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ABSTRACT

Responding with knowledge has been recognized as an important capability for an
intelligent conversational agent. Yet knowledge-grounded dialogues, as training
data for learning such a response generation model, are difficult to obtain. Mo-
tivated by the challenge in practice, we consider knowledge-grounded dialogue
generation under a natural assumption that only limited training examples are avail-
able. In such a low-resource setting, we devise a disentangled response decoder in
order to isolate parameters that depend on knowledge-grounded dialogues from the
entire generation model. By this means, the major part of the model can be learned
from a large number of ungrounded dialogues and unstructured documents, while
the remaining small parameters can be well fitted using the limited training exam-
ples. Evaluation results on two benchmarks indicate that with only 1/8 training
data, our model can achieve the state-of-the-art performance and generalize well
on out-of-domain knowledge.

1 INTRODUCTION

Open domain dialogue systems, due to the applications on social chatbots such as Microsoft XiaoIce
(Shum et al., 2018) and virtual assistants such as Amazon Alexa (Ram et al., 2018), have drawn
increasing attention from the research community of natural language processing and artificial
intelligence. Thanks to the advances in neural sequence modeling (Vaswani et al., 2017; Sutskever
et al., 2014) and machine learning techniques (Li et al., 2017; 2016), such systems now are able to
reply with plausible responses regarding to conversation history, and thus allow an agent to have a
natural conversation with humans. On the other hand, when people attempt to dive into a specific
topic, they may clearly realize the gap between the conversation with a state-of-the-art system and the
conversation with humans, as the system is only able to awkwardly catch up with the conversation,
owing to the lack of knowledge of the subject.

We consider grounding open domain dialogue generation with knowledge which is assumed to be
unstructured documents. While documents are abundant on the Web, it is difficult to obtain large
scale dialogues that are naturally grounded on the documents for learning of a neural generation
model. To overcome the challenge, some recent work (Zhou et al., 2018b; Dinan et al., 2019) resorts
to crowd-sourcing and builds benchmarks with the source of Wikipedia. On the one hand, the datasets
pave the way to the recent research on knowledge-grounded response generation/selection (Zhao
et al., 2019; Lian et al., 2019; Li et al., 2019); on the other hand, we argue that there still a long
way to go for application of the existing models in real scenarios, since (1) the models, especially
those achieve state-of-the-art performance via sophisticated neural architectures, just overfit to the
small training data (e.g., ∼ 18k dialogues). An evidence is that when they are applied to documents
out of the domain of the training data, their performance drops dramatically, as will be seen in our
experiments; and (2) it is difficult to collect enough training data for a new domain or a new language,
as human effort is expensive.

As a step towards application of knowledge-grounded dialogue generation in real-world systems, we
explore how to learn a model with as few knowledge-grounded dialogues as possible, yet the model
achieves state-of-the-art performance and generalizes well on out-of-domain documents. The key
idea is to make parameters that rely on knowledge-grounded dialogues small and independent by
disentangling the response decoder, and thus we can learn the major part of the generation model
from ungrounded dialogues and plain text that are much easier to acquire. Specifically, the encoder of
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the generation model consists of two independent components with one for encoding the context and
the other for representing the knowledge. The decoder is decomposed into conditionally independent
components including a language model, a context processor, and a document reader, and the three
components are coordinated by a decoding manager that dynamically determines which component is
activated for response prediction. The language model predicts the next word of a response based on
the prior sub-sequence, and the context processor ensures coherence of the dialogue by attending over
the conversation history. Both components, along with the context encoder, are independent with the
extra knowledge, and thus can be pre-trained using the ungrounded dialogues. The knowledge encoder
has nothing to do with dialogues, and thus can be pre-trained with the plain text. The document
reader is responsible for grounding response generation on the document. This part, together with the
decoding manager, depends on the knowledge-grounded dialogues, but the parameters are small in
size, and estimation of these parameters just requires a few training examples depending on specific
domains or tasks. By fixing the pre-trained parameters, we can adapt the model to a new domain with
only a little cost.

We pre-train the language model, the context processor, and the context encoder with a clean version
of Reddit data (Dziri et al., 2018), pre-train the knowledge encoder using a Wikipedia dump available
on ParlAI, and compare our model with baselines that hold state-of-the-art performance on two
benchmarks including the Wizard of Wikipedia (Wizard) (Dinan et al., 2019) and CMU Document
Grounded Conversations (CMU DoG) (Zhou et al., 2018b). Evaluation results indicate that (1) to
achieve the state-of-the-art performance, our model only needs 1/8 training data (∼ 2.3k dialogues on
Wizard and ∼ 0.4k dialogues on CMU DoG); (2) on Wizard, the model significantly outperforms the
baseline models on out-of-domain documents even though the baselines have leveraged all training
data, while our model is only learned with 1/16 training data; and (3) the model performs comparably
well on in-domain and out-of-domain documents in a low-resource setting.

Contributions in this work are three-fold: (1) exploration of knowledge-grounded dialogue generation
under a low-resource setting; (2) proposal of a disentangled decoder that allows us to pre-train most
of the parameters using a large number of ungrounded dialogues and documents; and (3) empirical
verification of the effectiveness of the model on two benchmarks.

2 APPROACH

We elaborate our approach to learning a response generation model with knowledge-grounded
dialogues, ungrounded dialogues, and plain text.

2.1 PROBLEM FORMALIZATION

Suppose that we have a datasetDS = {(USi , DS
i , r

S
i )}ni=1, where ∀i ∈ {1, . . . , n},DS

i is a document
that serves as the background of the dialogue (USi , r

S
i ), U

S
i = (uSi,1, . . . u

S
i,ni

) is the context of the
dialogue with uSi,j the j-th utterance, and rSi is the response regarding to USi and DS

i . In addition
to DS , we further assume that there are DP = {DP

i }Ni=1 and DC = {(UCj , rCj )}Mj=1 with DP
i a

document and (UCj , r
C
j ) a context-response pair, ∀i ∈ {1, . . . N} and ∀j ∈ {1, . . . ,M}. N � n

and M � n. The goal is to learn a generation model P (r|U,D; θ) (θ denotes the parameters of the
model) with D = {DS ∪ DP ∪ DC}. Thus, given a new document D with the associated dialogue
context U , one can generate a response r following P (r|U,D; θ).

Our idea is inspired by the observation on the nature of open domain dialogues: despite the fact
that a dialogue is based on a document D, words and utterances in the dialogue are not always
related to D (e.g., a reply just echoing the previous turn), even for the turns from the interlocutor
who has access to D, as demonstrated by the examples in (Dinan et al., 2019; Zhou et al., 2018b).
Therefore, we postulate that formation of a response could be decomposed into three uncorrelated
actions: (1) selecting a word according to what has generated to make the sentence linguistically
valid (corresponding to a language model); (2) selecting a word according to the context to make the
dialogue coherent (corresponding to a context processor); and (3) selecting a word according to the
extra knowledge to ground the dialogue (corresponding to a document reader). The three actions can
be independently learned, which becomes the key to aiding the small DS with the large DP and DC .
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Figure 1: Architecture of the generation model.

2.2 GENERATION MODEL

Figure 1 illustrates the architecture of the model. The model is made up of a context encoder, a
knowledge encoder, a decoder, and a decoding manager. The major difference lies in the decoding
phase which simulates the aforementioned actions by decomposing the decoder into a language model,
a context processor, and a document reader. The three components are independent conditioned on
the hidden states of the decoder, and are coordinated by the manager in response prediction.

2.2.1 ENCODERS

Given a dialogue context U = (u1, . . . , ul), the context encoder concatenates {ui}li=1 as
(wu1 , . . . , w

u
i , . . . , w

u
lu
) with wui the i-th word in the sequence, and then exploits a recurrent neural

network with gated recurrent units (GRUs) (Chung et al., 2014) to transform the word sequence into
a sequence of hidden vectors given by

hu1 , . . . ,h
u
i , . . . ,h

u
lu = GRUθe(e

u
1 , . . . , e

u
i , . . . , e

u
lu), (1)

where eui is the embedding of wui initialized with GloVe (Pennington et al., 2014). {hui }
lu
i=1 serve as

the input of the context processor in decoding.

In the meanwhile, given a document D = (d1, . . . , di, . . . , dm) with di the i-th sentence, the
knowledge encoder represents di as a sequence of hidden vectors through a bidirectional GRU (Cho
et al., 2014):

hdi,1, . . . ,h
d
i,j , . . . ,h

d
i,ld

= BiGRUθk(e
d
i,1, . . . , e

d
i,j , . . . , e

d
i,ld

), (2)

where edi,j is the embedding of the j-th word in di initialized using GloVe. {hdi,j}
i=m,j=ld
i=1,j=1 are fed to

the document reader to ground response prediction on D.

Different from Transformer Memory Network (Dinan et al., 2019), our model does not perform
knowledge selection in the encoding phase (e.g., via attention over {hdi,j}

i=m,j=ld
i=1,j=1 ), but leaves it to

the decoding phase. This could remove the dependency between context encoding and knowledge
encoding, and facilitate us to estimate θe and θk with DP and DC respectively.

2.2.2 DISENTANGLED DECODER

The decoder maintains a hidden sequence {st}lrt=1. Let ert−1 be the embedding of the word predicted
at step t− 1, then st is defined by

st = GRUθd(e
r
t−1, st−1), (3)

where s0 = hulu . Based on {st}lrt=1, the three components are defined as follows:

Language Model. The language model predicts a word based on st. For words that do not need
the context and the document (e.g., function words), employing the language model may enhance
decoding speed without loss of accuracy. Formally, the generation probability is defined by

P (wrt |wr1:t−1) = MLPθl(st). (4)
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Context Processor. The context processor predicts a word by attending over {hui }
lu
i=1. The word

could be either fetched from the vocabulary or copied from the context U . Let cut be the context
vector at step t, then cut can be formulated as

cut =
∑lu

i=1
αt,ih

u
i , (5)

where αt,i = exp(et,i)/
∑
i exp(et,i) denotes the attention distribution and et,i = gθs(st,h

u
i ) =

v>tanh(Whh
u
i +Wsst + b). The generation probability is defined by

P (wrt |U,wr1:t−1) = pgenPvocab(w
r
t |U,wr1:t−1) + (1− pgen)

∑
i:wui =w

r
t

αt,i. (6)

In Equation (6), the first term models the correspondence between a context and a response, and is for-
mulated as Pvocab(w

r
t |U,wr1:t−1) = MLPθv ([st; c

u
t ]). The second term models the copy mechanism,

and pgen = MLPθg ([c
u
t ; st; e

r
t−1]) ∈ [0, 1] a trade-off between the two terms.

Document Reader. The document reader goes through the document D by a hierarchical attention
mechanism, and predicts a word in a similar way as Equation (6). Formally, let {βst,i}mi=1 and
{βwt,i,j}

i=m,j=ld
i=1,j=1 be the sentence-level attention distribution and the word-level attention distributions

respectively at step t, then ∀i ∈ {1, . . . ,m} and ∀j ∈ {1, . . . , ld}, βst,i and βwt,i,j are calculated by

βst,i = exp(gθs′ (st, ĥ
d
i ))/Zs; βwt,i,j = exp(gθs′ (st,h

d
i,j))/Zw, (7)

where Zs and Zw are normalization factors, and ĥdi represents the average pooling of {hdi,j}
ld
j=1. A

knowledge vector cdt that is analogous to cut is then defined by

cdt =
∑m

i=1
βst,iĥ

d
i . (8)

Finally, the generation probability is formulated as

P (wrt |D,wr1:t−1) = p′genPvocab(w
r
t |D,wr1:t−1) + (1− p′gen)

∑
i,j:wdi,j=w

r
t

βt,i,j , (9)

where βt,i,j = βst,i · βwt,i,j , wdi,j is the j-th word of di, Pvocab(w
r
t |D,wr1:t−1) = MLPθv′ ([st; c

d
t ]), and

p′gen = MLPθg′ ([c
d
t ; st; e

r
t−1]) acts as a trade-off between the common term and the copy term.

2.2.3 DECODING MANAGER

The three components are controlled by the decoding manager with one picked up at each step of
response prediction. Then, the probability to predict word wrt can be formulated as

P (wrt |U,D,wr1:t−1) = [P (wrt |wr1:t−1);P (wrt |U,wr1:t−1);P (wrt |D,wr1:t−1)] · πt. (10)

In training, to handle the discrete and undifferentiable process, we employ the Gumbel trick (Jang
et al., 2016) and define πt as

πt = gumbel softmax(fπ(st−1), τ) ∈ R3×1, (11)

where fπ(·) = MLPθπ (·), gumbel softmax(·) denotes the Gumbel-Softmax function (Jang et al.,
2016), and τ is the temperature (hyperparameter). πt approaches to a one-hot vector when τ → 0.
We start from a high temperature and gradually reduce it. In test, we discretize πt as a one-hot vector
according to the distribution in Equation (11).

2.3 LEARNING DETAILS

Let us denote {θol, θoc, θod} as the parameters of word embedding in response prediction corre-
sponding to the language model, the context processor, and the document reader respectively. For
simplicity, we let θoc = θod = θo. Then {θe; θd; θs; θv; θg; θo} (including parameters of the context
encoder, parameters of the hidden states of the decoder, and parameters of the context processor) are
estimated with maximum likelihood estimation (MLE) on DC = {(UCj , rCj )}Mj=1.
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To estimate θl (i.e., parameters of the language model) and θol, we construct a corpus DLM =

{uLMj }M ′

j=1 with uLMj a response or an utterance from a context in DC , and then learn the parameters
with MLE on DLM with θd fixed.

Inspired by Peters et al. (2018), we estimate θk (i.e., parameters of the knowledge encoder) using a
bidirectional language model by minimizing the following loss function on DP :

` = − 1

N

N∑
i=1

( ld∑
t=1

(log p(wt|w1:t−1) + log p(wt|wt+1:ld))
)
. (12)

The remaining parameters {θs′ ; θv′ ; θg′ ; θπ} (i.e., parameters of the document reader and parameters
of the decoding manager) are learned with MLE on DS with all other parameters fixed. Note that
parameters of word embedding in the encoders are supposed to be included in θe and θk.

Remarks. We focus on document-grounded dialogue generation in this work, but the approach
proposed actually provides a recipe for a general solution to low-resource knowledge-grounded
dialogue generation in which the knowledge could be a structured knowledge base, images, or videos.
To do that, one only needs to modify the knowledge encoder and the document reader to make them
compatible with the specific type of knowledge, and pre-train the knowledge encoder, if possible, on
single-modal knowledge data.

3 EXPERIMENTS

We test the proposed model on Wizard of Wikipedia (Wizard) published in Dinan et al. (2019) and
CMU Document Grounded Conversations (CMU DoG) published in Zhou et al. (2018b).

3.1 DATASETS AND EVALUATION METRICS

Both Wizard and CMU DoG consist of open domain dialogues grounded on wiki articles, and
the dialogues are collected from crowd-workers on Amazon Mechanical Turk. In Wizard, the
articles cover a wide range of topics (totally 1, 365) such as bowling, Gouda cheese, and Arnold
Schwarzenegger, etc. Each conversation happens between a wizard who has access to knowledge
about a specific topic and an apprentice who is just eager to learn from the wizard about the topic. On
average, each wizard turn is associated with 60.8 sentences retrieved from the wiki articles and each
sentence contains 30.7 words. The data is split as a training set, a validation set, and a test set by the
data owner. The test set is split into two subsets: Test Seen and Test Unseen. Test Seen contains new
dialogues with topics appearing in the training set, while topics in Test Unseen never appear in the
training set and the validation set, and thus the data allow us to examine the generalization ability of
models. The task is to generate a response for each wizard turn based on the dialogue history and the
retrieved knowledge. As pre-processing, for each wizard turn in the training/validation/test sets, the
latest 128 words in the dialogue history are kept as a context, and 32 sentences with ground-truth
sentence included are randomly picked as the knowledge. The pre-processing strictly follows the
procedure in Dinan et al. (2019), and is conducted with the code published on ParlAI1.

Different from Wizard, CMU DoG focuses on movie domain (although covering various genres). In
addition to wizard & apprentice, the data also contain dialogues between two workers who know the
document and try to discuss the content in depth. Each document consists of 4 sections and these
sections are shown to the workers one by one every 3 turns (the first section lasts 6 turns due to initial
greetings). On average, each section contains 8.22 sentences and 27.86 words per sentence. The data
has been divided into a training set, a validation set, and a test set by the data owner. The task is
to generate a response for each turn from a worker who has access to the document based on the
dialogue history and the associated section as knowledge. Similar to Wizard, the latest 128 words in
the dialogue history are kept as a context. More details of the datasets can be found in Appendix A.

We choose Reddit Conversation Corpus2 cleaned by Dziri et al. (2018) as DC . The data contain
15, 120, 136 context-response pairs for training and 830, 777 context-response pairs for validation.

1
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia

2
https://github.com/nouhadziri/THRED
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Models
Metrics PPL F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Average Extrema Greedy

TMN (Dinan et al., 2019) 66.5 15.9 0.184 0.073 0.033 0.017 0.844 0.427 0.658
ITDD (Li et al., 2019) 17.8 16.2 0.158 0.071 0.040 0.025 0.841 0.425 0.654

FULL DATA 23.0 18.0 0.218 0.115 0.075 0.055 0.835 0.434 0.658
1/2 DATA 25.3 17.5 0.217 0.113 0.073 0.053 0.833 0.431 0.657
1/4 DATA 29.2 16.9 0.212 0.105 0.064 0.044 0.833 0.429 0.658
1/8 DATA 33.5 16.3 0.206 0.098 0.059 0.039 0.832 0.425 0.658

1/16 DATA 38.6 15.7 0.197 0.091 0.052 0.033 0.834 0.428 0.655

Table 1: Evaluation results Test Seen of Wizard.

On average, each context consists of 3.5 utterances. We use the Wikipedia dump published on
ParlAI3 as DP . The training set and the validation set contain 5, 233, 799 articles and 52, 867 articles
respectively with the first paragraph kept for learning. Articles that appear in Wizard and CMU DoG
are removed beforehand. For both Wizard and CMU DoG, the vocabulary is made up of top 60, 000
most frequent words appearing in DS ∪ DP ∪ DC with other words regarded as 〈unk〉.
Following the common practice in evaluating open domain dialogue generation, we choose perplex-
ity (PPL) of the ground-truth response, BLEU (Papineni et al., 2002), and BOW Embedding (Liu
et al., 2016) as metrics. Besides, we also follow Dinan et al. (2019) and employ unigram F1
as a metric. BLEU and Embedding-based metrics are computed with an NLG evaluation open
source available at https://github.com/Maluuba/nlg-eval, and unigram F1 is calcu-
lated with the code published at https://github.com/facebookresearch/ParlAI/
blob/master/parlai/core/metrics.py. Besides quantitative evaluation, we also recruit
human annotators to do qualitative analysis on response quality, which is presented in Appendix B.

3.2 BASELINES

The following models are selected as baselines:

Transformer Memory Network (TMN). The model proposed by Dinan et al. (2019) along with the
release of the Wizard data. It is built upon a transformer architecture with an external memory hosting
the knowledge. We implement the model using the code shared at https://github.com/
facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia.

Incremental Transformer with Deliberation Decoder (ITDD). A transformer-based model pub-
lished very recently on ACL’19 (Li et al., 2019). The encoder incrementally represents multi-turn
dialogues and knowledge, and the decoder conducts response decoding in two passes similar to
the deliberation network in machine translation. We implement the model using the code shared at
https://github.com/lizekang/ITDD.

Note that to make the comparison fair, we employ the end-to-end version of TMN without the
knowledge regularization in learning. After all, one can include ground-truth signals on knowledge
selection in both our model and TMN, and improve the two in the same way, although such signals
are not available in most scenarios (e.g., in CMU DoG).

3.3 EVALUATION RESULTS

To simulate a low-resource scenario, we start from using the full training data as DS , and gradually
reduce the number of training examples by halving the training set. Note that baseline models are
learned with the full training sets. Table 1 and Table 2 report evaluation results on Test Seen and Test
Unseen of Wizard respectively, and Table 3 reports evaluation results on CMU DoG. Through pre-
training 95% parameters with the ungrounded dialogues and the plain text and fixing the parameters
afterwards, our model holds the state-of-the-art performance in terms of most metrics on all test sets
even when the training sets have been cut to 1/8, and has stable performance on Test Unseen with
respect to different training sizes. Particularly, the model achieves more significant improvement over
the baselines on Test Unseen, and when the training set shrinks, the performance gap on Test Seen and
Test Unseen becomes marginal. The results show a good generalization ability of the proposed model
on out-of-domain knowledge. ITDD achieves low PPL on both Test Seen and CMU DoG, which
may stem from overfitting by the two-pass decoder. As an evidence, the model is just comparable

3
https://github.com/facebookresearch/ParlAI/tree/master/parlai/tasks/wikipedia
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Models
Metrics PPL F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Average Extrema Greedy

TMN (Dinan et al., 2019) 103.6 14.3 0.168 0.057 0.022 0.009 0.839 0.408 0.645
ITDD (Li et al., 2019) 44.8 11.4 0.134 0.047 0.021 0.011 0.826 0.364 0.624

FULL DATA 25.6 16.5 0.207 0.101 0.062 0.043 0.828 0.422 0.628
1/2 DATA 27.7 16.7 0.208 0.103 0.064 0.045 0.827 0.421 0.647
1/4 DATA 32.4 16.2 0.205 0.098 0.060 0.041 0.828 0.423 0.650
1/8 DATA 35.8 16.0 0.201 0.093 0.054 0.035 0.831 0.419 0.653

1/16 DATA 41.0 15.3 0.191 0.087 0.050 0.032 0.832 0.424 0.652

Table 2: Evaluation results on Test Unseen of Wizard.

Models
Metrics PPL F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Average Extrema Greedy

TMN (Dinan et al., 2019) 75.2 9.9 0.115 0.040 0.016 0.007 0.789 0.399 0.615
ITDD (Li et al., 2019) 26.0 10.4 0.095 0.036 0.017 0.009 0.748 0.390 0.587

FULL DATA 54.4 10.7 0.150 0.057 0.025 0.012 0.809 0.413 0.633
1/2 DATA 57.0 10.4 0.142 0.052 0.022 0.010 0.808 0.414 0.635
1/4 DATA 61.7 10.5 0.131 0.046 0.019 0.009 0.781 0.402 0.613
1/8 DATA 67.6 10.2 0.121 0.044 0.019 0.009 0.787 0.407 0.622

Table 3: Evaluation results on CMU DoG.
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Figure 2: Performance of variants of the proposed model on Wizard. (a) Comparison of parameter
fine-tuning and parameter fixing on Test Seen. (b) Comparison of parameter fine-tuning and parameter
fixing on Test Unseen. (c) Results of pre-training ablation on Test Seen. (d) Results of pre-training
ablation on Test Unseen.

with TMN on most metrics except PPL on Test Seen and CMU DoG, and is worse than our model on
Test Unseen even in terms of PPL.

3.4 DISCUSSIONS

In addition to the performance of the model under low-resource settings, we are also curious about
Q1: what if we fine-tune the pre-trained parameters, rather than fixing them, with the training data of
the knowledge-grounded dialogues, given that pre-training→ fine-tuning has become the fashion in
NLP research and engineering? Q2: can we somehow leverage the ungrounded dialogues and the
plain text in learning of TMN, and in this case, will there be any change in the comparison with our
model? and Q3: what is the impact of pre-training to different components of the proposed model?

Answer to Q1: Figure 2(a) and Figure 2(b) compare our models with fine-tuned parameters and fixed
parameters on Test Seen and Test Unseen respectively. Basically, when there are enough training
data (e.g., > 1/2), fine-tuning can further improve the model on both in-domain and out-of-domain
knowledge. On the other hand, when the training size is small, which is the assumption of the paper,
fine-tuning may cause overfitting and lead to performance drop on the test sets. Test Unseen is more
vulnerable than Test Seen, and the smaller the training size is, the bigger the gap is between the model
with fixed parameters and the model with fine-tuned parameters. Therefore, in a low-resource setting
(e.g., less than 5k training dialogues), it is better to fix the pre-trained parameters and only estimate
the remaining 5% parameters with the training data.

Answer to Q2: Normally, it is not trivial to learn an entangled architecture like TMN with ungrounded
dialogues and plain text. However, to make the comparison even more fair, we first pre-train a
transformer-based encoder-decoder with the Reddit data. The encoder is fixed and used for TMN, and
the parameters of the decoder is used to initialize the parameters of the decoder of TMN. Then, we pre-
train the document representation in TMN with the Wikipedia dump. Finally, the knowledge attention
in encoding and the decoder are learned (fine-tuned) with the training data of knowledge-grounded
dialogues, as knowledge and dialogue contexts are entangled in the two modules. Figure 3 compares
the pre-trained TMN with our model. Even though we have tried our best to make TMN use DC
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Figure 3: Comparison with pre-trained TMN on Wizard.

and DP , it is still much worse than our model. The results indicate the importance of disentangling
to leveraging ungrounded dialogues and plain text for low-resource knowledeg-grounded dialogue
generation.

Answer to Q3: Figure 2(c) and Figure 2(d) show the results of ablation study in terms of pre-training.
-lm means that θl and θol are estimated using DS together with {θs′ ; θv′ ; θg′ ; θπ}. Similarly, -context
and -document mean that pre-training is removed from {θe; θd; θs; θv; θg; θo} and θk respectively.
We can conclude that (1) pre-training is crucial to low-resource knowledge-grounded dialogue
generation, since removing any component from pre-training causes performance drop when training
data is small; and (2) in terms of impact to performance, lm>context>document on Test Seen, while
document>lm>context on Test Unseen.

4 RELATED WORK

Research on end-to-end open domain dialogue generation is encouraged by the success of neural
sequence-to-sequence models on machine translation (Sutskever et al., 2014). On top of the basic
architecture (Shang et al., 2015; Vinyals & Le, 2015), various extensions have been made to tackle the
safe response problem (Li et al., 2015; Xing et al., 2017; Zhao et al., 2017); to model dialogue history
for multi-turn conversation (Serban et al., 2016; 2017); and to learn with advanced machine learning
techniques (Li et al., 2016; 2017). Very recently, grounding response generation on a specific type of
knowledge, such as triples from a knowledge base (Zhou et al., 2018a), documents (Ghazvininejad
et al., 2018), personas (Zhang et al., 2018), and images (Mostafazadeh et al., 2017), has emerged
as a new fashion in the research of open domain dialogue systems. This work aligns with the trend
by considering document-grounded dialogue generation. Rather than testing new architectures on
the newly released benchmarks as most existing works did (Lian et al., 2019; Li et al., 2019), we
turn to investigating a more important but untouched problem: how to perform learning with limited
training data. Our study roots in the requirement from practice and will facilitate application of
knowledge-grounded generation techniques in real-world systems.

The idea of “disentangling response decoding” is inspired by the similar research in representation
learning that aims to seek a representation axis aligning with the generative factors of data (Bengio
et al., 2013). State-of-the-art models are built within the framework of variational auto-encoding
(Kingma & Welling, 2013) either under an unsupervised assumption (Higgins et al., 2017; Kim &
Mnih, 2018; Chen et al., 2016; 2018) or aided by a few labels (Narayanaswamy et al., 2017; Locatello
et al., 2019). In this work, we borrow the concept of “disentangling”, but apply it to the structure of
the decoder of a response generation model. The result is a few independent components that allow
asynchronous parameter estimation. The work is also encouraged by the recent breakthrough on
pre-training for NLP tasks (Peters et al., 2018; Devlin et al., 2018; Yang et al., 2019; Liu et al., 2019;
Song et al., 2019). We take advantage of disentanglement, and employ pre-training techniques to
tackle the low-resource challenge in the task of knowledge-grounded dialogue generation.

5 CONCLUSIONS

We study knowledge-grounded dialogue generation under a low-resource setting. To overcome
the challenge from insufficient training data, we propose decomposing the response decoder into
independent components in which most parameters do not rely on the training data any more and can
be estimated from large scale ungrounded dialogues and unstructured documents. Evaluation results
on two benchmarks indicate that our model achieves the state-of-the-art performance with only 1/8
training data, and exhibits a good generalization ability on out-of-domain knowledge.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of
wikipedia: Knowledge-powered conversational agents. In ICLR, 2019.

Nouha Dziri, Ehsan Kamalloo, Kory W Mathewson, and Osmar Zaiane. Augmenting neural response
generation with context-aware topical attention. arXiv preprint arXiv:1811.01063, 2018.

Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin, 76
(5):378, 1971.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih,
and Michel Galley. A knowledge-grounded neural conversation model. In AAAI, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2(5):6, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pp. 2654–2663, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. NAACL, pp. 110–119, 2015.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep reinforce-
ment learning for dialogue generation. In EMNLP, pp. 1192–1202, 2016.
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APPENDIX

A DETAILS OF DATASETS

Table 4 reports the statistics of the Wizard data and the CMU DOG data.

Wizard of Wikipedia CMU DoG
Train Valid Test Seen Test Unseen Train Valid Test

Number of Utterances 166,787 17,715 8,715 8,782 74,717 4,993 13,646
Number of Conversations 18,430 1,948 965 968 3,373 229 619

Number of Topics/Documents 1,247 599 533 58 30 30 30
Average Turns per Dialogue 9.0 9.1 9.0 9.1 22.2 21.8 22.0

Table 4: Statistics of the two datasets.

B HUMAN EVALUATION

The goal of human study is to get more insights on quality of responses generated by different models
from human annotators. To this end, we randomly sample 300 examples from Test Seen and Test
Unseen respectively, and recruit 3 well educated native speakers as the annotators. Comparison
is conducted among TMN, ITDD, our model (with 1/4 training data), and our model (with 1/8
training data). On each test set, for each of the 300 examples, an annotator is provided with a context,
the ground-truth knowledge, and responses provided by the models under evaluation (the top one
response in beam search). Responses are pooled and randomly shuffled to hide their sources. Then,
each annotator judges the responses from three aspects including fluency, context coherence, and
knowledge relevance, and assigns a score from {0, 1, 2} to each of the response on each aspect,
in which 0 means bad, 1 means fair, and 2 means good. Each response receives 3 scores on each
aspect, and agreement among the annotators are calculated with Fleiss’ kappa (Fleiss, 1971). Table 5
shows the average scores on the three aspects. Overall, the proposed model achieves the state-of-
the-art performance in terms of all the three aspects on both Test Seen and Test Unseen when only
1/8 training examples are left. All kappa values exceed or are close to 0.6, indicating substantial
agreement among the annotators. The results are consistent with those reported in Table 1 and Table
2. Our model estimates the decoder with abundant extra resources, and ITDD exploits a two-pass
decoder. Therefore, both of the two models can provide grammatical and fluent responses, no matter
the background knowledge is within the domain of training or out of the domain of training. On the
other hand, with the 15M Reddit data in learning of the context processor, our model can make the
dialogues more coherent than the baselines, although there is a little drop on Test Unseen compared
to Test Seen. Since the model only obtains limited guidance from training in terms of the connection
between the knowledge and the dialogues, how to make the responses relevant to the knowledge is
still challenging, although our model has done a better job than the baselines.

Models
Metrics Seen Unseen

Fluency Context Knowledge Kappa Fluency Context Knowledge Kappa
Coherence Relevance Coherence Relevance

TMN (Dinan et al., 2019) 1.26 0.51 0.47 0.60 1.40 0.35 0.46 0.68
ITDD (Li et al., 2019) 1.69 1.18 1.16 0.70 1.72 0.73 0.71 0.69

1/4 DATA 1.77 1.54 1.17 0.58 1.75 1.26 1.18 0.57
1/8 DATA 1.68 1.44 1.13 0.60 1.73 1.21 1.25 0.57

Table 5: Human evaluation results on Wizard.

C MORE IMPLEMENTATION DETAILS

In both Wizard and CMU DOG, we set the size of word embedding as 300, the hidden size of the
context encoder, the knowledge encoder, and the decoder as 1024. The context encoder and the
decoder have 3 layers respectively. The gθs and gθs′ are similarity functions which contain two
single-layer feed-forward networks (FFNs) of size 512 with tanh non-linearity. The MLPθl , MLPθv
and MLPθv are two-layer FFNs of size 1024 and 300 respectively. The MLPθg , MLPθg′ and MLPθπ
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are single-layer FFNs. All models are learned with Adam (Kingma & Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.999, and an initial learning rate = 5e− 4. We increase the learning rate linearly
for the first 5000 training steps and decrease it thereafter proportionally to the inverse square root
of the step number. We set the initial temperature, the minimum temperature, and the anneal rate
of gumbel softmax as 1.0, 0.6, and 4e − 5 respectively. In training, we choose 64 as the size of
mini-batches, and add dropout to gθs′ and MLPθv′ , but do not see much difference. Early stopping on
validation is adopted as a regularization strategy. We employ beam search in response decoding with
a beam size 5.
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