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ABSTRACT

Momentum is a simple and popular technique in deep learning for gradient-based
optimizers. We propose a decaying momentum (DEMON) rule, motivated by de-
caying the total contribution of a gradient to all future updates. Applying DEMON
to Adam leads to significantly improved training, notably competitive to momen-
tum SGD with learning rate decay, even in settings in which adaptive methods are
typically non-competitive. Similarly, applying DEMON to momentum SGD rivals
momentum SGD with learning rate decay, and in many cases leads to improved
performance. DEMON is trivial to implement and incurs limited extra computa-
tional overhead, compared to the vanilla counterparts.

1 INTRODUCTION

Deep Neural Networks (DNNs) have drastically advanced the state-of-the-art performance in many
computer science applications, including computer vision (Krizhevsky et al., 2012), (He et al., 2016;
Ren et al., 2015), natural language processing (Mikolov et al., 2013; Bahdanau et al., 2014; Gehring
et al., 2017) and speech recognition (Sak et al., 2014; Sercu et al., 2016). Yet, in the face of such
significant developments, the age-old (accelerated) stochastic gradient descent (SGD) algorithm re-
mains one of the most, if not the most, popular method for training DNNs (Sutskever et al., 2013;
Goodfellow et al., 2016; Wilson et al., 2017).

Adaptive methods (Duchi et al., 2011; Zeiler, 2012; Hinton et al., 2012; Kingma & Ba, 2014; Ma &
Yarats, 2018) sought to simplify the training process, while providing similar performance. How-
ever, while they are often used by practitioners, there are cases where their use leads to a performance
gap (Wilson et al., 2017; Shah et al., 2018). At the same time, much of the state-of-the-art perfor-
mance on highly contested benchmarks—such as the image classification dataset ImageNet—have
been produced with accelerated SGD (Krizhevsky et al., 2012; He et al., 2016; Xie et al., 2017;
Zagoruyko & Komodakis, 2016; Huang et al., 2017; Ren et al., 2015; Howard et al., 2017).

Nevertheless, a key factor in any algorithmic success still lies in hyperparameter tuning. For exam-
ple, in the literature above, they obtain such performance with a well-tuned SGD with momentum
and a learning rate decay schedule, or with a proper hyperparameter tuning in adaptive methods.
Slight changes in learning rate, learning rate decay, momentum, and weight decay (amongst others)
can drastically alter performance. Hyperparameter tuning is arguably one of the most time consum-
ing parts of training DNNs, and researchers often resort to a costly grid search. Thus, finding new
and simple hyper-parameter tuning routines that boost the performance of state of the art algorithms
is of ultimate importance and one of the most pressing problems in machine learning.

The focus of this work is on the momentum parameter and how we can boost the performance
of training methods with a simple technique. Momentum helps speed up learning in directions of
low curvature, without becoming unstable in directions of high curvature. Minimizing the objec-
tive function L(·), the simplest and most common momentum method, classical momentum (CM)
(Polyak, 1964), is given by the following recursion for variable vector θt ∈ Rp:

θt+1 = θt − ηgt + βvt, vt+1 = βvt − ηgt.
The coefficient β—traditionally, selected constant in [0, 1]—controls how quickly the momentum
decays, gt represents a stochastic gradient, usually E[gt] = ∇L(θt), and η > 0 is the step size.

But how do we select β? The most prominent choice among practitioners is β = 0.9. This is
supported by recent works that prescribe it (Chen et al., 2016; Kingma & Ba, 2014; Hinton et al.,
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2012; Reddi et al., 2019), and by the fact that most common softwares, such as PyTorch (Paszke
et al., 2017), declare β = 0.9 as the default value in their optimizer implementations. However,
there is no indication that this choice is universally well-behaved.

There are papers that attempt to tune the momentum parameter. Under an asynchronous distributed
setting, (Mitliagkas et al., 2016) observe that running SGD asynchronously is similar to adding a
momentum-like term to SGD; they also provide experimental evidence that naively setting β = 0.9
would result in a momentum “overdose”, leading to suboptimal performance. As another example,
YellowFin (Zhang & Mitliagkas, 2017) is a learning rate and momentum adaptive method for both
the synchronous and asynchronous setting, motivated by a quadratic model analysis and some ro-
bustness insights. The main message of that work is that, like η, momentum acceleration needs to be
carefully selected based on properties of the objective, the data, and the underlying computational
resources. Finally, moving from classical DNN settings towards generative adversarial networks
(GANs), the proposed momentum values tend to decrease from β = 0.9 (Mirza & Osindero, 2014;
Radford et al., 2015; Arjovsky et al., 2017), taking even negative values (Gidel et al., 2018).

In this paper, we introduce a novel momentum decay rule which significantly surpasses the per-
formance of both Adam and CM (as they are used currently), in addition to other state-of-the-art
adaptive learning rate and adaptive momentum methods, across a variety of datasets and networks.
In particular, our findings can be summarized as follows:

i) We propose a new momentum decay rule, motivated by decaying the total contribution of a
gradient to all future updates, with limited overhead and additional computation.

ii) Using the momentum decay rule with Adam, we observe large performance gains—relative
to vanilla Adam—where the network continues to learn for far longer after Adam begins to
plateau, and suggest that the momentum decay rule should be used as default for this method.

iii) We observe comparative performance for CM between momentum decay and learning rate
decay; a surprising finding given the unparalleled effectiveness of learning rate decay schedule.

Experiments are provided on various datasets, including MNIST, CIFAR-10, CIFAR-100, STL-10,
Penn Treebank (PTB), and networks, including Convolutional Neural Networks (CNN) with Resid-
ual architecture (ResNet) (He et al., 2016), Wide Residual architecture (Wide ResNet) (Zagoruyko
& Komodakis, 2016), Non-Residual architecture (VGG-16) (Simonyan & Zisserman, 2014), Recur-
rent Neural Networks (RNN) with Long Short-Term Memory architecture (LSTM) (Hochreiter &
Schmidhuber, 1997), Variational AutoEncoders (VAE) (Kingma & Welling, 2015), and the recent
Noise Conditional Score Network (NCSN) (Song & Ermon, 2019).

2 PRELIMINARIES

Plain stochastic gradient descent motions. Let θt ∈ Rp be the parameters of the network at time
step t, where η ∈ R is the learning rate/step size, and gt is the stochastic gradient w.r.t. θt for
empirical loss L(·), such that E[gt] = ∇L(θt). Then, plain stochastic gradient descent (SGD) uses
the recursion: θt+1 = θt − η · gt, ∀t. Here, the step size η could also be time dependent, ηt,
but practice shows that decreasing the value of η at regular or predefined intervals works favorably
compared to decreasing the value of η at every iteration.

CM is parameterized by β ∈ R, the momentum coefficient, and follows the recursion:

θt+1 = θt − ηgt + βvt, vt+1 = βvt − ηgt,

where vt ∈ Rp accumulates momentum. Observe that for β = 0, the above recursion is equivalent
to SGD. Common values for β are closer to one, with β = 0.9 the most used value (Ruder, 2016).

Adaptive gradient descent motions. These algorithms utilize current and past gradient information
to design preconditioning matrices that better approximate the local curvature of L(·). Beginning
with AdaGrad (Duchi et al., 2011), the SGD recursion, per coordinate i of θ, becomes:

θt+1,i = θt,i − η√
Gt,ii+ε

· gt,i, ∀t,

where Gt ∈ Rp×p is usually a diagonal preconditioning matrix as a summation of squares of past
gradients, and ε > 0 a small constant.

2



Under review as a conference paper at ICLR 2020

RMSprop (Hinton et al., 2012) substitutes the ever accumulating matrixGt with a root mean squared
operation. Denoting the average of squared gradients as Eg◦gt , per iteration we compute: Eg◦gt+1 =

β2 ·Eg◦gt +(1−β2) ·(gt ◦gt), where β2 was first proposed as 0.9. Here, ◦ denotes the per-coordinate
multiplication. Then, RMSprop updates as—where a momentum term can also be optionally added:

θt+1,i = θt,i − η√
Eg◦gt+1,i+ε

· gt,i, ∀t.

Finally, Adam (Kingma & Ba, 2014), in addition, keeps an exponentially decaying average of past
gradients: Egt+1 = β1 · Egt + (1− β1) · gt, leading to the recursion:1

θt+1,i = θt,i − η√
Eg◦gt+1,i+ε

· Egt+1,i, ∀t,

where usually β1 = 0.9 and β2 = 0.999. Observe that Adam is equivalent to RMSprop when
β1 = 0, and when no bias correction is applied results in the same recursion.

3 DEMON: DECAYING MOMENTUM ALGORITHM

Algorithm 1 DEMON in momentum SGD

1: Parameters: # of iterations T , step size η,
momentum initial value βinit.

2: vt = θt = 0, otherwise randomly initialized.
3: for t = 0, . . . , T do

4: βt = βinit ·
(
1− t

T

)
(1−βinit)+βinit(1− t

T )
5: θt+1 = θt − ηgt + βtvt
6: vt+1 = βtvt − ηgt
7: end for

Algorithm 2 DEMON in Adam

1: Parameters: # of iterations T, step size η,
momentum initial value βinit, β2, ε = 10−8.

2: vt = θt = Eg◦g0 = 0, otherwise randomly
initialized.

3: for t = 0, . . . , T do

4: βt = βinit ·
(
1− t

T

)
(1−βinit)+βinit(1− t

T )
5: Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt)
6: mt,i = gt,1 + βtmt−1,i
7: θt+1,i = θt,i − η√

Eg◦gt+1,i+ε
·mt,i

8: end for

Motivation and interpretation. DEMON is motivated by learning rate rules: by decaying the mo-
mentum parameter, we decay the total contribution of a gradient to all future updates. Similar rea-
soning applies for learning rate decay routines: however, our goal here is to present a concrete and
easy-to-use momentum decay procedure, which can be used with or without learning rate routines,
as we show in the experimental section. The key component is the momentum decay schedule:

βt = βinit ·
(1− t

T )
(1−βinit)+βinit(1− t

T )
. (1)

The interpretation of this rule comes from the following argument: Assume fixed momentum pa-
rameter βt ≡ β; e.g., β = 0.9, as literature dictates. For our discussion, we will use the accelerated
SGD recursion. We know that v0 = 0, and vt = βvt−1 − ηgt−1. Then, the main recursion can be
unrolled into:

θt+1 = θt − ηgt − ηβgt−1 − ηβ2gt−2 + ηβ3vt−2 = · · · = θt − ηgt − η ·
t∑
i=1

(
βi · gt−i

)
Interpreting the above recursion, a particular gradient term gt contributes a total of η

∑
i β

i of its
“energy” to all future gradient updates. Moreover, for an asymptotically large number of iterations,
we know that β contributes on up to t−1 terms. Then,

∑∞
i=1 β

i = β
∑∞
i=0 β

i = β/(1−β). Thus, in
our quest for a decaying schedule and for a simple linear momentum decay, it is natural to consider
a scheme where the cumulative momentum is decayed to 0. Let βinit be the initial β; then at current
step twith total T steps, we design the decay routine such that: β/(1−β) = (1−t/T )βinit/(1−βinit).
This leads to equation 1.

Connection to previous algorithms. DEMON introduces an implicit discount factor. The main
recursions of the algorithm are the same with standard algorithms in machine learning. E.g., for
βt = β = 0.9 we obtain SGD with momentum, and for β = 0 we obtain plain SGD in Algorithm 1;

1For clarity, we will skip the bias correction step in this description of Adam; see Kingma & Ba (2014).
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in Algorithm 2, for β1 = 0.9 with a slightly adjustment of learning rate we obtain Adam, while for
β1 = 0 we obtain a non-accumulative AdaGrad algorithm. We choose to apply DEMON to a slightly
adjusted Adam—instead of vanilla Adam—to isolate the effect of the momentum parameter, since
the momentum parameter adjusts the magnitude of the current gradient as well in vanilla Adam.

Efficiency. DEMON requires only limited extra overhead and computation in comparison to the
vanilla counterparts, for the computation of βt.

Practical suggestions. For settings in which βinit is typically large, such as image classification,
we advocate for decaying momentum from βinit at t = 0, to 0 at t = T as a general rule. We also
observe and report improved performance by delaying momentum decay till later epochs. In many
cases, performance can be further improved by decaying to a small negative value, such as 0.3.

4 RELATED WORK

There are numerous techniques for automatic hyperparameter tuning. The most widely used are
learning rate adaptive methods, starting with AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Hinton et al., 2012), and Adam (Kingma & Ba, 2014). Adam (Kingma & Ba, 2014), the
most popular, introduced a momentum term, which is combined with the current gradient before
multiplying with an adaptive learning rate. Interest in closing the generalization difference between
adaptive methods and CM led to AdamW (Loshchilov & Hutter, 2017), by fixing the weight decay
of Adam, and Padam (Chen & Gu, 2018), by lowering the exponent of the second moment.

Asynchronous methods are commonly used in deep learning, and (Mitliagkas et al., 2016) show that
running SGD asynchronously is similar to adding a momentum-like term to SGD without assump-
tions of convexity of the objective function. They demonstrate this natural connection empirically
on CNNs. This implies that the momentum parameter needs to be tuned according to the level
of asynchrony. YellowFin (Zhang & Mitliagkas, 2017) is a learning rate and momentum adaptive
method for both the synchronous and asynchronous setting motivated by a quadratic model analysis
and robustness insights. In the non-convex setting, STORM (Cutkosky & Orabona, 2019) uses a
variant of momentum for variance reduction.

There is substantial research, both empirical and theoretical, into the convergence of momentum
methods (Wibisono & Wilson, 2015; Wibisono et al., 2016; Wilson et al., 2016; Kidambi et al.,
2018). In addition, (Sutskever et al., 2013) explored momentum schedules, with even increasing mo-
mentum schedules during training, inspired by Nesterov’s routines for convex optimization. There
is some work into reducing oscillations during training, by adapting the momentum (Odonoghue &
Candes, 2015). There is also work into adapting momentum in well-conditioned convex problems as
opposed to setting to zero (Srinivasan et al., 2018). Another approach in this area is to keep several
momentum vectors according to different β and combining them (Lucas et al., 2018). We are aware
of the theoretical work of (Yuan, 2016) which prove under certain conditions that momentum SGD
is equivalent to SGD with a rescaled learning rate, however our experiments in the deep learning
setting show slightly different behavior and understanding why is an exciting direction of research.

Smaller values of β have gradually been employed for Generative Adversarial Networks (GAN), and
recent developments in game dynamics (Gidel et al., 2018) show a negative momentum is helpful
for GANs.

5 EXPERIMENTS

We separate experiments into those with adaptive learning rate and those with adaptive momentum.
All settings, with exact hyper-parameters, are briefly summarized in Table 1 and comprehensively
detailed in Appendix A. We report improved performance by delaying the application of DEMON
where applicable, and report performance across different number of total epochs to demonstrate
effectiveness regardless of the training budget. Note that the predefined number of epochs we run
all experiments affects the proposed decaying momentum routine, by definition of βt.

5.1 ADAPTIVE METHODS

At first, we apply DEMON Adam (Algorithm 2) to a variety of models and tasks. We select vanilla
Adam as the baseline algorithm and include more recent state-of-the-art adaptive learning rate meth-
ods Quasi-Hyperbolic Adam (QHAdam) (Ma & Yarats, 2018) and AMSGrad (Reddi et al., 2019)
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Experiment short name Model Dataset Optimizer

RN18-CIFAR10-DEMONCM ResNet18 CIFAR10 DEMON CM
RN18-CIFAR10-DEMONAdam ResNet18 CIFAR10 DEMON Adam
VGG16-CIFAR100-DEMONCM VGG-16 CIFAR100 DEMON CM
VGG16-CIFAR100-DEMONAdam VGG-16 CIFAR100 DEMON Adam
WRN-STL10-DEMONCM Wide ResNet 16-8 STL10 DEMON CM
WRN-STL10-DEMONAdam Wide ResNet 16-8 STL10 DEMON Adam
LSTM-PTB-DEMONCM LSTM RNN Penn TreeBank DEMON CM
LSTM-PTB-DEMONAdam LSTM RNN Penn TreeBank DEMON Adam
VAE-MNIST-DEMONCM VAE MNIST DEMON CM
VAE-MNIST-DEMONAdam VAE MNIST DEMON Adam
NCSN-CIFAR10-DEMONAdam NCSN CIFAR10 DEMON Adam

Table 1: Summary of experimental settings.

30 epochs 75 epochs 150 epochs 300 epochs

Adam 16.58 ± .18 13.63 ± .22 11.90 ± .06 11.94 ± .06
AMSGrad 16.98 ± .36 13.43 ± .14 11.83 ± .12 10.48 ± .12
QHAdam 16.41 ± .38 15.55 ± .25 13.78 ± .08 13.36 ± .11

DEMON Adam 11.75 ± .15 9.69 ± .10 8.83 ± .08 8.44 ± .05

Table 2: RN18-CIFAR10-DEMONAdam generalization error. The number of epochs was predefined before
the execution of the algorithms.

in our comparison. See Appendix A.2.1 for details. We tune all learning rates in roughly multiples
of 3 and try to keep all other parameters close to those recommended in the original literature. For
DEMON Adam, we leave βinit = 0.9, β2 = 0.999 and decay from βinit to 0 in all experiments.

Residual Neural Network (RN18-CIFAR10-DEMONAdam). We train a ResNet18 (He et al.,
2016) model on the CIFAR-10 dataset. With DEMON Adam, we achieve the generalization error
reported in the literature (He et al., 2016) for this model, attained using CM and a curated learning
rate decay schedule, whilst all other methods are non-competitive. Refer to Table 2 for exact results.

In Figure 2 (Top row, two left-most plots), DEMON Adam is able to learn in terms of both loss and
accuracy after other methods have plateaued. Running 5 seeds, DEMON Adam outperforms all other
methods by a large 2%-5% generalization error margin with a small and large number of epochs.

Non-Residual Neural Network (VGG16-CIFAR100-DEMONAdam). For the CIFAR-100 dataset,
we train an adjusted VGG-16 model (Simonyan & Zisserman, 2014). Similarly to the previous
setting, we observe similar learning behavior of DEMON Adam, where it continues to improve after
other methods appear to begin to plateau. We note that this behavior results in a 1-3% decrease in
generalization error than typically reported results with the same model and task (Sankaranarayanan
et al., 2018), which are attained using CM and a curated learning rate decay schedule.

Running 5 seeds, DEMON Adam achieves an improvement of 3%-6% generalization error margin
over all other methods, both for a small and large number of epochs. Refer to Figure 2 (Top row,
right-most plot) and Table 3 for more details.

Wide Residual Neural Network (WRN-STL10-DEMONAdam). The STL-10 dataset presents a
different challenge with a significantly smaller number of images than the CIFAR datasets, but in

VGG-16 Wide Residual 16-8

75 epochs 150 epochs 300 epochs 50 epochs 100 epochs 200 epochs

Adam 37.98± .20 33.62± .11 31.09± .09 23.35± .20 19.63± .26 18.65± .07
AMSGrad 40.67± .65 34.46± .21 31.62± .12 21.73± .25 19.35± .20 18.21± .18
QHAdam 36.53± .20 32.96± .11 30.97± .10 21.25± .22 19.81± .18 18.52± .25

DEMON Adam 32.40± .19 28.84± .18 27.11± .19 19.42± .10 18.36± .11 17.62± .12

Table 3: VGG16-CIFAR100-DEMONAdam and WRN-STL10-DEMONAdam generalization error. The num-
ber of epochs was predefined before the execution of the algorithms.
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LSTM VAE NCSN

25 epochs 39 epochs 50 epochs 100 epochs 200 epochs 512 epochs

Adam 115.54± .64 115.02± .52 136.28± .18 134.64± .14 134.66± .17 8.15± .20
AMSGrad 108.07± .19 107.87± .25 137.89± .12 135.69± .03 134.75± .18 -
QHAdam 112.52± .23 112.45± .39 136.69± .17 134.84± .08 134.12± .12 -

DEMON Adam 101.57± .32 101.44± .47 134.46± .17 134.12± .08 133.87± .21 8.07± .08

Table 4: PTB-LSTM-DEMONAdam generalization perplexity, VAE-MNIST-DEMONAdam generalization loss
and NCSN-CIFAR10-DEMONAdam inception score.

higher resolution. We train a Wide Residual 16-8 model (Zagoruyko & Komodakis, 2016) for this
task. In this setting, we note again the behavior of DEMON Adam significantly outperforming other
methods in the latter stages of training.

Running 5 seeds, DEMON Adam outperforms all other methods by a 0.5%-2% generalization error
margin with a small and large number of epochs. Refer to Figure 2 (Bottom row, left-most plot) and
Table 3 for more details.

LSTM (PTB-LSTM-DEMONAdam). Language modeling can have gradient distributions which
are sharp; for example, in the case of rare words. We use an LSTM (Hochreiter & Schmidhuber,
1997) model to this task. We observe overfitting for all adaptive methods.

Similar to above, running 5 seeds, DEMON Adam outperforms all other methods by a 6-14 general-
ization perplexity margin, with both a small and large number of epochs. Refer to Figure 2 (Bottom
row, middle plot) and Table 4 for more details.

Variational AutoEncoder (VAE-MNIST-DEMONAdam). Generative models are a branch of un-
supervised learning that try to learn the data distribution. VAEs (Kingma & Welling, 2015) pair a
generator network with a second Neural Network, a recognition model that performs approximate
inference, and can be trained with backpropagation. We train VAEs on the MNIST dataset.

Running 5 seeds, DEMON Adam outperforms all other methods, particularly for smaller number of
epochs. Refer to Figure 2 (Bottom row, right-most plot) and Table 4 for more details.

Noise Conditional Score Network (NCSN-CIFAR10-DEMONAdam). NCSN (Song & Ermon,
2019) is a recent generative network achieving state-of-the-art inception score on CIFAR10. NCSN
estimates the gradients of the data distribution with score matching. Samples are then produced via
Langevin dynamics using those gradients. We train a NCSN on the CIFAR10 dataset and, using the
official implementation, were unable to reproduce the reported score in the literature. NSCN trained
with Adam achieves a superior inception score in Table 4, however the produced images in Figure 1
exhibit a noticeably unnatural green compared to those produced by DEMON Adam.

Figure 1: Randomly selected CIFAR10 images generated with NCSN. Left: Real CIFAR10 images. Middle:
Adam. Right: DEMON Adam.

5.2 ADAPTIVE MOMENTUM METHODS

We apply DEMON CM (Algorithm 1) to a variety of models and tasks. Since CM with learning rate
decay is most often used to achieve the state-of-the-art results with the architectures and tasks in
question, we include CM with learning rate decay as the target to beat. CM with learning rate decay
is implemented with a decay on validation error plateau, where we hand-tune the number of epochs
to define plateau. Recent adaptive momentum methods included in this section are Aggregated
Momentum (AggMo) (Lucas et al., 2018), and Quasi-Hyperbolic Momentum (QHM) (Ma & Yarats,
2018). We exclude accelerated SGD (Jain et al., 2017) due to difficulties in tuning. See Appendix
A.2.2 for details. Similar to the last section, we tune all learning rates in roughly multiples of 3 and
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Figure 2: Top row, two left-most plots: RN18-CIFAR10-DEMONAdam for 300 epochs. Top
row, right-most plot: VGG16-CIFAR100-DEMONAdam for 300 epochs. Bottom row, left-most plot:
WRN-STL10-DEMONAdam for 200 epochs. Bottom row, middle plot: PTB-LSTM-DEMONAdam for 25
epochs. Bottom row, right-most plot: VAE-MNIST-DEMONAdam for 200 epochs. Dotted and solid lines
represent training and generalization metrics respectively. Shaded bands represent one standard deviation.

30 epochs 75 epochs 150 epochs 300 epochs

CM learning rate decay 11.29 ± .35 9.05 ± .07 8.26 ± .07 7.97 ± .14
AggMo 18.85 ± .27 13.02 ± .23 11.95 ± .15 10.94 ± .12
QHM 14.65 ± .24 12.66 ± .19 11.27 ± .13 10.42 ± .05

DEMON CM 10.89 ± .12 8.97 ± .16 8.39 ± .10 7.58 ± .04

Table 5: RN18-CIFAR10-DEMONCM generalization error. The number of epochs was predefined before the
execution of the algorithms.

try to keep all other parameters close to those recommended in the original literature. For DEMON
CM, we leave βinit = 0.9 for most experiments and generally decay from βinit to 0.

Residual Neural Network (RN18-CIFAR10-DEMONCM). We train a ResNet18 model on the
CIFAR-10 dataset. With DEMON CM, we achieve better generalization error than CM with learning
rate decay, the optimizer for producing state-of-the-art results with ResNet architecture. It is very
surprising that decaying momentum can produce even better performance relative to learning rate
decay.

Running 5 seeds, DEMON CM outperforms all other adaptive momentum methods by a large 3%-8%
validation error margin with a small and large number of epochs and is competitive or better than
CM with learning rate decay. In Figure 3 (Top row, two left-most plots), DEMON CM is observed to
continue learning after other adaptive momentum methods appear to begin to plateau.

Non-Residual Neural Network (VGG16-CIFAR100-DEMONCM). For the CIFAR-100 dataset, we
train an adjusted VGG-16 model. In Figure 3 (Top row, right-most plot), we observe DEMON CM
to learn slowly initially in loss and error, but similar to the previous setting it continues to learn after
other methods begin to plateau, resulting in superior final generalization error.

Running 5 seeds, DEMON CM achieves an improvement of 1%-8% generalization error margin over
all other methods. Refer to Table 6 for more details.

VGG-16 Wide Residual 16-8

75 epochs 150 epochs 300 epochs 75 epochs 150 epochs 300 epochs

CM learning rate decay 35.29± .59 30.65± .31 29.74± .43 21.05± .27 17.83± 0.39 15.16± .36
AggMo 42.85± .89 34.25± .24 32.32± .18 22.70± .11 20.06± .31 17.90± .13
QHM 42.14± .79 33.87± .26 32.45± .13 22.86± .15 19.40± .23 17.79± .08

DEMON CM 34.35± .44 30.59± .26 28.99± .16 19.45± .20 15.98± .40 13.67± .13

Table 6: VGG16-CIFAR100-DEMONCM and WRN-STL10-DEMONCM generalization error. The number of
epochs was predefined before the execution.
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LSTM VAE

25 epochs 39 epochs 50 epochs 100 epochs 200 epochs

CM learning rate decay 89.59± .07 87.57± .11 140.51± .73 139.54± .34 137.33± .49
AggMo 89.09± .16 89.07± .15 139.69± .17 139.07± .26 137.64± .20
QHM 94.47± .19 94.44± .13 145.84± .39 140.92± .19 137.64± .20

DEMON CM 88.33± .16 88.32± .12 139.32± .23 137.51± .29 135.95± .21

Table 7: PTB-LSTM-DEMONCM (perplexity) and VAE-MNIST-DEMONCM (generalization loss) experiments.

Wide Residual Neural Network (WRN-STL10-DEMONCM). We train a Wide Residual 16-8 model
for the STL-10 dataset. In Figure 3 (Bottom row, left-most plot), training in both loss and error slows
down quickly for other adaptive momentum methods with a large gap with CM learning rate decay.
DEMON CM continues to improve and eventually catches up to CM learning rate decay.

Running 5 seeds, DEMON CM outperforms all other methods by a 1.5%-2% generalization error
margin with a small and large number of epochs. Refer to Table 6 for more details.

LSTM (PTB-LSTM-DEMONCM). We train an RNN with LSTM architecture for the PTB language
modeling task. Running 5 seeds, DEMON CM slightly outperforms other adaptive momentum meth-
ods in generalization perplexity, and is competitive with CM with learning rate decay. Refer to
Figure 3 (Bottom row, middle plot) and Table 7 for more details.

Variational AutoEncoder (VAE-MNIST-DEMONCM). We train the generative model VAE on the
MNIST dataset. Running 5 seeds, DEMON CM outperforms all other methods by a 2%-6% gener-
alization error for a small and large number of epochs. Refer to Figure 3 (Bottom row, right-most
plot) and Table 7 for more details.

Figure 3: Top row, two left-most plot: RN18-CIFAR10-DEMONCM for 300 epochs. Top row, right-most
plot: VGG16-CIFAR100-DEMONCM for 300 epochs. Bottom row, left-most plots: WRN-STL10-DEMONCM
for 200 epochs. Bottom row, middle plot: PTB-LSTM-DEMONCM for 25 epochs. Bottom row, right-most plot:
VAE-MNIST-DEMONCM for 200 epochs. Dotted and solid lines represent training and generalization metrics
respectively. Shaded bands represent 1 standard deviation.

6 CONCLUSION

We show the effectiveness of the proposed momentum decay rule, DEMON, across a number of
datasets and architectures. The adaptive optimizer Adam combined with DEMON is empirically
substantially superior to the popular Adam, in addition to other state-of-the-art adaptive learning
rate algorithms, suggesting a drop-in replacement. Surprisingly, it is also demonstrated that DEMON
CM is comparable to CM with learning rate decay. In cases where budget is limited, DEMON CM
may be preferable. DEMON is computationally cheap, easy to understand and use, and we hope it is
useful in practice and as a subject of future research.
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A EXPERIMENTS

We evaluated the momentum decay rule with Adam and CM on Residual CNNs, Non Residual
CNNS, RNNs and generative models. For CNNs, we used the image classification datasets CI-
FAR10, CIFAR100 and STL10 datasets. For RNNs, we used the language modeling dataset PTB.
For generative modeling, we used the MNIST and CIFAR10 datasets. For each network dataset
pair other than NSCN, we evaluated Adam, QHAdam, AMSGrad, DEMON Adam, AggMo, QHM,
DEMON CM, and CM with learning rate decay. For adaptive learning rate methods and adaptive
momentum methods, we generally perform a grid search over the learning rate. For CM, we gen-
erally perform a grid search over learning rate and initial momentum. For CM learning rate decay,
the learning rate is decayed by a factor of 0.1 after there is no improvement in validation loss for the
best of {1, 2, 3, 5, 10, 20, 30, 40} epochs.

A.1 SETUP

We describe the six test problems in this paper.

• CIFAR10 - ResNet18 CIFAR10 contains 60,000 32x32x3 images with a 50,000 training set,
10,000 test set split. There are 10 classes. ResNet18 (He et al., 2016) is an 18 layers deep CNN
with skip connections for image classification. Trained with a batch size of 128.

• CIFAR100 - VGG16 CIFAR100 is a fine-grained version of CIFAR-10 and contains 60,000
32x32x3 images with a 50,000 training set, 10,000 test set split. There are 100 classes. VGG16
(Simonyan & Zisserman, 2014) is a 16 layers deep CNN with extensive use of 3x3 convolutional
filters. Trained with a batch size of 128

• STL10 - Wide ResNet 16-8 STL10 contains 1300 96x96x3 images with a 500 training set, 800
test set split. There are 10 classes. Wide ResNet 16-8 (Zagoruyko & Komodakis, 2016) is a 16
layers deep ResNet which is 8 times wider. Trained with a batch size of 64.

• PTB - LSTM PTB is an English text corpus containing 929,000 training words, 73,000 validation
words, and 82,000 test words. There are 10,000 words in the vocabulary. The model is stacked
LSTMs (Hochreiter & Schmidhuber, 1997) with 2 layers, 650 units per layer, and dropout of 0.5.
Trained with a batch size of 20.

• MNIST - VAE MNIST contains 60,000 32x32x1 grayscale images with a 50,000 training set,
10,000 test set split. There are 10 classes of 10 digits. VAE (Kingma & Welling, 2015) with three
dense encoding layers and three dense decoding layers with a latent space of size 2. Trained with
a batch size of 100.

• CIFAR10 - NCSN CIFAR10 contains 60,000 32x32x3 images with a 50,000 training set, 10,000
test set split. There are 10 classes. NCSN (Song & Ermon, 2019) is a recent state-of-the-art
generative model which achieves the best reported inception score. We compute inception scores
based on a total of 50000 samples. We follow the exact implementation in and defer details to the
original paper.

A.2 METHODS

A.2.1 ADAPTIVE LEARNING RATE

Adam (Kingma & Ba, 2014), as previously introduced in section 2, keeps an exponentially decaying
average of squares of past gradients to adapt the learning rate. It also introduces an exponentially
decaying average of gradients.

The Adam algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and β2 < 1,
a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
θt+1,i = θt,i − η√

Eg◦gt+1,i+ε
· Egt+1,i, ∀t.
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AMSGrad (Reddi et al., 2019) resolves an issue in the proof of Adam related to the exponential
moving average Eg◦gt , where Adam does not converge for a simple optimization problem. Instead
of an exponential moving average, AMSGrad keeps a running maximum of Eg◦g .

The AMSGrad algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and
β2 < 1, a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
Êg◦gt+1,i = max(Êg◦gt,i , E

g◦g
t,i ),

θt+1,i = θt,i − η√
Êg◦gt+1,i+ε

· Egt+1,i, ∀t,

where Egt+1 and Eg◦gt+1 are defined identically to Adam.

QHAdam (Quasi-Hyperbolic Adam) (Ma & Yarats, 2018) extends QHM (Quasi-Hyperbolic Mo-
mentum), introduced further below, to replace both momentum estimators in Adam with quasi-
hyperbolic terms. This quasi-hyperbolic formulation is capable of recovering Adam and NAdam
(Dozat, 2016), amongst others.

The QHAdam algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and
β2 < 1, ν1, ν2 ∈ R, a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
Êgt+1 = (1 + βt+1

1 )−1 · Egt+1,

Êg◦gt+1 = (1 + βt+1
2 )−1 · Eg◦gt+1,

θt+1,i = θt,i − η

[
(1− ν1) · gt + ν1 · Êgt+1√
(1− ν2)g2t + ν2 · Êg◦gt+1 + ε

]
, ∀t,

where Egt+1 and Eg◦gt+1 are defined identically to Adam.

A.2.2 ADAPTIVE MOMENTUM

AggMo (Aggregated Momentum) (Lucas et al., 2018) takes a linear combination of multiple mo-
mentum buffers. It maintains K momentum buffers, each with a different discount factor, and
averages them for the update.

The AggMo algorithm is parameterized by learning rate η > 0, discount factors β ∈ RK , and uses
the update rule:

(Egt+1)
(i) = β(i) · (Egt )(i) + gt, ∀i ∈ [1,K],

θt+1,i = θt,i − η

[
1

K
·
K∑
i=1

(Egt+1)
(i)

]
, ∀t.

QHM (Quasi-Hyperbolic Momentum) (Ma & Yarats, 2018) is a weighted average of the momentum
and plain SGD. QHM is capable of recovering Nesterov Momentum (Nesterov, 1983), Synthesized
Nesterov Variants (Lessard et al., 2016), accSGD (Jain et al., 2017) and others.

The QHM algorithm is parameterized by learning rate η > 0, discount factor β < 1, immediate
discount factor ν ∈ R, and uses the update rule:

Egt+1 = β · Egt + (1− β) · gt,

θt+1,i = θt,i − η
[
(1− ν) · gt + ν · Egt+1

]
, ∀t.
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A.3 OPTIMIZER HYPERPARAMETERS

Table 8: Best parameters for CIFAR-10 with ResNet-18.

Optimization method epochs η other parameters

Adam 30 0.001

β1 = 0.9, β2 = 0.999
Adam 75 0.001
Adam 150 0.001
Adam 300 0.0003

AMSGrad 30 0.001

β1 = 0.9, β2 = 0.999
AMSGrad 75 0.001
AMSGrad 150 0.001
AMSGrad 300 0.001

QHAdam 30 0.001

ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99
QHAdam 75 0.0003
QHAdam 150 0.0003
QHAdam 300 0.0003

DEMON Adam 30 0.0001

βinit = 0.9, β2 = 0.999
DEMON Adam 75 0.0001
DEMON Adam 150 0.0001
DEMON Adam 300 0.0001

AggMo 30 0.03

β = [0, 0.9, 0.99]
AggMo 75 0.01
AggMo 150 0.01
AggMo 300 0.01

QHM 30 1.0

ν = 0.7, β = 0.999
QHM 75 0.3
QHM 150 0.3
QHM 300 0.3

DEMON CM 30 0.1

βinit = 0.9
DEMON CM 75 0.1
DEMON CM 150 0.03
DEMON CM 300 0.03

CM learning rate decay 30 0.1 β1 = 0.9, patience = 5
CM learning rate decay 75 0.1 β1 = 0.9, patience = 20
CM learning rate decay 150 0.1 β1 = 0.9, patience = 20
CM learning rate decay 300 0.1 β1 = 0.9, patience = 40
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Table 9: Best parameters for CIFAR-100 with VGG-16.

Optimization method epochs η other parameters

Adam 75 0.0003
β1 = 0.9, β2 = 0.999Adam 150 0.0003

Adam 300 0.0003

AMSGrad 75 0.0003
β1 = 0.9, β2 = 0.999AMSGrad 150 0.0003

AMSGrad 300 0.0003

QHAdam 75 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 150 0.0003

QHAdam 300 0.0003

DEMON Adam 75 0.00003
βinit = 0.9, β2 = 0.999DEMON Adam 150 0.00003

DEMON Adam 300 0.00003

AggMo 75 0.001
β = [0, 0.9, 0.99]AggMo 150 0.001

AggMo 300 0.001

QHM 75 0.1
ν = 0.7, β = 0.999QHM 150 0.03

QHM 300 0.03

DEMON CM 75 0.1
βinit = 0.9DEMON CM 150 0.03

DEMON CM 300 0.03

CM learning rate decay 75 0.1 β1 = 0.9, patience = 5
CM learning rate decay 150 0.03 β1 = 0.9, patience = 20
CM learning rate decay 300 0.03 β1 = 0.9, patience = 30
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Table 10: Best parameters for STL10 with Wide ResNet 16-8.

Optimization method epochs η

Adam 50 0.001
β1 = 0.9, β2 = 0.999Adam 100 0.0003

Adam 200 0.0003

AMSGrad 50 0.0003
β1 = 0.9, β2 = 0.999AMSGrad 100 0.0003

AMSGrad 200 0.0003

QHAdam 50 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 100 0.0003

QHAdam 200 0.0003

DEMON Adam 50 0.00003
βinit = 0.9, β2 = 0.999DEMON Adam 100 0.00003

DEMON Adam 200 0.00003

AggMo 50 0.03
β = [0, 0.9, 0.99]AggMo 100 0.03

AggMo 200 0.01

QHM 50 0.3
ν = 0.7, β = 0.999QHM 100 0.3

QHM 200 0.3

DEMON CM 50 0.1
βinit = 0.9DEMON CM 100 0.1

DEMON CM 200 0.1

CM learning rate decay 50 0.1 β1 = 0.9, patience = 10
CM learning rate decay 100 0.1 β1 = 0.9, patience = 10
CM learning rate decay 200 0.1 β1 = 0.9, patience = 20

Table 11: Best parameters for PTB with LSTM architecture.

Optimization method epochs η other parameters

Adam 25 0.0003
β1 = 0.9, β2 = 0.999Adam 39 0.0003

AMSGrad 25 0.001
β1 = 0.9, β2 = 0.999AMSGrad 39 0.001

QHAdam 25 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.999QHAdam 39 0.0003

DEMON Adam 25 0.0001
βinit = 0.9, β2 = 0.999DEMON Adam 39 0.0001

AggMo 25 0.03
β = [0, 0.9, 0.99]AggMo 39 0.03

QHM 25 1.0
ν = 0.7, β = 0.999QHM 39 1.0

DEMON CM 25 1.0 βinit = 0.5, βfinal = −0.5
DEMON CM 39 1.0 βinit = 0.3, βfinal = −0.5

CM learning rate decay 25 0.1 β1 = 0.9, smooth learning rate decay
CM learning rate decay 39 1.0 β1 = 0.0, smooth learning rate decay
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Table 12: Best parameters for MNIST with VAE.

Optimization method epochs η other parameters

Adam 50 0.001
β1 = 0.9, β2 = 0.999Adam 100 0.001

Adam 200 0.001

AMSGrad 50 0.001
β1 = 0.9, β2 = 0.999AMSGrad 100 0.001

AMSGrad 200 0.001

QHAdam 50 0.001
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 100 0.001

QHAdam 200 0.001

DEMON Adam 50 0.0001
βinit = 0.9, β2 = 0.999DEMON Adam 100 0.0001

DEMON Adam 200 0.0001

AggMo 50 0.000003
β = [0, 0.9, 0.99]AggMo 100 0.000003

AggMo 200 0.000003

QHM 50 0.0001
ν = 0.7, β = 0.999QHM 100 0.00003

QHM 200 0.00003

DEMON CM 50 0.00001
βinit = 0.9DEMON CM 100 0.00001

DEMON CM 200 0.000003

CM learning rate decay 50 0.00001 β1 = 0.9, patience = 5
CM learning rate decay 100 0.000003 β1 = 0.9, patience = 5
CM learning rate decay 200 0.000003 β1 = 0.9, patience = 20
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B ADDITIONAL PLOTS

Figure 4: Additional empirical results on adaptive learning rate methods. Left plot:
VGG16-CIFAR100-DEMONAdam for 300 epochs. Right plot: WRN-STL10-DEMONAdam for
200 epochs. Dotted and solid lines represent training and generalization metrics respectively.
Shaded bands represent 1 standard deviation.

Figure 5: Additional empirical results on RN18-CIFAR10-DEMONAdam. Top row: 30 epochs.
Middle row: 75 epochs. Bottom row: 150 epochs. Dotted and solid lines represent training and
generalization metrics respectively. Shaded bands represent 1 standard deviation.
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Figure 6: Additional empirical results on VGG16-CIFAR100-DEMONAdam. Top row: 75 epochs.
Bottom row: 150 epochs. Dotted and solid lines represent training and generalization metrics re-
spectively. Shaded bands represent 1 standard deviation.

Figure 7: Additional empirical results on WRN-STL10-DEMONAdam. Top row: 50 epochs. Bottom
row: 100 epochs. Dotted and solid lines represent training and generalization metrics respectively.
Shaded bands represent 1 standard deviation.
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Figure 8: Additional empirical results on PTB-LSTM-DEMONAdam for 39 epochs. Dotted and solid
lines represent training and generalization metrics respectively. Shaded bands represent 1 standard
deviation.

Figure 9: Additional empirical results on VAE-MNIST-DEMONAdam. Left: 50 epochs. Right: 100
epochs. Dotted and solid lines represent training and generalization metrics respectively. Shaded
bands represent 1 standard deviation.

Figure 10: Additional empirical results on adaptive momentum methods. Left plot:
VGG16-CIFAR100-DEMONCM for 300 epochs. Right plot: WRN-STL10-DEMONCM for 200
epochs. Dotted and solid lines represent training and generalization metrics respectively. Shaded
bands represent 1 standard deviation.
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Figure 11: Additional empirical results on RN18-CIFAR10-DEMONCM. Top row: 30 epochs. Mid-
dle row: 75 epochs. Bottom row: 150 epochs. Dotted and solid lines represent training and general-
ization metrics respectively. Shaded bands represent 1 standard deviation.
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Figure 12: Additional empirical results on VGG16-CIFAR100-DEMONCM. Top row: 75 epochs.
Bottom row: 150 epochs. Dotted and solid lines represent training and generalization metrics re-
spectively. Shaded bands represent 1 standard deviation.

Figure 13: Additional empirical results on WRN-STL10-DEMONCM. Top row: 50 epochs. Bottom
row: 100 epochs. Dotted and solid lines represent training and generalization metrics respectively.
Shaded bands represent 1 standard deviation.
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Figure 14: Additional empirical results on PTB-LSTM-DEMONCM for 39 epochs. Dotted and solid
lines represent training and generalization metrics respectively. Shaded bands represent 1 standard
deviation.

Figure 15: Additional empirical results on VAE-MNIST-DEMONCM. Left: 50 epochs. Right: 100
epochs. Dotted and solid lines represent training and generalization metrics respectively. Shaded
bands represent 1 standard deviation.
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