
Under review as a conference paper at ICLR 2020

INDUCTIVE REPRESENTATION LEARNING ON
TEMPORAL GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive representation learning on temporal graphs is an important step toward
salable machine learning on real-world dynamic networks. The evolving nature
of temporal dynamic graphs requires handling new nodes while learning temporal
patterns. The node embeddings, which become functions of time under the tem-
poral setting, should capture both static node features and evolving topological
structures. Moreover, node and topological features may exhibit temporal patterns
that are informative for prediction, of which the temporal node embeddings should
also be aware. We propose the temporal graph attention (TGAT) layer to effec-
tively aggregate temporal-topological neighborhood features as well as learning
time-feature interactions. For TGAT, we use the self-attention mechanism as the
building block and develop the novel functional time encoding technique based on
the classical Bochner’s theorem from harmonic alaysis. By stacking TGAT lay-
ers, the network learns node embeddings as functions of time and can inductively
infer embeddings for both new and observed nodes whenever the graph evolves.
The proposed approach handles both node classification and link prediction task,
and can be naturally extended to aggregate edge features. We evaluate our method
with transductive and inductive tasks under temporal setting with two benchmark
and one industrial dataset. Our TGAT model compares favorably to state-of-the-
art baselines and prior temporal graph embedding approaches.

1 INTRODUCTION

The technique of learning lower-dimensional vector embeddings on graphs have been widely ap-
plied to graph analysis tasks (Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2016) and deployed
onto industrial systems (Ying et al., 2018; Wang et al., 2018a). Most of the graph representation
learning approaches take static or non-temporal graphs as input, despite the fact that many graph-
structured data are time-dependent. In social network, citation network, question answering forum
and user-item interaction system, graphs are created as temporal interactions between nodes. Using
the final state as a static portrait of the graph is reasonable in some cases, such as the protein-protein
interaction network, as long as node interactions are timeless in nature. Otherwise, ignoring the
temporal information can severely diminish the modelling efforts and even causing questionable in-
ference. For instance, models may mistakenly utilize future information for predicting past interac-
tions during training and testing if unaware of temporal constraints. More importantly, the dynamic
and evolving nature of many graph-related problems demands explicitly modelling the timeliness
whenever nodes and edges are added, deleted or changed over time.

Learning representations on temporal graphs is extremely challenging, and it is not until recently
that several solutions are proposed (Nguyen et al., 2018; Li et al., 2018; Goyal et al., 2018; Trivedi
et al., 2018). We conclude the challenges in three folds. Firstly, to model the temporal dynamics,
node embeddings are not only projections of topological structures and node features but functions
of the continuous time. Therefore, in addition to vector space, temporal representation learning
should be operated in functional space as well. Secondly, graph topological structures are no longer
static as node or edges are evolving over time, which poses temporal constraints on neighborhood
aggregations. Thirdly, node features and topological features can exhibit temporal patterns. For
example, node interactions that took place long ago may have less impact on the current topological
structure and thus node embeddings. Some nodes may possess features that allows them having
more regular or recurrent interactions with others. The visual illustration is provided in Figure 1.

1

Under review as a conference paper at ICLR 2020

Figure 1: Visual illustration of several complications induced by temporal graphs. (A). The gen-
eration process of a temporal graph and its snapshots. The static graphs in the snapshots can only
reflect partial time information. (B). The final state of the temporal graph when projected to the time-
independent 2-D plane, and the multi-edge situation arises. (C). When predicting the link between
node A and C at time t3, the message-passing paths should be subject to temporal contraints.

Similar to its non-temporal counterparts in real-world applications, models for representation learn-
ing on temporal graphs should be able to quickly generate embeddings as time elapses and graph
changes in an inductive fashion. GraphSAGE (Hamilton et al., 2017a) and graph attention network
(GAT) (Veličković et al., 2017) are capable of inductively generating embeddings for unseen nodes
based on their features, however, they do not consider the temporal factor. Most of the tempo-
ral graph embedding methods can only handle transductive tasks, since they require re-training or
the computationally-expensive gradient calculations to infer embeddings for unseen nodes or future
time. In this work, we aim at developing an architect to inductively learn representations for tem-
poral graphs such that the time-aware embeddings (for unseen and observed nodes) can be obtained
via a single network forward pass. The key to our approach is the combination of the self-attention
mechanism (Vaswani et al., 2017) and a novel functional time encoding technique derived from the
Bochner’s theorem from classical harmonic analysis (Loomis, 2013).

The motivation for adapting self-attention to inductive representation learning on temporal graphs
is identifying and capturing the relevant pieces of temporal neighborhood information. Both graph
convolutional network (GCN) (Kipf & Welling, 2016a) and GAT are implicitly or explicitly assign-
ing different weights to neighboring nodes (Veličković et al., 2017) when aggregating node features.
The self-attention mechanism was initially designed to recognize relevant parts of input sequences
in natural language processing. As a discrete-event sequence learning method, self-attention outputs
a vector representation of the target sequence as a weighted sum of individual entry embeddings.
It enjoys several advantages such as parallelized computation and interpretability (Vaswani et al.,
2017). Since self-attention mechanism captures sequential information only through the positional
encoding, it does not handle temporal sequences. Therefore, we are motivated to replace positional
encoding with some vector representation of time. Since time is a continuous variable, the mapping
from the time domain to vector space has to be functional. We gain insights from harmonic analysis
and propose a theoretical-grounded functional time encoding approach that is compatible with the
self-attention mechanism. The temporal signals are then modelled by the interactions between the
functional time encoding and nodes features as well as graph topological structures.

To evaluate our approach, we use the future link prediction for observed nodes as transductive learn-
ing task, and for unseen nodes as inductive learning task. We also examine the dynamic node classi-
fication task using node embeddings (temporal versus non-temporal) as features to demonstrate the
usefulness of the functional time encoding. We carry out extensive ablation studies and sensitivity
analysis to show the effectiveness of the proposed functional time encoding and TGAT -layer.

2 RELATED WORK

Graph representation learning. Spectral graph representation learning methods operate on the
graph spectral domain by approximating, projecting or expanding the graph Laplacian (Kipf &
Welling, 2016a; Henaff et al., 2015; Defferrard et al., 2016). since their training and inference
are conditioned on the specific graph spectrum, they are not directly applicable to temporal settings.
Non-spectral approaches, such as GAT, GraphSAGE and MoNET (Monti et al., 2017) often de-
fine localized neighbourhood aggregations and are not restricted to the training graph. GraphSAGE

2

Under review as a conference paper at ICLR 2020

and GAT also have the flexibility to inductively handle evolving graphs. In an attempt to extend
classical graph representation learning approaches to the temporal setting, several methods crop the
temporal graph into a sequence of graph snapshots (Li et al., 2018; Goyal et al., 2018; Rahman et al.,
2018), and some others work with temporally persistent node (edges) (Trivedi et al., 2018; Ma et al.,
2018). Nguyen et al. (2018) proposes a node embedding method based on temporal random walk
and reported it with state-of-the-art performances. However, their approach only generates node
embeddings for the final state of temporal graph and do not directly extend to the inductive setting.

Self-attention mechanism. Most self-attention mechanisms have the two components: embedding
layer and self-attention layer. The embedding layer takes an ordered entity sequence as input. Self-
attention uses positional encoding to model positional information, i.e. each position k is represented
by a vector pk. For the entity sequence e = (e1, . . . , el), the embedding layer takes the sum or
concatenation of entity embeddings (or features) (z ∈ Rd) and their positional encodings as input:

Ze =
[
ze1 + p1, . . . , ze1 + pl

]ᵀ ∈ Rl×d, or Ze =
[
ze1 ||p1, . . . , ze1 ||pl

]ᵀ ∈ Rl×(d+dp). (1)

where || denotes concatenation operation and dp is the dimension for positional encoding. Self-
attention layers can be constructed upon the scaled dot-product attention, which is defined as:

Attn
(
Q,K,V

)
= softmax

(QKᵀ

√
d

)
V, (2)

where Q denotes the ’queries’, K the ’keys’ and V the ’values’, They are often projections of Ze.
Since each row of Q, K and V represents an entity, the dot-product attention takes a weighted sum
of the entity ’values’ in V where the weights are given by the interactions of entity ’query-key’ pairs.

3 TEMPORAL GRAPH ATTENTION NETWORK ARCHITECT

We first derive the mapping from time domain to the continuous differentiable functional domain as
functional time encoding, such that resulting formulation is compatible with self-attention mecha-
nism as well as the backpropagation-based optimization frameworks. We then present the temporal
graph attention layer and show how it can be naturally extended to incorporate edge features.

3.1 FUNCTIONAL TIME ENCODING

Recall that our starting point is to obtain a continuous functional mapping Φ : T → RdT from time
domain to the dT -dimensional vector space for replacing the positional encoding in (1). Without
loss of generality, we assume that the time domain can be represented by the interval starting from
origin: T = [0, tmax], where tmax is determined by the observed data. For the inner-product self-
attention in (2), often the ’key’ and ’query’ matrices (K, Q) are given by identity or linear projection
of Ze defined in (1), leading to terms that only involve inner-products between positional (time)
encodings. Consider two time points t1, t2 and inner product between their functional encodings〈
Φ(t1),Φ(t2)

〉
. Usually, the relative timespan, rather than the absolute value of time, reveals critical

temporal information. Therefore, we are more interested in learning patterns related to the timespan
of |t2−t1|, which should be ideally expressed by

〈
Φ(t1),Φ(t2)

〉
to be compatible with self-attention.

Formally, we define the temporal kernel K : T × T → R with K(t1, t2) :=
〈
Φ(t1),Φ(t2)

〉
and

K(t1, t2) = ψ(t1 − t2), ∀t1, t2 ∈ T for some ψ : [−tmax, tmax] → R. The temporal kernel is then
translation-invariant, since K(t1 + c, t2 + c) = ψ(t1 − t2) = K(t1, t2) for any constant c. Gener-
ally speaking, functional learning is extremely complicated since it operates on infinite-dimensional
spaces, but now we have transformed the problem into learning the temporal kernel K expressed by
Φ. Nonetheless, we still need to figure out an explicit parameterization for Φ in order to conduct ef-
ficient gradient-based optimization. Classical harmonic analysis theory, i.e. the Bochner’s theorem,
motivates our final solution. We point out that the temporal kernel K is positive-semidefinite (PSD)
and continuous, since it is defined via Gram matrix and the mapping Φ is continuous. Therefore, the
kernel K defined above satisfy the assumptions of the Bochner’s theorem, which we state below.

Theorem 1 (Bochner’s Theorem). A continuous, translation-invariant kernel K(x,y) = ψ(x− y)
on Rd is positive definite if and only if there exists a non-negative measure on R such that ψ is the
Fourier transform of the measure.

3

Under review as a conference paper at ICLR 2020

Consequently, when scaled properly, our temporal kernel K have the alternate expression:

K(t1, t2) = ψ(t1, t2) =

∫
R
eiω(t1−t2)p(ω)dω = Eω[ξω(t1)ξω(t2)∗], (3)

where ξω(t) = eiωt. Since the kernel K and the probability measure p(ω) are real, we extract the
real part of (3) and obtain:

K(t1, t2) = Eω
[

cos(ω(t1 − t2))
]

= Eω
[

cos(ωt1) cos(ωt2) + sin(ωt1) sin(ωt2)
]
. (4)

The above formulation suggests approximating the expectation by the Monte Carlo integral
(Rahimi & Recht, 2008), i.e. K(t1, t2) ≈ 1

d

∑d
i=1 cos(ωit1) cos(ωit2) + sin(ωit1) sin(ωit2), with

ω1, . . . , ωd
i.i.d∼ p(ω). Therefore, we propose the finite dimensional functional mapping to Rd as:

t 7→ Φd(t) :=

√
1

d

[
cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)

]
, (5)

and it is easy to show that
〈
Φd(t1),Φd(t2)

〉
≈ K(t1, t2). As a matter of fact, we prove the stochastic

uniform convergence of
〈
Φd(t1),Φd(t2)

〉
to the underlying K(t1, t2) and shows that it takes only a

reasonable amount of samples to achieve proper estimation, which is stated in Claim 1.
Claim 1. Let p(ω) be the corresponding probability measure stated in Bochner’s Theorem for kernel
function K. Suppose the feature map Φ is constructed as described above using samples {ωi}di=1,

then we only need d = Ω
(

1
ε2 log

σ2
ptmax

ε

)
samples to have

sup
t1,t2∈T

∣∣Φd(t1)
′
Φd(t2)−K(t1, t2)

∣∣ < εwith any probability for ∀ε > 0,

where σ2
p is the second momentum with respect to p(ω).

The proof is provided in supplement material.

By applying Bochner’s theorem, we convert the problem of kernel learning to distribution learning,
i.e. estimating the p(ω) in Theorem 1. A straightforward solution is to apply the reparameteriza-
tion trick by using auxiliary random variables with a known marginal distribution as in variational
autoencoders (Kingma & Welling, 2013). However, the reparameterization trick is only applicable
to the ’local-scale’ distribution family, which may not be rich enough for our purpose. An alternate
approch is to use the inverse cumulative distribution function (CDF) transformation. Rezende & Mo-
hamed (2015) propose using parameterized normalizing flow, i.e. a sequence of invertible transfor-
mation functions, to approximate arbitrarily complicated CDF and efficiently sample from it. Dinh
et al. (2016) further considers stacking bijective transformations, known as affine coupling layer, to
achieve more effective CDF estimation. The above methods learns the inverse CDF function F−1

θ (.)
parameterized by flow-based networks and draw samples from the corresponding distribution. On
the other hand, if we consider an non-parameterized approach for estimating distribution, then learn-
ing F−1(.) and obtain d samples from it is equivalent to directly optimizing the {ω1, . . . , ωd} in (4)
as free model parameters. In practice, we find these two approaches to have highly comparable per-
formances (see supplement material). Therefore we focus on the non-parametric approach, since it
is more parameter-efficient and has faster training speed (as no sampling during training is required).

The above functional time encoding is fully compatible with self-attention, thus they can replace the
positional encodings in (1) and their parameters are jointly optimized as part of the whole model.

3.2 TEMPORAL GRAPH ATTENTION LAYER

We use vi and xi ∈ Rd0 to denote node i and its raw node features. The proposed TGAT architect
depends solely on the temporal graph attention layer (TGAT layer). In analogy to GraphSAGE and
GAT, the TGAT layer can be think of as a local aggregation operator that takes the temporal neigh-
borhood with their hidden representations (or features) and timestamps as input, and the output is the
time-aware representation for target node at any time point t. We denote the hidden representation
output for node i at time t from the lth layer as h̃(l)

i (t).

Similar to GAT, we perform the masked self-attention to take account of the structural informa-
tion (Veličković et al., 2017). For node v0 at time t, we consider its neighborhood N (v0; t) =

4

Under review as a conference paper at ICLR 2020

Figure 2: The architect the lth TGAT layer with k = 3 attention heads for node v0 at time t.

{v1, . . . , vN} such that the interaction between v0 and vi ∈ N (v0; t), which takes place at
time ti, is prior to t 1. The input of TGAT layer is the neighborhood information Z ={
h̃

(l−1)
1 (t1), . . . , h̃

(l−1)
N (tN)

}
and the target node information with some time point

(
h̃

(l−1)
0 (t), t

)
.

When l = 1, i.e. for the first layer, the inputs are just raw node features. The layer produces the
time-aware representation of target node v0 at time t, denoted by h̃

(l)
0 (t), as its output. Due to the

translation-invariant assumption for the temporal kernel, we can alternatively use {t−t1, . . . , t−tN}
as interaction times, since |ti − tj | =

∣∣(t− ti)− (t− tj)
∣∣ and we only care for the timespan.

In line with original self-attention mechanism, we first obtain the entity-temporal feature matrix as

Z(t) =
[
h̃

(l−1)
1 (t1)||ΦdT (t− t1), . . . , h̃

(l−1)
N (tN)||ΦdT (t− tN)

]ᵀ
(or use summation), (6)

and forward it to three different linear projections to obtain the ’query’, ’key’ and ’value’ matrices:

Q(t) = Z(t)WQ, K(t) = Z(t)WK , V(t) = Z(t)WV ,

where WQ,WK ,WV ∈ R(d+dT)×dh are the weight matrices that are employed to capture the
interactions between time encoding and node features. The attention weights {αij}Ni,j=1 of the

softmax function output in (2) is given by: αij = exp
(
Qᵀ
iKj

)
/
(∑

q exp
(
Qᵀ
iKq

))
. The attention

weight αij reveals how node i attends to the features of node j within the topological structure
defined as N (v0; t) after accounting for their interaction time with v0. The self-attention therefore
captures the temporal interactions with both node features and topological features and defines a
local temporal aggregation operator on graph. The hidden representation for any node vi ∈ N (v0; t)
is given by the linear combination:

∑
j αijVj . The mechanism can be effectively shared across all

nodes for any time point. We then take the row-wise sum from the above dot-product self-attention
output as the hidden neighborhood representations, i.e.

H(t) = Attn
(
Q(t),K(t),V(t)

)
∈ RN×dh , h(t) =

−→
1H(t) ∈ Rdh .

To combine neighbourhood representation with the target node features, we adopt the same practice
from GraphSAGE and concatenate the neighbourhood representation with the target node’s feature
vector z0. We then pass it to a feed-forward neural networks to capture non-linear interactions
between the features as in (Vaswani et al., 2017):

h̃
(l)
0 (t) = FFN

(
h(t)||x0

)
≡ ReLU

(
[h(t)||x0]W

(l)
0 + b

(l)
0

)
W

(l)
1 + b

(l)
1 ,

W
(l)
0 ∈ R(dh+d0)×df ,W

(l)
1 ∈ Rdf×d,b(l)

0 ∈ Rdf ,b(l)
1 ∈ Rd,

where h̃
(l)
0 (t) ∈ Rd is the final output representing the time-aware node embedding at time t for the

target node. Therefore, the TGAT layer can be implemented for node classification task using the
semi-supervised learning framework proposed in Kipf & Welling (2016a) as well as link prediction
task with the encoder-decoder framework summarized by Hamilton et al. (2017b).

1Node vi may have multiple interactions with v0 at different time points, in such cases we take the most
recent interaction time prior to t as ti.

5

Under review as a conference paper at ICLR 2020

Veličković et al. (2017) suggests that using multi-head attention improves performances and stabi-
lizes training for GAT. For generalization purposes, we also show that the proposed TGAT layer can
easily extend to the multi-head setting. Consider the dot-product self-attention outputs from a total
of k different heads, i.e. h(i) ≡ Attn(i)

(
Q(t),K(t),V(t)

)
, i = 1, . . . , k. We first concatenate the k

neighborhood representations into a combined vector and then carry out the same procedure:

h̃
(l)
0 (t) = FFN

(
h(1)(t)|| . . . ||h(k)(t)||x0

)
.

Just like GraphSAGE, a single TGAT layer aggregates the localized one-hop neighborhood, and by
stacking L TGAT layers the aggregation extends to L hops. Similar to GAT, out approach does not
restrict the size of neighborhood. We provide a graphical illustration of our TGAT layer in Figure 2.

3.3 EXTENSION TO INCORPORATE EDGE FEATURES

We show that the TGAT layer can be naturally extended to handle edge features in a message-
passing fashion. Simonovsky & Komodakis (2017) and Wang et al. (2018b) modify classical
spectral-based graph convolutional networks to incorporate edge features. Battaglia et al. (2018)
propose general graph neural network frameworks where edges features can be processed. For tem-
poral graphs, we consider the general setting where each dynamic edge is associated with a feature
vector, i.e. the interaction between vi and vj at time t induces the feature vector xi,j(t). To propagate
edge features during the TGAT aggregation, we simply extend the Z(t) in (6) to:

Z(t) =
[
. . . , h̃

(l−1)
i (ti)||x0,i(ti)||ΦdT (t− ti), . . .

]
(or use summation), (7)

such that the edge information is propagated to the target node’s hidden representation, and then
passed on to the next layer (if exists). The remaining structures stay the same as in Section 3.2.

3.4 TEMPORAL SUB-GRAPH BATCHING

Stacking L TGAT layers is equivalent to aggregate over the L-hop neighborhood. For each L-hop
sub-graph that is constructued during the batch-wise training, all message passing directions must
be aligned with the observed chronological orders. Unlike the non-temporal setting where each
edge appears only once, in temporal graphs two node can have multiple interactions at different
time points. Whether or not to allow loops involving the target node should be judged case-by-case.
Sampling from neighborhood, or known as neighborhood dropout, may speed up and stablize model
training. For temporal graphsg, neighborhood dropout can be carried uniformly or weighted by the
inverse timespan such that more recent interactions has higher probability of being sampled.

3.5 COMPARISONS TO RELATED WORK

The functional time encoding technique and TGAT layer introduced in Section 3.1 and 3.2 solves
several critical challenges, and the TGAT network intrinsically connects to some prior approaches.

• Instead of cropping temporal graphs into a sequence of snapshots or constructing time-
constraint random walks, which inspired most of the current temporal graph embedding
methods, we directly learn the functional representation of time. The proposed approach is
motivated by and thus fully compatible with the well-established self-attention mechanism.
Also, to the best of our knowledge, no previous work has discussed the temporal-feature
interactions for temporal graphs, which is included in our model.

• The TGAT layer is computationally efficient compared to RNN-based models, since the
masked self-attention operation is parallelizable, as suggested by Vaswani et al. (2017). The
per-batch time complexity of the TGAT layer with k heads and l layers can be expressed as
O
(
(kÑ)l

)
where Ñ is the average neighborhood size, which is comparable to GAT. When

using multi-head attention, the computation for each head can be parallelized as well.

• The inference with TGAT is entirely inductive. With an explicit functional expression h̃(t)
for each node, the time-aware node embeddings can be easily inferred for any timestamp
via a single network forward pass. Similarity, whenever the graph is updated, the embed-
dings for both unseen and observed nodes can be quickly inferred in an inductive fashion
similar to that of GraphSAGE, and the computations can be parallelized across all nodes.

6

Under review as a conference paper at ICLR 2020

• GraphSAGE with mean pooling (Hamilton et al., 2017a) can be interpreted as a special
case of the proposed method, where the temporal neighborhood is aggregated with equal
attention coefficients. GAT is like the time-agnostic version of our approach but with a
different formulation for self-attention, as they refer to the work of Bahdanau et al. (2014).
It is also straightforward to show our connections with the menory networks (Sukhbaatar
et al., 2015) by taking the temporal neighborhoods as memory. The techniques developed
in our work may also help adapting the MoNet (Monti et al., 2017) to temporal settings.

4 EXPERIMENT AND RESULTS

We test the performance of the proposed method against a variety of strong baselines (adapted for
temporal settings when possible) and competing approaches, for both inductive and transductive
tasks on two benchmark and one large-scale industrial dataset.

4.1 DATASETS

Real-world temporal graphs consist of time-sensitive node interactions, evolving node labels as well
as new nodes and edges. We choose the following datasets which contain all scenarios.

Reddit dataset.2 We select active users and their posts under subreddits, leading to a temporal
graph with 11,000 nodes, ∼700,000 temporal edges and dynamic labels indicating whether a user is
banned from posting. The subreddits and user posts are transformed into node/edge feature vectors.

Wikipedia dataset.3 We use the top edited pages and active users, yielding a temporal graph∼9,300
nodes and around 160,000 temporal edges. Dynamic labels indicate if users are temporarily banned
from editing. The wiki page content and user edits provide node/edge features.

Industrial dataset.4 We choose 70,000 popular products and 100,000 active customers as nodes
from an online grocery shopping website and use the customer-product purchase as temporal edges
(∼2 million). The customers are tagged with labels indicating if they have a recent interest in dietary
products. Product nodes possess contextual features (name, brand, description).

We do the chronological train-validation-test split with 70%-15%-15% according to node interaction
timestamps. The dataset and preprocessing details are provided in the supplement material.

4.2 TRANSDUCTIVE AND INDUCTIVE LEARNING TASKS

Since the majority of temporal information is reflected via node interactions, we choose to employ a
more revealing link prediction framework during training. Node classification is then treated as the
downstream task that takes the obtained time-aware node embeddings as input.

Transductive task examines the representation for nodes that have been observed in training with
future link prediction and node classification with the fixed embeddings. To avoid violating temporal
constraints, we predict the links that strictly take place posterior to all observations in training data.

Inductive task examines the inductive learning capability using the inferred representations of un-
seen nodes, by predicting the future links between unseen nodes and classify them based on their
inferred embedding dynamically. We point out that it suffices to only consider the future sub-graph
for unseen nodes since they are equivalent to new graphs under the non-temporal setting.

As for the metrics, for link prediction tasks, we first sample an equal amount of negative node
pairs to positive links and compute the average precision (AP) and classification accuracy. For the
downstream node classification tasks, due to the label imbalance, we use the area under the ROC
curve (AUC) as the metric.

2http://files.pushshift.io/reddit/
3https://meta.wikimedia.org/wiki/Data dumps
4Data source will be made public at acceptance time complying to the double-blind review policy.

7

Under review as a conference paper at ICLR 2020

Dataset Reddit Wikipedia Industrial
Metric Accuracy AP Accuracy AP Accuracy AP
GAE 74.31 (0.5) 93.23 (0.3) 72.85 (0.7) 91.44 (0.1) 68.92 (0.3) 81.15 (0.2)

VAGE 74.19 (0.4) 92.92 (0.2) 78.01 (0.3) 91.34 (0.3) 67.81 (0.4) 80.87 (0.3)
DeepWalk 71.43 (0.6) 83.10 (0.5) 76.67 (0.5) 90.71 (0.6) 65.87 (0.3) 80.93 (0.2)
Node2vec 72.53 (0.4) 84.58 (0.5) 78.09 (0.4) 91.48 (0.3) 66.64 (0.3) 81.39 (0.3)
CTDNE 73.76 (0.5) 91.41 (0.3) 79.42 (0.4) 92.17 (0.5) 67.81 (0.3) 80.95 (0.5)

GAT 88.68 (0.2) 96.02 (0.2) 83.94 (0.3) 92.23 (0.2) 69.58 (0.4) 81.51 (0.2)
GraphSAGE 89.02 (0.4) 96.06 (0.5) 85.18 (0.3) 92.06 (0.5) 70.19 (0.2) 83.27 (0.3)
Const-TGAT 84.75 (0.3) 94.66 (0.2) 80.52 (0.6) 89.70 (0.4) 68.52 (0.2) 81.91 (0.3)

TGAT 91.45 (0.3) 97.91 (0.2) 86.28 (0.2) 93.19 (0.1) 73.28 (0.2) 86.32 (0.1)

Table 1: Transductive learning task results for predicting future edges of nodes that have been ob-
served in training data. All results are converted to percentage by multiplying by 100, and the stan-
dard deviations computed over ten runs (in parenthesis). The best and second-best results in each
column are highlighted in bold font and underlined. GraphSAGE is short for GraphSAGE -LSTM.

Dataset Reddit Wikipedia Industrial
Metric Accuracy AP Accuracy AP Accuracy AP
GAT 86.59 (0.2) 94.37 (0.3) 62.46 (0.3) 72.62 (0.5) 68.28 (0.2) 79.93 (0.3)

GraphSAGE 86.32 (0.1) 94.02 (0.2) 65.51 (0.3) 74.94 (0.3) 67.49 (0.2) 80.54 (0.3)
Const-TGAT 82.58 (0.3) 90.31 (0.2) 58.61 (0.4) 68.24 (0.3) 65.87 (0.3) 77.03 (0.4)

TGAT 90.73 (0.4) 97.62 (0.3) 70.69 (0.5) 83.25 (0.3) 72.08 (0.3) 84.99 (0.2)

Table 2: Inductive learning task results for predicting future edges of unseen nodes.

Figure 3: Results of node classification
task in the ablation study.

Dataset Reddit Wikipedia Industrial
GAE 58.39 (0.5) 74.85 (0.6) 76.59 (0.3)

VGAE 57.98 (0.6) 73.67 (0.8) 75.38 (0.4)
CTDNE 59.43 (0.6) 75.89 (0.5) 78.36 (0.5)

GAT 64.80 (0.5) 82.54 (0.9) 87.43 (0.4)
GraphSAGE 61.08 (0.6) 82.18 (0.7) 88.28 (0.3)
Const-TGAT 60.89 (0.4) 77.18 (0.7) 82.59 (0.4)

TGAT 65.79 (0.7) 83.56 (0.6) 92.31 (0.3)

Table 3: Dynamic node classification task results, where the
reported metric is the AUC.

4.3 BASELINES

Transductive task: for link prediction of observed nodes, we choose the compare with the state-of-
the-art graph auto-encoder approaches: GAE and VGAE (Kipf & Welling, 2016b). For complete
comparisons we also include the skip-gram-based node2vec (Grover & Leskovec, 2016) as well as
the spectral-based DeepWalk model (Perozzi et al., 2014), using the same inner-product decoder
as GAE for link prediction. The CDTNE model based on the temporal random walk has been
reported with superior performance on transductive learning tasks (Nguyen et al., 2018), so we
include CDTNE as the representative for temporal graph embedding approaches.

Inductive task: few approaches capable of managing inductive learning on graphs even under the
non-temporal setting. As a consequence, we choose GraphSAGE and GAT as baselines after adapt-
ing them to the temporal setting. In particular, we equip them with the same temporal sub-graph
batching describe in Section 3.4 to maximize their usage on temporal information. Also, we im-
plement the extended version for the baselines to include edge features in the same way as ours
(in Section 3.3). We experiment on different aggregation functions for GraphSAGE, i.e. Graph-
SAGE -mean, GraphSAGE -pool and GraphSAGE -LSTM. In accordance with the original work of
Hamilton et al. (2017a), GraphSAGE -LSTM gives the best validation performance among the three
approaches, which is reasonable under temporal setting since LSTM aggregation takes account of
the sequential information. Therefore we report the results of GraphSAGE -LSTM.

8

Under review as a conference paper at ICLR 2020

In addition to the above baselines, we implement a version of TGAT with all temporal attention
weights set to equal values (Const-TGAT).

4.4 EXPERIMENT SETUP

We use the link prediction loss function for training the l-layer TGAT network:

` =
∑

(vi,vj ,tij)∈E

− log
(
σ
(
− h̃li(tij)

ᵀh̃lj(tij)
))
−Q.Evq∼Pn(v) log

(
σ
(
h̃li(tij)

ᵀh̃lq(tij)
))
, (8)

where the summation is over the observed edges for all vi and vj that interact at time tij , σ(.)
is the sigmoid function, Q is the number of negative samples and Pn(v) is the negative sampling
distribution over the node space. As for hyper-parameters, we fix the all node embeddings and
the time encoding dimension at d = 100 and dT = 100, select the number of TGAT layers from
{1,2,3}, the number of attention heads from {1,2,3,4,5}, according to the classification AP score in
validation. Although our method does not put restriction on the size of neighborhood during aggre-
gation, to speed up training under multi-hop aggregations, we use neighborhood dropout (selected
among {0.2, 0.4, 0.6}) with the uniform sampling. During training, we use 0.0001 as learning rate
for Reddit and Wikipedia dataset and 0.001 for the industrial dataset, with Glorot initialization and
the Adam SGD optimizer. We do not experiment on applying regularization since our approach is
parameter-efficient and only requires Ω

(
(d + dT)dh + (dh + d0)df + dfd

)
parameters for each

attention head, which is independent of the graph and neighborhood size. Using two TGAT layers
and two attention heads with dropout rate as 0.4 give the best validation performance.

During inference, we inductively compute the embeddings for unseen and observed nodes at the time
points whenever the graph evolves, or the node labels are updated. We then use these embeddings
as features for future link prediction and dynamic node classifications with multilayer perceptron.

We further conduct ablation study to demonstrate the effectiveness of the proposed functional time
encoding approach. We experiment on abandoning time encoding or replacing it with the original
positional encoding. We also compare the uniform neighborhood dropout to sampling with inverse
timespan (where the recent edges are more likely to be sampled), which is provided in supplement
material along with other implementation details and setups for baselines.

4.5 RESULTS

The results in Table 1 and Table 2 demonstrates the state-of-the-art performances achieved by our
proposed approach on both transductive and inductive learning tasks. Specially, in the inductive
learning task, our TGAT network significantly improves upon the the upgraded GraphSAGE -LSTM
and GAT in accuracy and average precision by at least 5 % for both metrics, and in the transduc-
tive learning task TGAT consistently outperforms all baselines across datasets. Overall, the results
demonstrate the superiority of our approach in learning representations on temporal graphs over
prior models. We also see the benefits from assigning temporal attention weights to neighborhood,
where GAT improves upon Const-TGAT in all three tasks. The dynamic node classification outcome
(in Table 3) further indicates the usefulness of our time-aware node embeddings for downstream
tasks as they surpass all baselines. The ablation study results of Figure 3 successfully reveals the
effectiveness of the proposed functional time encoding approach in capturing temporal signals as it
outperforms the positional encoding counterpart.

5 CONCLUSION AND FUTURE WORK

We introduce a novel temporal graph attention network for inductive representation learning on
temporal graphs. We adapt the self-attention mechanism to handling continuous time by proposing
a theoretically-grounded functional time encoding. Theoretical and experimental analysis demon-
strate the effectiveness of our approach in capturing temporal-feature signals in terms of both node
and topological features for temporal graphs. Self-attention mechanism often provides useful model
interpretations (Vaswani et al., 2017), which is an important direction of our future work. Develop-
ing tools to visualize the evolving graph dynamics and temporal representations efficiently is another
important direction for both research and application. Also, the functional time encoding technique
has several potential extensions such as adapting other graph networks to temporal settings.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dy-
namic graphs. arXiv preprint arXiv:1805.11273, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Interna-
tional conference on machine learning, pp. 1188–1196, 2014.

Taisong Li, Jiawei Zhang, S Yu Philip, Yan Zhang, and Yonghong Yan. Deep dynamic network
embedding for link prediction. IEEE Access, 6:29219–29230, 2018.

Lynn H Loomis. Introduction to abstract harmonic analysis. Courier Corporation, 2013.

Yao Ma, Ziyi Guo, Eric Zhao Zhaochun Ren, and Dawei Yin Jiliang Tang. Streaming graph neural
networks. arXiv preprint arXiv:1810.10627, 2018.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–
5124, 2017.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings of
the The Web Conference 2018, pp. 969–976. International World Wide Web Conferences Steering
Committee, 2018.

10

Under review as a conference paper at ICLR 2020

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

Mahmudur Rahman, Tanay Kumar Saha, Mohammad Al Hasan, Kevin S Xu, and Chandan K Reddy.
Dylink2vec: Effective feature representation for link prediction in dynamic networks. arXiv
preprint arXiv:1804.05755, 2018.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077. International World Wide Web Conferences Steering Committee, 2015.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representation learn-
ing over dynamic graphs. arXiv preprint arXiv:1803.04051, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234. ACM, 2016.

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee. Billion-scale
commodity embedding for e-commerce recommendation in alibaba. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 839–848.
ACM, 2018a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983. ACM, 2018.

11

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 PROOF FOR CLAIM 1

Proof. To prove the results in Claim 1, we alternatively show that under the same condition,

Pr
(

sup
t1,t2∈T

|ΦBd (t1)
′
ΦBd (t2)−K(t1, t2)| ≥ ε

)
≤ 4σp

√
tmax

ε
exp
(−dε2

32

)
. (9)

Define the score S(t1, t2) = ΦBd (t1)
′
ΦBd (t2). The goal is to derive a uniform upper bound

for s(t1, t2) − K(t1, t2). By assumption S(t1, t2) is an unbiased estimator for K(t1, t2), i.e.
E[S(t1, t2)] = K(t1, t2). Due to the translation-invariant property of S and K, we let ∆(t) ≡
s(t1, t2) − K(t1, t2), where t ≡ t1 − t2 for all t1, t2 ∈ [0, tmax]. Also we define s(t1 − t2) :=

S(t1, t2). Therefore t ∈ [−tmax, tmax], and we use t ∈ T̃ as the shorthand notation. The LHS in (1)
now becomes Pr

(
supt∈T̃ |∆(t)| ≥ ε

)
.

Note that T̃ ⊆ ∪N−1
i=0 Ti with Ti = [−tmax + 2itmax

N ,−tmax + 2(i+1)tmax

N] for i = 1, . . . , N . So
∪N−1
i=0 Ti is a finite cover of T̃ . Define ti = −tmax + (2i+1)tmax

N , then for any t ∈ Ti, i = 1, . . . , N
we have

|∆(t)| = |∆(t)−∆(ti) + ∆(ti)|
≤ |∆(t)−∆(ti)|+ |∆(ti)|
≤ L∆|t− ti|+ |∆(ti)|

≤ L∆
2tmax

N
+ |∆(ti)|,

(10)

where L∆ = maxt∈T̃ ‖∇∆(t)‖ (since ∆ is differentiable) with the maximum achieved at t∗. So we
may bound the two events separately.

For |∆(ti)| we simply notice that trigeometric functions are bounded between [−1, 1], and therefore
−1 ≤ ΦBd (t1)

′
ΦBd (t2) ≤ 1. The Hoeffding’s inequality for bounded random variables immediately

gives us:

Pr
(
|∆(ti)| >

ε

2

)
≤ 2exp(−dε

2

16
).

So applying the Hoeffding-type union bound to the finite cover gives

Pr(∪N−1
i=0 |∆(ti)| ≥

ε

2
) ≤ 2N exp(−dε

2

16
) (11)

For the other event we first apply Markov inequality and obtain:

Pr
(
L∆

2tmax

N
≥ ε

2

)
= Pr

(
L∆ ≥

εN

4tmax

)
≤ 4tmaxE[L2

∆]

εN
. (12)

Also, since E[s(t1 − t2)] = ψ(t1 − t2), we have

E[L2
∆] = E‖∇s(t∗)−∇ψ(t∗)‖2 = E‖∇s(t∗)‖2 − E‖∇ψ(t∗)‖2 ≤ E‖∇s(t∗)‖2 = σ2

p, (13)

where σ2
p is the second momentum with respect to p(ω).

Combining (11), (12) and (11) gives us:

Pr
(

sup
t∈T̃
|∆(t)| ≥ ε

)
≤ 2N exp(−dε

2

16
) +

4tmaxσ
2
p

εN
. (14)

It is straightforward to examine that the RHS of (14) is a convex function of N and is minimized by

N∗ = σp

√
2tmax

ε exp(dε
2

32). Plug N∗ back to (14) and we obtain (9). We then solve for d according
to (9) and obtain the results in Claim 1.

12

Under review as a conference paper at ICLR 2020

A.2 DETAILS ON DATASETS AND PREPROCESSING

Reddit dataset: this benchmark dataset contains users interacting with subreddits by posting under
the subreddits. The timestamps thus reflect when the user makes the posts. We use the posts made
over one month, and select the most active users and subreddits as nodes, resulting in a total of
11,000 nodes and around 700,000 temporal edges. The subreddit nodes and each user post have
textual features that are transformed into a 172-dimensional vector representing under the linguistic
inquiry and word count (LIWC) categories (Pennebaker et al., 2001). The dynamic binary labels are
provided for indicating if a user is banned from posting under a subreddit.

Wikipedia dataset: we also collect one month of interactions made by users editing the Wikipedia
pages. We use the top edited pages and active users, leading to ∼9,300 nodes and around 160,000
temporal edges. Similar to the Reddit dataset, we also have the ground-truth dynamic labels on
whether a user is banned from editing a Wikipedia page. The content of wiki pages and the user
edits consist of textual features and are also converted into 172-dimensional LIWC feature vectors.

Industrial dataset: we obtain the large-scale customer-product graph from a major online grocery
shopping platform in the U.S. We select ∼70,000 most popular products and 100,000 active cus-
tomers as nodes and use the customer-product purchase interactions over a one-month period as
temporal edges (∼2 million). Each purchase interaction is timestamped, which we use to construct
the temporal graph. The customers are labelled with business tags, indicating if they are interested in
dietary products according to their most recent purchase records. Each product node possesses con-
textual features containing their name, brand, categories and short description. The previous LIWC
categories no longer apply since the product contextual features are not natural sentences. We use
doc2vec (Le & Mikolov, 2014) to embed each product’s contextual features into a 100-dimensional
vector space as preprocessing. User nodes and edges do not possess features.

We then split the temporal graphs chronologically into 70%-15%-15% for training, validation and
testing according to the time epochs of edges, as illustrated in Figure 4 with the Reddit dataset. Since
all three datasets have a relatively stationary edge count distribution over time, using the 70 and 85
percentile time points to split the dataset results in approximately 70%-15%-15% of total edges, as
suggested by Figure 4.

Figure 4: The distribution of temporal edge count for the Reddit dataset, and the illustration on the
train-validation-test splitting.

To ensure an appropriate amount of future edges between unseen nodes during validation and testing,
we randomly sample 10% of nodes from the three datasets, mask them during training and treat
them as unseen nodes by only considering their interactions in validation and testing period. This
manipulation is necessary since new nodes that show up during validation and testing period may
not have much interaction among themselves. The statistics of the three datasets are summarized in
Table 4.

Preprocessing.

For the Node2vec and DeepWalkbaselines that take only a static graph as input, the graph is con-
structed using all edges in training data regardless of temporal information. For DeepWalk, we treat

13

Under review as a conference paper at ICLR 2020

Reddit Wikipedia Industrial
Nodes 11,000 9,227 170,243
Edges 672,447 157,474 2,135,762
Feature dimension 172 172 100

Feature type LIWC category
vector

LIWC category
vector

document
embeddings

Timespan 30 days 30 days 30 days
% Training nodes 90% 90% 90%
% Unseen nodes 10% 10% 10%
% Training edges ∼67% ∼65% ∼64%
% Future edges between
observed nodes ∼27% ∼28% ∼29%

% Future edges between
unseen nodes ∼6% ∼7% ∼7%

Nodes with dynamic
labels 366 217 5,236

Label type binary binary binary

Positive label meaning banned from
posting

banned from
editting

interested in
dietary products

Table 4: Data statistics for the three datasets. Since we sample a proportion of unseen nodes, the
percentage of the edge statistics reported here are approximations.

the recurrent edges as appearing only once, so the graph is unweighted. Although our approach
handles both directed and undirected graphs, for the sake of training stability of baselines, we treat
the graphs as undirected. For Node2vec, we use the count of recurrent edges as their weights and
construct the weighted graph. For all three datasets, the obtained graphs for both cases are undi-
rected and do not have isolated nodes. Since we choose from active users and popular items, the
graphs are all connected.

For the graph convolutional network baselines, i.e. GAE and VGAE, we construct the same undi-
rected weighted graph as for Node2vec. Since GAE and VGAE do not take edge features as input,
we use the posts/edits as user node features. For each user in Reddit and Wikipedia dataset, we take
the average of their post/edit feature vectors as the node feature. For the industrial dataset where
user features are not available, we use the all-zero feature vector instead.

As for the downstream dynamic node classification task, we use the same training, validation and
testing dataset as above. Since we aim at predicting the dynamic node labels, for Reddit and
Wikipedia dataset we predict if the user node is banned and for the industrial dataset we predict
the customers’ business labels, at different time points. Due to label imbalance, for each batch in
training the node label classifier, we conduct stratified sampling such that the label distributions are
similar across batches.

A.3 EXPERIMENT SETUP FOR BASELINES

For all baselines, we set the node embedding dimension to d = 100 to keep in accordance with our
approach.

Transductive baselines.

Since Node2vec and DeepWalk do not provide room for task-specific manipulation or hacking, we
do not modify their default loss function and input format. For both approaches, we select the num-
ber of walks among {60,80,100} and the walk-length among {20,30,40} according to the validation
AP. Setting number of walks=80 and walk-length=30 give slightly better validation performance
compared to others for both approaches. Notice that both Node2vec and DeepWalk use the sigmoid
function with embedding inner-products as the decoder to predict neighborhood probabilities. So
when predicting whether vi and vj will interact in the future, we use σ(−zᵀi zj) as the score, where
zi and zj are the node embeddings. Notice that Node2vec has the extra hyper-parameter p and q
which controls the likelihood of immediately revisiting a node in the walk and interpolation between

14

Under review as a conference paper at ICLR 2020

breadth-first strategy and depth-first strategy. After selecting the optimal number of walks and walk-
length under p = 1 and q = 1, we further tune the different values of p in {0.2,0.4,0.6,0.8,1.0}
while fixing q = 1. According to validation, p = 0.6 and 0.8 give comparable optimal performance.

For the GAE and VGAE baselines, we experiment on using one, two and three graph convolu-
tional layers as the encoder (Kipf & Welling, 2016a) and use the ReLU(.) as the activation function.
Referring to the official implementation, we also set the dimension of hidden layers to 200. Sim-
ilar to previous findings, using two layers gives significant performances to using only one layer.
Adding the third layer, on the other hand, shows almost identical results for both models. Therefore
the results reported are based on two-layer GCN as the encoder. For GAE, we use the standard
inner-product decoder as our approach and optimize over the reconstruction loss, and for VGAE, we
restrict the Gaussian latent factor space (Kipf & Welling, 2016b). Since we have eliminated the tem-
poral information when constructing the input, we find that the optimal hyper-parameters selected
by tuning have similar patterns as in the previous non-temporal settings.

For the temporal network embedding model CTDNE, the walk length for the temporal random walk
is also selected among {60,80,100}, where setting walk length to 80 gives slightly better validation
outcome. The original paper considers several temporal edge selection (sampling) methods (uni-
form, linear and exponential) and finds uniform sampling with best performances (Nguyen et al.,
2018). Since our setting is similar to theirs, we adopt the uniform sampling.

Inductive baselines.

For the GraphSAGE and GAT baselines, as mentioned before, we train the models in an identical
way as our approach with the temporal subgraph batching, despite several slight differences. Firstly,
the aggregation layers in GraphSAGE usually considers a fixed neighborhood size via sampling,
whereas our approach can take an arbitrary neighborhood as input. Therefore, we only consider
the most recent dsample edges during each aggregation for all layers, and we find dsample = 20 gives
the best performance among {10,15,20,25}. Secondly, GAT implements a uniform neighborhood
dropout. We also experiment with the inverse timespan sampling for neighborhood dropout, and find
that it gives slightly better performances but at the cost of computational efficiency, especially for
large graphs. We consider aggregating over one, two and three-hop neighborhood for both GAT and
GraphSAGE. When working with three hops, we only experiment on GraphSAGE with the mean
pooling aggregation. In general, using two hops gives comparable performance to using three hops.
Notice that computations with three-hop are costly, since the number of edges during aggregation
increase exponentially to the number of hops. Thus we stick to using two hops for GraphSAGE,
GAT and our approach. It is worth mentioning that when implementing GraphSAGE -LSTM, the
input neighborhood sequences of LSTM are also ordered by their interaction time.

Node classification with baselines.

The dynamic node classification with GraphSAGE and GAT can be conducted similarity to our
approach, where they inductively compute the most up-to-date node embeddings and then input them
as features to an MLP classifier. For the transductive baselines, it is not reasonable to predict the
dynamic node labels with only the fixed node embeddings. Instead, we combine the node embedding
with the other node embedding it is interacting with when the label changes, e.g. combine the
user embedding with the Wikipedia page embedding that the user attempts on editing when the
system bans the user. To combine the pair of node embeddings, we experimented on summation,
concatenation and bi-linear transformation. Under summation and concatenation, the combined
embeddings are then used as input to an MLP classifier, where the bi-linear transformation directly
outputs scores for classification. The validation outcomes suggest that using concatenation with
MLP yields the best performance.

A.4 IMPLEMENTATION DETAILS

Training. We implement Node2vec using the official C code5 on a 16-core Linux server with 500
Gb memory. DeepWalk is implemented with the official python code6. We refer to the PyTorch
geometric library for implementing the GAE and VGAE baselines (Fey & Lenssen, 2019). To
accommodate the temporal setting and incorporate edges features, we develop off-the-shelf imple-

5https://github.com/snap-stanford/snap/tree/master/examples/node2vec
6https://github.com/phanein/deepwalk

15

Under review as a conference paper at ICLR 2020

(a) Comparison between uniform and inverse
timespan weighted sampling on the link predic-
tion task

(b) Comparison between three different ways of
learning the functional time encoding, on link pre-
diction task.

Figure 5: Extra ablation study.

(a) Sensitivity analysis on node embeddings di-
mension.

(b) Sensitivity analysis on time embeddings di-
mension.

Figure 6: Sensitivity analysis on the Industrial dataset.

mentation for GraphSAGE and GAT in PyTorch by referencing their original implementations7 8.
We also implement our model using PyTorch. All the deep learning models are trained on a ma-
chine with one Tesla V100 GPU. We use the Glorot initialization and the Adam SGD optimizer for
all models, and apply the early-stopping strategy during training where we terminate the training
process if the validation AP score does not improve for 10 epochs.

Downstream node classification. As we discussed before, we use the three-layer MLP as classifier
and the (combined) node embeddings as input features from all the experimented approaches, for
all three datasets. The MLP is trained with the Glorot initialization and the Adam SGD optimizer
in PyTorch as well. The `2 regularization parameter λ is selected in {0.001, 0.01, 0.05, 0.1, 0.2}
case-by-case during training. The early-stopping strategy is also employed.

A.5 SENSITIVITY ANALYSIS AND EXTRA ABLATION STUDY

Firstly, we focus on the output node embedding dimension as well as the functional time encod-
ing dimension in this sensitivity analysis. We experiment on d ∈ {60, 80, 100, 120, 140} and
dT ∈ {60, 80, 100, 120, 140}, and the results are reported in Figure 6a and 6b. The remaining
model setups reported in Section 4.4 are untouched when varying d or dT . We observe slightly
better outcome when increasing either d or dT on the industrial dataset. The patterns on Reddit and
Wikipedia dataset are almost identical.

Secondly, we compare between the two methods of learning functional encoding, i.e. using flow-
based model or using the non-parametric method introduced in Section 3.1. We experiment on two

7https://github.com/williamleif/GraphSAGE
8https://github.com/PetarV-/GAT

16

Under review as a conference paper at ICLR 2020

flow-based state-of-the-art CDF learning method: normalizing flow (Rezende & Mohamed, 2015)
and RealNVP (Dinh et al., 2016). We use the default model setups and hyper-parameters in their
reference implementations9 10. We provide the results in Figure 5b. As we mentioned before, using
flow-based models leads to highly comparable outcomes as the non-parametric approach, but they
require longer training time since they implement sampling during each training batch. However,
it is possible that carely-tuned flow-based models can lead to nontrivial improvements, which we
leave to future work.

The ablation study for comparing between uniform neighborhood dropout and sampling with inverse
timespan is given in Figure 5a. The two experiments are carried out under the same setting reported
in Section 4.4. We see that using the inverse timespan sampling gives slightly worse performances.
This is within expectation since uniform sampling has advantage in capturing the recurrent patterns,
which can be important for predicting user actions. On the other hand, the results also suggest
the effectiveness of the proposed time encoding for capturing such temporal patterns. Moreover,
we point out that using the inverse timespan sampling slows down training, particularly for large
graphs where a weighted sampling is conducted within a large number of nodes for each training
batch construction. Nonetheless, inverse timespan sampling can help capturing the more recent
interactions and can be usefule for certain tasks. Therefore, we suggest to choose the neighborhood
dropout method based on the use cases.

A.6 REFERENCE IMPLEMENTATION

The reference code for our implementations is provided in the supplementary material.

9https://github.com/ex4sperans/variational-inference-with-normalizing-flows
10https://github.com/chrischute/real-nvp

17

	Introduction
	Related Work
	Temporal Graph Attention Network Architect
	Functional time encoding
	Temporal graph attention layer
	Extension to incorporate Edge Features
	Temporal sub-graph batching
	Comparisons to related work

	Experiment and Results
	Datasets
	Transductive and inductive learning tasks
	Baselines
	Experiment setup
	Results

	Conclusion and future work
	Appendix
	proof for claim 1
	Details on datasets and preprocessing
	Experiment Setup for Baselines
	Implementation details
	Sensitivity analysis and extra ablation study
	Reference implementation

