hashing algorithms. Given a dataset
{zi,yi}l_, ;s € R, y; € {—1,+1}, L2-SVM solves the following unconstrained optimization
problem:

!
. 1
min §'wT'w +C Z maz(l — y;wx;,0)2 (6)

w
i=1
where C' > 0 is a penalty parameter.

MinHash can be used to compact the feature vectors to reduce the feature dimensionality if
the dataset is binary (i.e., each feature vector consists of only 0s and 1s) (8). Actually, each
feature vector can be viewed as a set: if the i-th element of the vector is 1, then the i-th
element is in the set. Thus we can use MinHash values to represent a feature vector. We
use one-hot encoding (26; 27) for each hash value and concatenate these k values to get the
new feature vector. To further reduce the dimension, (I2) proposes that we can use only the
lowest b (e.g., b=8) bits of each hash value (usually 64 bits). Thus the new feature vector is
only 2° x k-bit long, regardless of the dimensionality of the original data.

2.4 UseE MINHASH VALUES FOR FAST NEAR NEIGHBOUR SEARCH

Fast near neighbour search is important in many areas like databases (3 [28)) and machine
learning (14)), especially applications with high-dimensional data. Given a query set S, near
neighbour search is to return other sets whose similarities with S are more than a threshold.

(I4) proposed MinHash values can be used in near neighbour search in sub-linear time
complexity (i.e., without scanning the whole dataset). Specifically, a signature for a set is
generated by concatenating k MinHash values like this:

Signature(S) = [h1(S); ha(S);....; hi(9)] (7)

In this way, those similar sets are more likely to have the same signature (It is not true if
empty bins occur). So we can build hash tables by using the signatures as indexes and the
sets as the values of the hash table entries. Moreover, to reduce the number of hash table
entries, we only concatenate the lowest b bits of k hashed values to generate signatures (I12J).
To improve the recall of the query results, we can calculate L different signatures for each
set and build L hash tables, and return the union of entries from these L hash tables as
the query result. For different hash tables, we should use independent hash functions to
compute MinHash values. Parameters b, L, and k can be used to control the threshold of
near neighbor search. Using L hash tables, the processing cost of MinHash for one query
set is O(nkL) (n is the size of the query set). (I1)) proposes that OPH can generate k x L
MinHash values only by one hashing with k£ x L bins, so the processing cost of OPH is
O(n + kL). (O(n) is for hashing on n elements and O(kL) is for filling empty bins).

3 ALGORITHM

3.1 AMORTIZATION HASHING

Algorithm 1: Insertion

Input: k bins B[], a hash function A(.), a set Algorithm 2: Amortization
S Input: % bins B].] after Insertion
Q < output range of h(.) 1 for i=0; i < k; i+=2 do
Initialize B[.]. EvenMin=+o0c0 2 if Bli] is empty and Bfi+1] is non-empty
B[.].OddMin=+o00 then
for each element e in S do 3 | Bli].OddMin = Bl[i+1].EvenMin
V < h(e) 4 if Bli] is non-em; i i
' -empty and Bli+1] is empty
i+ h(e)/(Q/k) then

if V%2=1 then
| B[i].0ddMin = min(V, Bli]. OddMin)

if V%2=0 then
| Bli]. EvenMin = min(V, Bli|]. EvenMin)

o

| Bli+1].-EvenMin = BJi].OddMin

=]

If empty bins still exist:
7 Densification

Under review as a conference paper at ICLR 2020

Q |G| O | © | © | O
Q | 00 Q0000 QMO

AlBl | | | [DIE[C] AlB[|80l |DIE]C] AlB |BID| [RIE|C]
Insertion kn{orti\zjation Collect Values

Figure 2: A toy example of AHash with k = 5.

To generate k MinHash values, Amortization Hashing (AHash) has two key steps: Insertion
and Amortization.

Insertion: As shown in Algorithm 1 and Figure 2] AHash divides all elements into & bins
by hashing and each bin maintains one even min and one odd min. Even min refers to

the minimum one among all even hash values. Odd min refers to the minimum one among
all odd hash values.

Amortization: As shown in Algorithm 2 and Figure [2, AHash pairs up & bins as follows:

it" and (i + 1) bins are a pair (i = 0,2, .., [£52]). For a pair, the i*" bin is called even

bin and the (i 4 1)** bin is called odd bin. For the pairs with only one empty bin, there are
two cases:

e If the even bin B, is empty, we reassign B..FvenMin with the even min of the odd
bin.

e If the odd bin B, is empty, we reassign B,.OddMin with the odd min of the even
bin.

For the pairs with two simultaneously non-empty or empty bins, we keep them unchanged.
After the amortization, we collect & MinHash values from k bins and there are two cases

(See Figure [2)):
e For each even bin with both even and odd mins, we delete the odd min.

e For each odd bin with both even and odd mins, we delete the even min.

If there are still empty bins, we conduct densifying like OOPH, which rarely happens because
AHash significantly reduces the empty bins. Formally, for even bins,

min{m.(S) N} 7w (S)NQ; £0
min{ro(S) N} 7o (S) NQ = 0 and 7,(S) N Q; # 0

AHash —
hi (5) = min{m.(S)NQ;} " bin is empty and 7.(S) N Q; # 0 (®)
Empty others
J=l5)+ @+ 1%2 (9)

where 7. (S) (7,(S5)) denotes the even (odd) hash values of S and 2; denotes i-th partition
of the range space of 7(.5). The formula for odd bins is similar.

3.2 TIME AND MEMORY OVERHEAD

For time overhead, AHash keeps comparable runtime efficiency with OPH, the fastest variant
of MinHash. Although each bin maintains one more hash values than OPH, the additional
runtime cost is negligible because of the memory access locality of the insertion (two values
in a bin). Note that AHash has much less empty bins which require densification compared
with OOPH, which can save the time cost.

For memory overhead, AHash also provides £ MinHash values, which is the same as MinHash
and OOPH. During the Insertion, the cost of storing two hash values in a bin is acceptable.
For the common setting (hundreds of bins and 64-bit MinHash values), the vector of bins
with two values per bin can be totally fitted into L1 cache (usually larger than 32 KB), the
fastest memory.

Under review as a conference paper at ICLR 2020

3.3 THEORETICAL ANALYSIS

Theorem 1 Unbiased Estimator

Pr[hAHaSh(Sl) _ hAHash(S2)D _ M — J(51,52> (10)
|S1 U Sy
E(jAHash) =J (11)

where JAash denotes the estimator given by AHash. Theorem [1]is to show the estimator of
AHash is following the LSH property and unbiased.

Proof 3.1 For convenience, we define some Boolean values:

1 For both it" bins of S1 and Sz, no elements falls in them
Lo =10 othoren (12)
0<i<k otherwise
[1 Before Amortization, the values of the it" bins of S1 and Sy are the same
?gik_ 0 otherwise
(13)
1 hAHash :hAHaSh —F t
Boi={o e (14)
0<ick 0 otherwise
1 hAHash S :hAHaSh S
If;gat_i { (3 (1) 1 (2) (15)
0<i<h 0 otherwise
Obviously, for simultaneously non-empty bins, AHash is following the LSH property:
E(Imat,iuemp,i =0)=J (16)
Next, we prove that the Amortization for simultaneously empty bins is unbiased:
Lempi =1 and I, =0 — Lpp; =1 (j = L%j + (i 4+ 1)%2)
E(Ifmt,iuemp,i =1and IeAmp,i =0) = E(Imat,jllemp,; = 1) = J (17)

If I?mp,i = 1, i.e., there is still the pair of bins which are simultaneously empty after

Amortization, we use unbiased Optimal Densification (15) to fill such bins.

Theorem 2 Reducing Empty Bins
E(NAHaSh) < E(NOPH) (18)

emp emp

where Ny, = Ele I%,., is the number of simultaneously empty bins.
Proof 3.2 (9) proves the expectation of the number of simultaneously empty bins of OPH

f 1 ;
D(1-3)—1i
E(NOUT) = y(k) = kH Di_kz (19)
i=0

where f is |S1 U Sa| and D is the dimensionality of the universal hashing function used. The
process of OPH can be viewed as randomly throwing f balls into k bins. For AHash, because
k bins are paired up, the process of AHash can be viewed as randomly throwing [balls into
g bins. Obviously, Nemp of AHash is smaller than OPH:

E(VAhy = () < k) (20)

emp 2

Under review as a conference paper at ICLR 2020

Theorem 3 Improving Variance

Var(Jamasn) < Var(Joopn) (21)

Proof 3.3 We define two Boolean values with 1{x} being the indicator function that takes 1
when z is true and otherwise 0.

= 1{17,,; = 0 and h7e*"(Sy) = nHHoh(Sy)} (22)
P =110, =1 and h}"*"(Sy) = hHesh(S,y)} (23)
. 15
JAHash:EZMA"'ME (24)
1< .
Var(Jarmesn) = B((3; Y M + MP))*) = (B(Jarasn))? (25)
=1

Theorem 1 proves (E(Jamasn))? = J2. Define two notations:

k k

OPH __ § AHash A

Nemp Iean,i Nemp Iemp,i (26)
= =1

OOPH uses conditional expectation to simplify variance analysis. To conveniently compare
with OOPH, we follow its method where E(.|m) means E(.|k — NAHash —) We compute

emp
F(m) = E((+ T520IMF + MN)?|m) By eapanding,

k
K f(m) = EY_((M{*)? + (MF)?)|m] + EQ_ M{*M}'[m)
i=1 i#£j (27)
EQY_ MAME|m)+ EQY MM |m)
i#j i#£j

Because M#* and MF are Boolean values,

k k
E[) (M) + (MP)?)|m] = E[Y (M + MP)|m) = k x J (28)
i=1 i=1

To analyze another three terms, we provide four probability equations for bins before the
amortization.

k-1
Pr(Lomp,g = 1) = Po = (=) /510%! (29)

Pr(Iemp,; =0)=Pr=1-P. (30)
Pr(Iemp,;=0 and the mins from two j-th bins have one and only one position)

— P, = Py x2x (2)'5“52‘/(’“ Nem') (31)

Pr(Iemp,;=0 and the mins from two j-th bins have two positions (odd/even))
=P, =P;—P, (32)

Under review as a conference paper at ICLR 2020

The values of following three terms is proved by classifying different combinations of bins
and applying probability equations and the property of indicator functions.

~k—

E(Y_ MM m) = m(m)[JJﬁ + Jk x P,P, + JJk X 2P;P.] < m(m —1)JJ
i#j
(33)
.S NSy -1
J=1 2 34
|S1 USy| —1 (34)
E(Y " MAMP|m) = 2m(k — m)[i L m=2IT 51 P.P, + inpdpe]
it m m m m (35)

<2m(k —m)[% + M

]

m

E(Y" MPMF|m) = (k —m)(k —m — 1)[% I Gt =1)7J +IJ i - % 2PyP,
i#j
+ e X PsPeqLJJAk L . Py Py] < (k—m)(k —m — 1)[% (m ml)JJ]
(36)
Hence, k>f(m) < h(m) =k x J+m(m—1)JJ +2m(k — m)[i + (m — 1>JJ] (
m m . 37)
k= m)(k—m -2 4 D)
(X — .
For OOPH, Var(Joorn) = E((3 Y_[M) + MP))*) = (E(Joorm))*. (38)

=0

<.

MJN = 1{Iemp,j =0 and thPH(Sl) - h?PH(SQ)}

(39)
MP =1y =1 and h§OPH(S1) = hYOPH(S,)}.
For OOPH, the conditional expectation is
k
1
E((; (£ MY + MP))? |k — NOEH = m') = h(m) (40)
=1
Oh(m) k> —k+m?, . ,
= — < >
- 3 (JJ = J) < 0andm > m (41)
= h(m) < h(m') = Var(Jamasn) < Var(Joopn)R

Because AHash reduces N,,, AHash using Optimal Densification (15) can achieve lower
variance compared with OOPH.

4 EXPERIMENTS AND APPLICATIONS

4.1 SETUP

We use three publicly available datasets (29):

a) RCV1: The dataset is a collection for text categorization. It has 20,242 sets and the
size of the set is on average 73. The dimensionality (range space) of elements is 47, 236.

b) NEWS20: The dataset is a collection of newsgroup documents. It has 19,996 sets

Under review as a conference paper at ICLR 2020

and the size of the set is on average 402. The dimensionality (range space) of elements is
1,355,191.
¢) URL: The dataset is a collection for identifying suspicious URLs. It has 100,000 sets
and the size of the set is on average 115. The dimensionality (range space) of elements is
3,231,961.

We use two metrics to measure the performance:
a) Mean Square Error (MSE) is defined as E[(J — J)2]. We use MSE to measure the
accuracy of computing the Jaccard Similarity.
b) Fl-score is defined as %, where P is the precision rate and R is the recall rate. We

use Fi-score to evaluate the performance of fast near neighbour search.

We implemented all algorithms in C++ which are publicly available (I) on GitHub. All
experiments are conducted on laptop with 2.9 GHZ Intel Core i7 CPU.

4.2 ACCURACY AND SPEED

Table 1: Pairs of Sets

Pairs | JS | [S1] | |S2]
A 0.27 | 750 | 567 Table 2: Time (Second) to compute 256 MinHash values
B 0.34 | 750 | 748 Hash | RCV1 | NEWS20 | URL
C 1044 | 750 | 870 MinHash | 3.44 20.45 25.83
D 1053|750 | 751 OOPH | 0.024 0.13 0.18
E 1061] 750 | 892 AHash | 0.025 0.14 0.18
F 0.71 | 750 | 719
0. 0030 0. 00251
0. 0025 0. 00201
0. 0020
204 00151 20' 0oto
0. 00101 0. 0010
0. 00051 0. 00051
0. 0000 0. 0000 0. 000
128 256 51z 1024 2048 128 256 51z 1024 2048 128 256 51z 1024 208
(a) Pair A (b) Pair B (c) Pair C
0.0025 .
—=— MinHash 0. 003 [—=— MinHash
0. 0020 T Nash o Mo
@ 0.0015 g0 0]
0.0010 0. 001
0.0005
0. 000~ : ‘ : : ‘ ‘ ‘ ‘ ‘ 0. 000 -————————
128 256 512 1024 2048 128 256 5l2 1024 2048 128 256 512 lo24 2018
(d) Pair D (e) Pair E (f) Pair F

Figure 3: Average MSE in Jaccard Similarity estimation with varing the number of MinHash
values (k). Results are averaged over 2000 repetitions.

To measure the accuracy of AHash, we generate 6 pairs of sets from the data RCV1, with
varying similarities. Because it is difficult to use original sets to form the pairs with high
similarity, we unite some original sets as a new set to form the pairs. Detailed statistics is
shown in Table [l

Figure [3] presents the results about the accuracy of computing similarities with varying k
(the number of Minhash values). Regardless of the similarity level, AHash is more accurate
than OOPH and MinHash (e.g., at k = 512, the MSE of AHash is lower than OOPH by
13.2%-31.7%). Note that the gain of AHash is more significant when the number of bins is
appropriate (not extremely small or large). The reason is that if k is extremely small, all
bins are non-empty. Therefore, AHash has no need for amortization. To the other extreme,

Under review as a conference paper at ICLR 2020

if k is extremely large, only a small portion of bins are non-empty and the amortization
plays a limited role. Fortunately, with a practical and commonly used configuration, AHash
presents significant gains.

Table [2| shows that the speed of computing k£ MinHash values of AHash is comparable
with OOPH, which is two orders of magnitude faster than MinHash. AHash does not hurt
the runtime efficiency of OOPH. AHash and OOPH both use much less runtime to more
accurately compute the similarity.

4.3 LINEAR LEARNING

100 99.9
_99.9 R
E E 9 5
oy oy 2 99.8
®© 99,8 < 98 %
f ~ M
=3 / = =]
S P Q / 13)
2 / S 971/ o
Ve / <
oreld L s.6.0f
107 102 10" _10° 10" 107 10° 102 107" _10° 10" 102 10° 102 107 _10° 10" 10?
C C C
(a) RCV1 (b) URL (c) NEWS20

Figure 4: SVM test accuracy. We set k as 150 and apply the b-bit hash with b as 8.

We use LIBLINEAR (23)) to train a Lo-nomarlized SVM to measure the effectiveness of
AHash in reducing the dimensionality of the training data. We experimented with varing
penalty parameter C, which follows other works (8; [I0). In this way, it is more easy to
reproduce our experiments.

Figure |4 shows that AHash can achieve 99% test accuracies and outperforms OOPH.
Compared with training with the original high-dimensional data, the training based on the
new feature vectors built by AHash is usually two orders of magnitude faster. Meanwhile,
AHash can achieve the satisfied accuracy, very close to 100%.

4.4 NEAR NEIGHBOUR SEARCH

125
120
115
110
105

0. 121
0. 111

[}

5 0. 101

Q

& 0.091

R

. 0.081
0. 074 100

0. 06 095

20 21 22 23 24 25 2021 22L23 2425 20 21 22 23 24 25
L L

(a) RCV1 (b) URL (c) News20

Figure 5: Fj-score of fast near neighbour search. We set k as 10 and apply the b-bit hash
with b as 32. Results are averaged over 2000 queries.

We apply AHash with the optimization of b-bit hashing (I2]) for fast near neighbour search.
Given a query set, threshold of the similarity is 0.5, that is, near neighbour search should
return sets whose similarity with the query set is more than 0.5. It is important to balance
the precision and recall to measure the effectiveness on near neighbour search. Therefore, we
use F}-score as the metric.

Figure [f] shows that the Fy-score of AHash is significantly higher than MinHash and OOPH
on all three datasets. Note that the trend of F;-score with varying L is not monotonous. With
L increasing, the number of reported elements and the number of reported near neighbours
both increases, but their growth trends are of randomness. In spite of this, AHash can
outperform OOPH and MinHash under most of parameter settings.

5 CONCLUSION

We propose Amortization Hashing which can improve the accuracy of One Permutation
Hashing and densification strategies without loss in runtime efficiency. AHash outperforms the
state-of-the-art OOPH in similarity estimating, large-scale learning and fast near neighbour
searching.

F1-Score

IS = = e =

10

Under review as a conference paper at ICLR 2020

REFERENCES

(1
2]

3l

4]

5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Related source codes. https://github.com/AHashCodes/AHash.

Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. Journal of Computer and System Sciences, 60(3):630—-659, 2000.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Com-
pression and Complezity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21-29. IEEE,
1997.

Steve Chien and Nicole Immorlica. Semantic similarity between search engine queries using
temporal correlation. In Proceedings of the 14th international conference on World Wide Web,
pages 2-11. ACM, 2005.

Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of algorithms.
In Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 284-291. ACM, 2006.

Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity
search. In Proceedings of the 16th international conference on World Wide Web, pages 131-140.
ACM, 2007.

Ping Li and Christian Konig. b-bit minwise hashing. In Proceedings of the 19th international
conference on World wide web, pages 671-680. ACM, 2010.

Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd C Kénig. Hashing algorithms for
large-scale learning. In NIPS, pages 2672-2680, 2011.

Ping Li, Art Owen, and Cun-Hui Zhang. One permutation hashing. In NeurIPS, pages
3113-3121, 2012.

Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification
when data cannot fit in memory. ACM Transactions on Knowledge Discovery from Data
(TKDD), 5(4):23, 2012.

Anshumali Shrivastava and Ping Li. Densifying one permutation hashing via rotation for fast
near neighbor search. In ICML, pages 557-565, 2014.

Ping Li, Arnd Konig, and Wenhao Gui. b-bit minwise hashing for estimating three-way
similarities. In NIPS, pages 1387-1395, 2010.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604-613. ACM, 1998.

Anshumali Shrivastava and Ping Li. Fast near neighbor search in high-dimensional binary data.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 474-489. Springer, 2012.

Anshumali Shrivastava. Optimal densification for fast and accurate minwise hashing. In ICML,
pages 3154-3163, 2017.

Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A cardinality-
based method for coupled estimation of jaccard similarity and containment. ICDE, 2019.

Ping Li. 0-bit consistent weighted sampling. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 665-674. ACM,
2015.

Anshumali Shrivastava and Ping Li. Improved densification of one permutation hashing. arXiv
preprint arXiv:1406.4784, 2014.

Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of algorithms.
In Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 284-291. ACM, 2006.

Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to web graph
compression with communities. In Proceedings of the 2008 International Conference on Web
Search and Data Mining, pages 95-106. ACM, 2008.

11

https://github.com/AHashCodes/AHash

Under review as a conference paper at ICLR 2020

[21]

22]

23]

24]

[25]

[26]

27]

[28]

29]

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi,
and Prabhakar Raghavan. On compressing social networks. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 219-228.
ACM, 2009.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380-388. ACM,
2002.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear:
A library for large linear classification. Journal of machine learning research, 9(Aug):1871-1874,
2008.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear svim. In Proceedings of the
25th international conference on Machine learning, pages 408—415. ACM, 2008.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217-226.
ACM, 2006.

Adam Coates and Andrew Y Ng. The importance of encoding versus training with sparse
coding and vector quantization. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 921-928, 2011.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One
hot way to resist adversarial examples. 2018.

Jerome H Friedman, Forest Baskett, and Leonard J Shustek. An algorithm for finding nearest
neighbors. IEEE Transactions on computers, 100(10):1000-1006, 1975.

Libsvin data: Classification (binary class). https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.htmll

12

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

	Introduction
	Background
	Prior Art and Their Limitations
	Our Solution: Amortization Hashing
	Key Contributions

	Preliminaries
	Formal Defnitions of MinHash, OPH and OOPH
	Use MinHash Values for Computing Similarities
	Use MinHash Values for Large-scale Learning
	Use MinHash Values for Fast Near Neighbour Search

	Algorithm
	Amortization Hashing
	Time and Memory Overhead
	Theoretical Analysis

	Experiments and Applications
	Setup
	Accuracy and Speed
	Linear Learning
	Near Neighbour Search

	Conclusion

