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ABSTRACT

Finding out the computational redundant part of a trained Deep Neural Network
(DNN) is the key question that pruning algorithms target on. Many algorithms try
to predict model performance of the pruned sub-nets by introducing various eval-
uation methods. But they are either inaccurate or very complicated for general
application. In this work, we present a pruning method called Fast Neural Net-
work Pruning (FNNP), in which a simple yet efficient evaluation component called
ABN-based evaluation is applied to unveil a strong correlation between different
pruned DNN structures and their final settled accuracy. This strong correlation
allows us to fast spot the pruned candidates with highest potential accuracy with-
out actually fine tuning them. FNNP does not require any extra regularization or
supervision introduced to a common DNN training pipeline but still can achieve
better accuracy than many carefully-designed pruning methods. In the experi-
ments of pruning MobileNet V1 and ResNet-50, FNNP outperforms all compared
methods by up to 3.8%. Even in the more challenging experiments of pruning
the compact model of MobileNet V1, our FNNP achieves the highest accuracy
of 70.7% with an overall 50% operations (FLOPs) pruned. All accuracy data are
Top-1 ImageNet classification accuracy. Source code and models are accessible
to open-source community1.

1 INTRODUCTION

Deep Neural Network (DNN) pruning aims to reduce computational redundancy from a full model
with an allowed accuracy fluctuation. Pruned models usually result in a smaller energy or hardware
resource budget and, therefore, are especially meaningful to the deployment to power-efficient front-
end systems. However, how to trim off the part that makes little contribution to the delivered model
accuracy is no trivial question.

If the original full-size model is considered as a search space, a sub-net retaining the most valuable
information is searched while the rest of the structure is trimmed off. Existing pruning methods
target on this question from two perspectives. The first one is to affect the search space so that it is
easier to find out the interesting part(Ding et al., 2019) (Wen et al., 2016)(Liu et al., 2017) (Yu et al.,
2018)(Zhuang et al., 2018)(Gordon et al., 2018). Another perspective is to improve the searching
method, for example, by introducing reinforcement learning agents (He et al., 2018c), evolutionary
algorithm (Liu et al., 2019b), knowledge distillation (Luo et al., 2017) and so on.

However, it requires high searching efforts to obtain a good pruning candidate network due to two
main reasons: inaccurate evaluation method and/or high algorithmic complexity.

Firstly, we define what evaluation is in DNN pruning tasks. To evaluate if a pruned network, re-
ferred as sub-net or pruning candidate in this work, is equipped with the potential of delivering high
model accuracy, there would normally be an evaluation process. Such process preempts a sub-net’s
potential by applying an evaluation process for a quick judgement rather than actually training the
sub-net to its settled model accuracy because it can be very time-consuming to do so. For example,
(He et al., 2018c) trains an reinforcement learning agent to guarantee that a good pruning strategy
returns high reward. (Liu et al., 2019b) builds up a “PruningNet” to learn how to generate weights
for any pruning candidate so that it delivers high accuracy. Another example is seen in (Yu & Huang,

1https://github.com/anonymous47823493/FNNP

1



Under review as a conference paper at ICLR 2020

2019b), which trains the full model itself in such a way that it is capable of showing the accuracy of
the pruned structure with arbitrary pruning ratio.

No matter how complicated such evaluation process is designed, the eventual purpose is to equip
the evaluation module with a capability that it returns the sub-nets’ potential quickly in inference
time and the potential is positively related to its final settled accuracy. This evaluator is then either
used to yield high-potential candidates for a succeeding comparing/selection module (He et al.,
2018c)(Yang et al., 2018b), or directly winner sub-net as its final deliverable (Yu et al., 2018)(Yu &
Huang, 2019b).

As aforementioned, we found that the evaluation methods in existing works are either inaccurate or
too complicated to be generally applied. Inaccurate evaluation means that selected wining sub-nets
can not necessarily be fine-tuned to a high accuracy due to an inaccurate evaluation design. In this
work, we provide a quantitative analysis to show that inaccurate evaluation methods delivers poor
correlation between evaluated performance of sub-nets and their final converged accuracy. On the
other side, Complicated evaluation means some carefully-designed evaluation methods that may in-
troduce many hyper-parameters to components like reinforcement learning agents (He et al., 2018c),
generative adversarial learning (Lin et al., 2019), knowledge distillation (Luo et al., 2017) and so on.
It can be challenging to repeat the exact experimental results without treating the evaluation module
carefully. Therefore, these methods are reckon to have relatively high algorithmic complexity that
prevents them from being general applied.

To address above mentioned issues, we propose a fast and accurate evaluation method in our pro-
posed pruning algorithm. The main novelty present in this work is described as below:

• An automated pruning method is proposed called Fast Neural Network Pruning (FNNP).
Our pruning method is compatible to typical neural network training pipeline and do not
change the original parameter distribution.

• In our proposed FNNP framework, the key component is an Adaptive Batch Normaliza-
tion (ABN) based evaluation module. It delivers strong correlation between accuracy of
pruning candidates and their final converged accuracy. Such correlation is described by our
proposed correlation coefficient, which is used to quantitatively show why some evaluation
methods in existing works are inaccurate.

• Our proposed FNNP outperforms many carefully-designed pruning methods by achieving
higher accuracy in situations where the same base model are pruned by different levels of
pruning. In the Res-Net 50 experiments, our FNNP outperforms all compared methods
by 1.3 % to 3.9 %. Even in the challenging task of pruning compact model of MobileNet
V1, our FNNP achieves the highest accuracy of 70.6% with an overall 50 % operations
(FLOPs) pruned. All accuracy data are Top-1 ImageNet classification accuracy.

2 RELATED WORK

As mentioned in the previous section, existing DNN pruning approaches can be considered as efforts
from two perspectives: modification to pruning search space and proposal of different searching
methods.

Modification to pruning search space mainly refers to regularization to the original model parameter
distribution for pruning purposes. For example, introduced regularization includes LASSO (Wen
et al., 2016) and so on. Our proposed method is orthogonal with this type of techniques, i.e. our
proposed fast evaluation method can be used to such regularized searching space.

Meanwhile, different searching methods were proposed to spot good pruning candidates. Pruning
was mainly handled by hand-crafted heuristics in early time (Li et al., 2016). So a pruned candi-
date network is obtained by human expertise and evaluated by training it to the converged accuracy,
which can be very time consuming considering the large number of plausible sub-nets. Then more
automated approaches such as greedy strategy were introduced to save manual efforts (Yang et al.,
2018b). More recently, versatile techniques were proposed to achieve automated and efficient prun-
ing strategy such as reinforcement learning (He et al., 2018c), knowledge distillation (He et al.,
2018c), generative adversarial learning mechanism (Lin et al., 2019) and so on.
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However, two issues that still remain in these works, as briefly discussed in Section 1, are inaccurate
evaluation for sub-nets and/or complicated evaluation that slows down the sub-net selection.

As explained in Section 1, inaccurate evaluation is mainly caused by improperly using global BN
statistics to sub-nets. For example, in (Li et al., 2016), a sensitivity analysis is applied to DNNs,
which essentially is an examination about how model accuracy is affected by conducting layer-by-
layer pruning. However, for fast evaluation, sub-nets are directly evaluated with validation dataset
using the global BN statistics. Our experiments show that such global BN based model performance
has very weak correlation to the model’s final converged accuracy (Figure 3) and hence sensitivity
curves drawn in (Li et al., 2016) is inaccurate. The same problem can be seen in (He et al., 2018c).

A short-term fine-tune block proposed in (Yang et al., 2018b) can fix the BN statistics to some
extend. But at least 104 iterations are required to additionally train each pruning candidate. So
this block can be time consuming considering the large amount of plausible pruning candidates.
Meta-pruning (Liu et al., 2019b) separately trains a “PruningNet” to generate weights for pruning
candidates, so the sub-nets can be formed in inference time and evaluated quickly. But the “Prun-
ingNet” is consist of fully-connected layers and introduces a few millions of extra trainable weights,
leading to a memory-heavy training process in hardware. Furthermore, some introduced evaluation
components requiring skillful hyper-parameter tuning such as reinforcement learning agents (He
et al., 2018c), generative adversarial learning (Lin et al., 2019), knowledge distillation (Luo et al.,
2017) and so on. It can be difficult to repeat the exact experimental results without carefully initial-
izing and tuning the evaluation blocks. We consider above pruning techniques having either slow
or complicated evaluation process. In this work, we aim to use adaptive BN to implement a simple,
fast yet efficient sub-net evaluation process that delivers the state-of-the-art pruning performance.

By recalculating the statistics for BN in the pruned sub-net, our adaptive BN can be quickly adapted
from the full network to the pruned networks. Thus, the evaluation of the pruned networks can
be accomplished in a flash, which significantly accelerates the process of network pruning. The
adaptive BN has also been noticed by literature. In the classical recognition tasks, recalculating the
statistics has been used to improve the recognition accuracies (Wang et al., 2018). (Li et al., 2018)
also use adaptive BN for cross-domain recognition. In the network architecture design, post-BN is
used to boost the network capacity (Luo et al., 2019). The recent neural architecture search also use
adaptive BN for fast evaluation of the networks architecture (Guo et al., 2019; Chu et al., 2019b;a).
Even in the network pruning, (Yu et al., 2018; Liu et al., 2019b) also use post BN to improve the
inference accuracy for the sub-nets or the agency networks. However, none of the above works
analyzes the property of adaptive BN, especially why adaptive BN works. In contrast, in our works,
we have an insight into the correlation between the network used recalculated statistics and the
networks trained to convergence.

Our work is also related to AutoML, especially neural architecture search (NAS). Recently, there
has been a growing interest in developing algorithmic solutions to automate the manual process of
architecture design. Notable works are (Zoph & Le, 2017; Real et al., 2018; Liu et al., 2019a; Cai
et al., 2019a;b; Guo et al., 2019; Chu et al., 2019b;a). But all these methods are not combined
with pretrained weight, i.e., they separate the network architecture and network parameter. This
contradicts our knowledge that some tasks have to be pretrained by ImageNet.

3 METHODOLOGY

A typical neural network training and pruning pipeline is generalized and visualised in Figure 1.

After a model is trained, pruning is applied to the full-size model. In this work, we focus on struc-
tured filter pruning as it does not introduce further sparsity to the survived kernels. A filter pruning
task can be formulated as

(r1, r2, ..., rL)
∗ = argmin

r1,r2,...,rL

L(A(r1, r2, ..., rL;w))

s.t. C < constraints
(1)

where L is the training loss and A is the neural network model. rl is the pruning ratio applied to the
lth layer. Given some constraints C (i.e. aimed amount of parameters, operations or execution la-
tency), a group of pruning candidates can be evaluated to find out the best pruning ratio combination
(r1, r2, ..., rL)

∗, also referred as pruning strategy, in an evaluation process. such pruning candidates,
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Figure 1: A typical pipeline for neural network training and pruning

or sub-nets, form a searching space and the evaluation module picks a winner candidate with the best
potential. Finally, the winner candidate is optionally fine-tuned to reach the final converged accuracy
before delivered from the end of the pipeline.

As discussed in Section 2, the evaluation methods in existing works are found to be inaccurate or
complicated. As an example, in (Li et al., 2016) and He et al. (2018c), the reason that we consider
their evaluation as inaccurate is the use of global BN statistics. To quantitatively demonstrate the
idea, we symbolize the BN Ioffe & Szegedy (2015) as below:

y = γ
x− µ√
σ2 + ε

+ β, (2)

Where β and γ are trainable scale and bias terms. ε is a term with small value to avoid zero division.
For a mini-batch with size N , the statistical values of µ and σ2 are calculated as below:

µB = E[xB] =
1

N

N∑
i=1

xi,

σ2
B = V ar[xB] =

1

N − 1

N∑
i=1

(xi − µB)2.

(3)

During training, µ and σ2 are calculated with the moving mean and variance:

µt = mµt−1 + (1−m)µB,

σ2
t = mσ2

t−1 + (1−m)σ2
B,

(4)

wherem is the momentum coefficient and subscript t refers to the number of training iterations. In a
typical training pipeline, if the total number of training iteration is T , µT and σ2

T are used in testing
phase.

We realize that in order to apply fast evaluation to the pruning candidates (Figure 1), what we all need
to do, is to obtain the adapted µ and σ to each pruned structure. The Adapted Bach Normalization
(ABN) statistical values, noted as µ̂ and σ̂2 in this work, are obtained by sampling a small part of
training data for a few more iterations.

However, in (Li et al., 2016) and (He et al., 2018c), µT and σT , called Post-Training BN (PBN)
Statistics in this work, are directly used to evaluate different pruning candidates. We compare the
correlation between evaluated model and fine-tuned model in terms of test accuracy. The results
are shown in Figure 3 and Figure 3 respectively. From an observation, PBN statistics present poor
correlation, compared to the stronger correlation unveiled by ABN. This explains why PBN-based
evaluation used in many existing methods is inaccurate. A “short-term fine tune block” block in (Liu
et al., 2019b) is also proposed to fix the issue of inaccurate BN statistics. An one-epoch short-term
fine-tuning noticeably help to deliver strong correlation in the evaluation process, as shown in Figure
3. Training 1 epoch takes relatively much longer time. To quantitatively describe such observation,
we introduce a correlation index in Section 4 together with its related discussion.

Based on the fast and more accurate evaluation module, we now present the overall workflow of our
Fast Neural Network Pruning (FNNP) framework in Figure 2.

Our pruning pipeline contains three main parts, pruning strategy generation, filter pruning and ABN-
based candidate evaluation.
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Figure 2: Fast Neural Network Pruning (FNNP) framework
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Figure 3: Correlation between fine-tuning accuracy and post-evaluation accuracy with three different
evalution methods. From left to right: PBN-based, ABN-based and 1 epoch fine-tuning ( MobileNet
V1 on ImageNet classification Top-1 results)

Strategy generation outputs pruning strategies in the form of layer-wise pruning rate vectors like
(r1, r2, ..., rL) for a L-layer model. The generation process follows a pre-defined constraints such
as inference latency, global reduction in terms of operation (FLOPs) or parameters and so on. Con-
cretely, it randomly samples L real numbers from a given range [0, R] to form a pruning strategy,
where rl denotes the pruning ratio for the lth layer. R is the largest pruning ratio applied to a
layer and it forms the boundary of sub-net searching space. In later part, we will present the ABN
presented correlation is affected by R. Additionally, other generation methods can be used to this
module such as evolutionary algorithms. In this work, we found that a simple random sampling is
good enough for the entire pipeline to quickly yield sub-nets with state-of-the-art accuracy.

Filter pruning block prunes the full-size trained model following the generated pruning vectors
from the strategy generation module. The filters in the baseline module are ranked according to
their L1-norm and the rl of the smallest filters are trimmed off permanently. The sampled pruning
candidates from the searching space are ready to be delivered to the next evaluation stage after this
process.

The ABN-based candidate evaluation module provides a BN statistics adaptation and fast evalu-
ation to the pruned candidates handed over from the previous module. Given a pruned network, it
freezes all learnable parameters and traverse through a small amount of data in the training set to
calculate the ABN statistics µ̂ and σ̂2. In practice, we sampled 1/55 of the total training set for 30
iterations in our ImageNet experiments, which takes only 10-ish seconds in a single Nvidia 1080
Ti GPU. Next, this module evaluates the performance of the candidate networks on the validation
set and picks the top ones in the accuracy ranking as winner candidates. The correlation analysis
presented in Section 4 guarantees the effectiveness of this process. After a fine-tuning process, the
pruned winner candidates are finally delivered as output.

4 EXPERIMENTS

In this section, we first demostrate the effectiveness and characteristic of the proposed network
evaluating method(adaptive BN). Further we illustrate its efficiency. Finally we compare our method
with state-of-the-art filter pruning methods to prove its effectiveness.
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4.1 CORRELATION BETWEEN THE PRUNED & THE CONVERGED MODEL

Basic settings We perform correlation experiments with MobileNetV1 (Howard et al., 2017) on
ImageNet (Deng et al., 2009). ImageNet is large-scale image classification dataset with 1000 classes.
It contains about 1.28M training images and 50K validation images. MobileNetV1 (Howard et al.,
2017) is a typical light-weighted convolution neural network. We first train the model to converged
and randomly generate 50 pruning strategies to prune out filters different ratios(0 to 0.7) for each
layer. We then fine-tune each pruned model to converged(75k iterations, batch size is 512).

Correlation analysis We first visualize the correlation between the pruned model and the converged
model in different settings(before adaptive BN, after adaptive BN, fine-tuning for 1 epoch), See
Figure 3. We also caculate the correlation coefficients (Soper et al., 1917) of them(-0.12, 0.70 and
0.97 ).

For more quantitive analysis, we introduce a new metirc to evaluate the positive correlation. Given
a set of models, let X and Y denote the accuracies of these models evaluated in different aspects.
For example, X and Y are the accuracies of the pruned models either tested by using our adaptive
BN or by finetuning them until convergence. Moreover, X and Y have been sorted in a descending
order. Then, the correlation between X and Y is defined as

φXY (k) =
1

k

k∑
i

min(
k

find(X,Y [i])
, 1), (5)

where Y [i] denotes the top-i best accuracies in Y . Ideally, the top-1 model is the target we are
searching for. However, obtaining the top-1 model is difficult due to the NP-hard problem. Thus,
we relax top-1 to top-k (e.g. top-5). Here, find(A, a) is a function that returns the index of a in A.
Intuitively, k

find(X,Y [i]) implies whether a top accuracy in Y is also high in X . The function min(·)
regularizes the correlation to be smaller than 1. In this new metric, a higher correlation rate φXY (k)
implies a high correlation between X and Y .

φABN, finetuned to convergence(5) φPBN, finetuned to convergence(5)
75% FLOPs 0.883 0.465

62.5% FLOPs 0.910 0.758
50% FLOPs 0.757 0.398

Table 1: Positive correlation evaluation by newly introduced metric φXY (5)
It is shown that, their is little correlation beteween PBN and the converged accuracy. The correla-
tion is much stronger between our ABN and the converged accuarcy. AMC (He et al., 2018c) and
Filter Pruning (Li et al., 2016) decide their pruning strategy base on PBN, which may harm their
performances.

To evaluate the boundary of the correlation, we also conduct experiments under different FLOPs
constraints(75%, 50% and 25% of the original model). For each constraints, we randomly sample
20 strategies, see Figure 4.

4.2 EFFICIENCY OF EVALUATION METHODS

To demostrate the efficiency of our evaluation method, we first show the number of iterations needed
by our evaluation method. Then we compare it to others.

To evaluate a pruning strategy by adaptive-BN-based method, we first prune out half of the filters for
each layer in MobileNetV1 (Howard et al., 2017) and re-caculate the BN statistics through iterations
on ImageNet (Deng et al., 2009) training samples. Here we show the validation accuracy after each
iteration. See Figure 4.2, as the number of iteration increase, the validation accuracy go up quickly
and finally converge in less than 50 iterations.

We compare our adaptive-BN based method with other evaluation methods by their additional costs,
including efforts for obtaining an evaluatoin module and perform one evaluation, see Table 2.
ThiNet (Luo et al., 2017), NetAdapt (Yang et al., 2018b), Filter Pruning (Li et al., 2016) needs
no less than 104 iterations. AMC (Yang et al., 2018b) and Meta-Pruning (Liu et al., 2019b) require
to train an evaluation agent. But our method needs no more than 50 iterations.
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Figure 4: PBN vs. ABN: Correlation between post-evaluation accuracy and fine-tuning accuracy
with different pruning ratios to operations ( MobileNet V1 on ImageNet classification Top-1 results)

Figure 5: Left: Relation between number of sampling iterations and ABN-based evaluation results.
Right: Distance to expected BN statistics. Left is the distance of mean values between PBN sampled
from training data and expected BN sampled from validation data (true statistics). Right is the same
distance but between ABN sampled from training data and the same expected BN sampled from
validation data.

Method Evaluation Cost
ThiNet (Luo et al., 2017) 2.5× 105 iterations(batch size is 512)

NetAdapt (Yang et al., 2018b) 104 iterations (batch size is 96)
Filter Pruning (Li et al., 2016) 5× 104 iterations(batch size is 512)

AMC (Yang et al., 2018b) Training an evaluation agent
Meta-Pruning (Liu et al., 2019b) Training an evaluation agent

FNNP 50 iterations(batch size is 512)

Table 2: Comparisions of evaluation costs
4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our method with state-of-the-art methods on MobileNetV1 (Howard et al., 2017) and
ResNet-50 (He et al., 2016) to prove its effectiveness.

ResNet We compare the top-1 accuracy of ResNet-50 (He et al., 2016) on ImageNet (Deng et al.,
2009) under different FLOPs constraints. For each FLOPs constraint(3G, 2G and 1G), we first
generate 1000 pruning strategies. Then we apply our ABN-based evaluating method for each can-
didates. We just fine-tune the top-2 candidates and return the best as delivered pruned model. It is
shown that FNNP outerperforms other methods under the constraints listed in Table 3.

ThiNet (Luo et al., 2017) prunes the channels uniformly for each layer other than finding an optimal
pruning strategy, which hurts the performance largely. Meta-Pruning (Liu et al., 2019b) trains a
PruningNet to predict weights of the pruned model. But the predicted weights without fin-tuning
may not be accurate to achieve high accuracy when testing. Moreover, this inaccuracy may illy
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guide the searching of pruning strategies. The effectiveness of our ABN-based evaluation methods
help us to find out the pruned model with optimal structure and weights.

Group by FLOPs Method FLOPs Top1-Acc

3G

ThiNet-70 (Liu et al., 2019b) 2.9G 75.8%
AutoSlim (Yu & Huang, 2019a) 3.0G 76.0%
Meta-Pruning (Liu et al., 2019b) 3.0G 76.2%

FNNP 3.0G 77.1%

2G

0.75 × ResNet-50 (He et al., 2016) 2.3G 74.8%
Thinet-50 (Luo et al., 2017) 2.1G 74.7%

AutoSlim (Yu & Huang, 2019a) 2.0G 75.6%
CP (He et al., 2017) 2.0G 73.3%

FPGM (He et al., 2018b) 2.31G 75.59%
SFP (He et al., 2018a) 2.32G 74.61%
GBN (You et al., 2019) 1.79G 75.18%
GDP (Lin et al., 2018) 2.24G 72.61%

DCP (Zhuang et al., 2018) 1.77G 74.95%
Meta-Pruning (Liu et al., 2019b) 2.0G 75.4%

FNNP 2.0G 76.4%

1G

0.5 × ResNet-50 (He et al., 2016) 1.1G 72.0%
ThiNet-30 (Luo et al., 2017) 1.2G 72.1%

AutoSlim (Yu & Huang, 2019a) 1.0G 74.0%
Meta-Pruning (Liu et al., 2019b) 1.0G 73.4%

FNNP 1.0G 74.2%

Table 3: Comparisions of ResNet-50 and other pruning methods

MobileNet We compare the top-1 accuracy of MobileNetV1 (Howard et al., 2017) on Ima-
geNet (Deng et al., 2009) under same FLOPs constraint(about 280M FLOPs). We first generate
1500 pruning strategies that meet the FLOPs constraint. We then apply our ABN-based evaluating
method for each candidates. After fine-tuning the top-2 candidates, we return the best of them as the
compressed model.

AMC (He et al., 2018c) trains their pruning strategy decision agent based on pruned model without
fine-tuning, which illy affect the decision. NetAdapt (Yang et al., 2018b) searches for the pruning
strategy based on a greedy algorithm, which may drop into a local optimum. It is shown that FNNP
a lso achieve state-of-the-art, see Table 3.

Method FLOPs Top1-Acc
0.75 ×MobileNetV1 (Howard et al., 2017) 325M 68.4%

AMC (He et al., 2018c) 285M 70.5%
NetAdapt (Yang et al., 2018b) 284M 69.1%

Meta-Pruning (Liu et al., 2019b) 281M 70.6%
FNNP 284M 70.7%

Table 4: Comparisions of MobileNetV1 and other pruning methods

5 DISCUSSION AND CONCLUSIONS

We presented our FNNP framework, in which a fast and accurate sub-net evaluation module called
ABN-based evaluation. To quantitatively show the advantages of this module over other inaccurate
evaluation methods, a correlation coefficient is proposed and analysed.

Apart from the study shown in this work, we believe our ABN-based evaluation module is general
enough to plug-in and improve existing works. For example, the “short-term fine-tune” block in
(Yang et al., 2018a) can be replaced by our ABN-based evaluation module for a faster sub-net
selection. (He et al., 2018c) can also efficiently train its reinforcement learning agent with our
generated wining pruning candidates. On the other side, our pipeline can also be upgraded by
existing methods for better performance. For example, the evolutionary algorithm used in (Liu
et al., 2019b) can be used to improve the basic random strategy in our strategy generation module.
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