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ABSTRACT

Meta-learning for few-shot learning involves a meta-learner that acquires shared
knowledge from a set of prior tasks to improve the performance of a base-learner
on new tasks with a small amount of data. Kernels are commonly used in machine
learning due to their strong nonlinear learning capacity, which have not yet been
fully investigated in the meta-learning scenario for few-shot learning. In this work,
we explore kernel approximation with random Fourier features in the meta-learning
framework for few-shot learning. We propose learning adapative kernels by meta
variational random features (MetaVRF), which is formulated as a variational infer-
ence problem. To explore shared knowledge across diverse tasks, our MetaVRF
deploys an LSTM inference network to generate informative features, which can
establish kernels of highly representational power with low spectral sampling rates,
while also being able to quickly adapt to specific tasks for improved performance.
We evaluate MetaVRF on a variety of few-shot learning tasks for both regression
and classification. Experimental results demonstrate that our MetaVRF can deliver
much better or competitive performance than recent meta-learning algorithms.

1 INTRODUCTION

Humans have the instinct to effortlessly learn new concepts from a few examples and show great
generalization ability to new samples. However, existing machine learning models, e.g., deep neural
networks (DNNs) (Krizhevsky et al., 2012; He et al., 2016a), rely highly on large-scale annotated
training data (Deng et al., 2009) to achieve satisfactory performance. The huge gap between human
intelligence and DNNs motivates us to try and progress the task of learning from a few samples, a.k.a.
few-shot learning (Fei-Fei et al., 2006; Lake et al., 2015; Ravi & Larochelle, 2017).

Learning to learn, or meta-learning (Schmidhuber, 1992), has recently received great interests in
the machine learning community and offers a promising tool for few-shot learning (Andrychowicz
et al., 2016; Ravi & Larochelle, 2017; Finn et al., 2017). Generally speaking, a meta-learner (Ravi &
Larochelle, 2017; Bertinetto et al., 2019) is trained to improve the performance of a base-learner on
individual tasks, which is also fast adapted to solve new tasks. The crux of meta-learning for few-shot
learning is to explore the common knowledge, such as a good parameter initialization (Finn et al.,
2017) or efficient optimization update rule (Andrychowicz et al., 2016; Ravi & Larochelle, 2017),
shared across different tasks. The knowledge is accumulated and distilled throughout the learning
stage, making the model adaptable to new but related tasks (Finn et al., 2017).

Kernel approximation by random Fourier features (RFFs) (Rahimi & Recht, 2007) is an effective
technique for efficient kernel learning (Gärtner et al., 2002), which has recently become increas-
ingly popular (Sinha & Duchi, 2016; Carratino et al., 2018). It resorts to the Fourier transform of
shift-invariant kernels and constructs explicit feature maps using the Monte Carlo approximation
of the Fourier representation. The desired kernel function is approximated by the inner products
between these random features. Though demonstrating great potential as a strong base learner, kernel
approximation with random features has not yet been fully explored in the meta-learning scenario
for few-shot learning. It has already been shown that the classification performance of the kernel
with random features does not correlate well with the accurate approximation of kernels. Learning
adaptive kernels with random features, for instance, by data-driven sampling strategies (Sinha &
Duchi, 2016), can improve the performance with a low sampling rate compared to using universal
random features (Avron et al., 2016; Chang et al., 2017). However, since only a few samples are
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Figure 1: The inference framework of our meta variational random features (MetaVRF) with a long
short-term memory (LSTM) network (t is the task index). The meta-learner employs an LSTM
network to infer random Fourier features from the support set St of the current task and bases ωt−1
of previous tasks, which explores task dependency to extract shared knowledge. The base-learner is a
classifier with kernels obtained by variational features from the meta-learner.

available in each task, it is challenging to learn adaptive kernels with data-driven random features
while maintaining high representational capacity for few-shot learning tasks. To obtain powerful
kernels for few-shot learning tasks, we need to fully explore the relationship among diverse tasks and
capture their shared knowledge to generate informative random features.

In this work, we propose meta variational random features (MetaVRF) to approximate kernels in
a data-driven manner for few-shot learning, which integrates variational inference and kernels in
the meta-learning framework. Learning kernels with random Fourier features for few-shot learning
allows us to leverage the universal approximation property of kernels to capture shared knowledge in
related tasks, and meanwhile it enables us to learn adaptive basis functions to quickly and efficiently
adapt to new tasks. Learning adaptive kernels with data-driven random features can be naturally
cast into variational inference that approximates probability density through optimization, where the
posterior over the random basis function is the spectral distribution of a translation-invariant kernel.

The inference of the posterior is conducted in the context of tasks to exploring their dependency for
capturing shared knowledge. We adopt a long short-term memory (LSTM) based inference network
(Hochreiter & Schmidhuber, 1997), which establishes task context inference to capture the task
dependency. Specifically, during the inference, the cell state in the LSTM carries and accumulates the
shared knowledge which is updated for each task throughout the course of learning. The remember
and forget operations in the LSTM use new information to episodically refine the cell state by
gaining experience from a batch of tasks, which can eventually produce random features of highly
representational capability for all tasks. For an individual task, the task specific information is first
extracted from the support set, and then combined with the shared knowledge in the shared cell state
together as the joint condition, to infer the adaptive spectral distribution of the kernels. As a result,
the task context inference can not only learn to extract and maintain the shared knowledge across
tasks, but also leverage the task-specific knowledge to achieve an adaptive kernel to the current task.
The inference framework of our MetaVRF is illustrated in Figure 1.

Extensive experiments on a variety of few-shot learning problems such as regression and classification
demonstrate that, our MetaVRF method achieves competitive or even better performance when
compared to state-of-the-art algorithms. Due to the advantages of kernels, our MetaVRF can be
applied to test settings with different ways and shots from those of training setting, in which the
promising results again validate the effectiveness of our MetaVRF for few-shot learning.
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2 PROBLEM STATEMENT

In this section, we describe the setup of meta-learning for few-shot learning and introduce the kernel
ridge regression as the base-learner, where kernels are approximated by random Fourier features.

2.1 META-LEARNING WITH KERNELS

We adopt the episodic training strategy (Ravi & Larochelle, 2017) commonly used for few-shot
classification in meta-learning, which usually involves the meta-training and meta-test stages. In
the meta-training stage, a meta-learner is trained to enhance the performance of a base-learner on
a meta-training set with a batch of few-shot learning tasks, where a task is usually referred as an
episode (Ravi & Larochelle, 2017). In the meta-test stage, the base learner is evaluated on a meta-test
set with different classes of data samples from the meta-training set.

For the few-shot classification problem, we sample C-way k-shot classification tasks from the meta-
training set, where k is the number of labelled examples for each of the C classes. Given the t-th
task with a support set St = {(xi,yi)}C×ki=1 and query set Qt = {(x̃i, ỹi)}mi=1 (St,Qt ⊆ X ), we
learn the parameters αt of the predictor fαt using a standard learning algorithm with kernel trick
αt = Λ(Φ(x),y), where (x,y) ∈ St. Here, Λ is the base-learner and Φ : X → RX is a mapping
function from X to a dot product space H. The similarity measure k(x,x′) = 〈Φ(x),Φ(x′)〉 is
usually called a kernel (Hofmann et al., 2008).

In traditional supervised learning, the base-learner for the t-th single task usually uses a universal
kernel to map the input onto a dot product space for efficient learning. Once the base-learner is
trained on the support set, its performance is evaluated on the query set by the following loss function∑

(x̃,ỹ)∈Qt
L
(
fαt
(
Φ(x̃)

)
, ỹ
)
, (1)

where L(·) can be any differentiable function, e.g., cross-entropy loss. In the meta-learning setting
for few-shot learning, we usually consider a batch of tasks. Thus, the meta-learner is trained by
optimizing the following objective function w.r.t. the empirical loss on T tasks∑

t

∑
(x̃,ỹ)∈Qt

L
(
fαt
(
Φt(x̃)

)
, ỹ
)
, with αt = Λ

(
Φt(x),y

)
, (2)

where Φt is the feature mapping function which can be obtained by learning task-specific kernel kt
for each task t with data-driven ramdom Fourier features.

In this work, we employ kernel ridge regression (KRR), which has an efficient closed-form solution,
as the base-learner Λ for few-shot learning. The kernel value in the Gram matrix K ∈ RCk×Ck can
be computed as k(x,x′) = Φ(x)Φ(x′)>, where “>” is the transpose operation. The base-learner Λ
for a single task can be obtained by solving the following objective w.r.t. the support set of this task,

Λ = arg min
α

Tr[(Y − αK)(Y − αK)>] + λαKα>. (3)

This produces a closed-form solution α = (λI +K)−1Y . The learned predictor is then applied to the
query set for prediction of the query set X̃:

Ŷ = fα(X̃) = αK̃, (4)

where K̃ = Φ(X)Φ(X̃)> ∈ RCk×m is with each element as k(x, x̃) between the samples from the
support and query sets. Note that we also treat λ in Eq. (3) as a trainable parameter by leveraging the
meta-learning setting, and all these parameters are learned by the meta-learner.

In order to obtain task-specific kernels, we propose to learn kernels with random Fourier features,
which not only allows us to obtain task-adaptive kernels but also enables us to capture shared
knowledge of different tasks by exploring their dependency.

2.2 RANDOM FOURIER FEATURES

Random Fourier features (RFFs) were proposed to construct explicit random feature maps using the
Monte Carlo approximation of the Fourier representation (Rahimi & Recht, 2007), which is derived
from Bochner’s theorem (Rudin, 1962).
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Theorem 1 (Bochner’s theorem) (Rudin, 1962) A continuous, real valued, symmetric and shift-
invariant function k(x,x′) = k(x − x′) on Rd is a positive definite kernel if and only if it is the
Fourier transform p(ω) of a positive finite measure such that

k(x,x′) =

∫
Rd
eiω
>(x−x′)dp(ω) = Eω[ζω(x)ζω(x)∗], where ζω(x) = eiω

>x. (5)

It is guaranteed that ζω(x)ζω(x)∗ is an unbiased estimation of k(x,x′) with sufficient RFF bases
{ω} drawn from p(ω) (Rahimi & Recht, 2007).

For a predefined kernel, e.g., radius basis function (RBF), we sample from its spectral distribution
using the Monte Carlo method, and obtain the explicit feature map:

z(x) =
1√
D

[cos(ω>1 x + b1), · · · , cos(ω>Dx + bD)], (6)

where {ω1, · · · ,ωD} are the random bases sampled from p(ω), and [b1, · · · , bD] are D biases
sampled from a uniform distribution with a range of [0, 2π]. Finally, the kernel value k(x,x′) =
z(x)z(x′)> in K is computed as the dot product of their random feature maps with the same bases.

Learning adaptive kernel with data-driven random Fourier features is essential to find the posterior
distribution and the specific spectral distribution of kernels. In the following section, we introduce
our meta variational random features (MetaVRF), in which random Fourier bases are treated as latent
variables inferred from the support set in the meta-learning setting.

3 META VARIATIONAL RANDOM FEATURES

3.1 META EVIDENCE LOWER BOUND

From the probabilistic perspective of view, the goal of few-shot learning is to maximize the conditional
predictive log-likelihood of samples from the query set Q. We treat the random Fourier base ω of the
kernel as a latent variable:

max
p

∑
(x,y)∈Q

log p(y|x,S) = max
p

∑
(x,y)∈Q

log

∫
p(y|x,S,ω)p(ω|x,S)dω. (7)

In order to infer the posterior p(ω|y,x,S) over ω, which is generally intractable, we resort to using
a variational distribution qφ(ω|S) to approximate this posterior, where the base is conditioned on the
support set S by leveraging meta-learning. We can obtain the variational distribution by minimizing
the Kullback-Leibler (KL) divergence

DKL[qφ(ω|S)||p(ω|y,x,S)]. (8)
By applying the Bayes’ rule to the posterior p(ω|y,x,S), we can derive the meta ELBO as

log p(y|x,S) ≥
∑

(x,y)∈Q

Eqφ(ω|S) log p(y|x,S,ω)−DKL[qφ(ω|S)||p(ω|x,S)] = LMetaELBO.

(9)
The first term of meta ELBO is the predictive log-likelihood conditioned on the observation x, S and
the inferred RFF bases ω. Maximizing it enables us to make an accurate prediction for the query set
by utilizing the inferred bases from the support set. The second term in our meta ELBO minimizes
the discrepancy between the meta variational distribution qφ(ω|S) and the meta prior p(ω|x,S),
which encourages samples from support and query sets to share the same random Fourier bases. The
full derivation of the meta ELBO is provided in the Appendix A.

We now obtain the objective by maximizing the meta ELBO with respect to a batch of tasks:

L =
1

T

T∑
t=1

 ∑
(x,y)∈Qt

Eqφ(ωt|St) log p(y|x,St,ωt)−DKL[qφ(ωt|St)||p(ωt|x,St)]

 . (10)

where St is the support set of the t-th task associated with its specific bases {ωtd}Dd=1. Directly
optimizing the above objective does not take into count the task dependency. We introduce task
context inference by making the posterior conditioned on both the support set of the current task and
the bases from previous tasks.
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-th task

Figure 2: Illustration of MetaVRF in a directed graphical model. (x,y) is a test sample in the query
set Qt. The base ωt is inferred by conditioning on both the bases ω1:t−1 from previous tasks and the
support set St of the current task.

3.2 TASK CONTEXT INFERENCE

To leverage the knowledge shared across tasks, we propose task context inference for random feature
bases. Specifically, the bases {ωtd}Dd=1 of the t-th task should rely on all bases in previous t− 1 tasks,
denoted as {ω1:t−1

d }Dd=1. The directed graphical model with related variables is shown in Figure 2.
To compute the probability of ωt conditioned on ω1:t−1, we replace the previous variational posterior
qφ(ωt|St) with qφ(ω|St,ω1:t−1). Therefore, the objective of the task context inference is:

L =
1

T

T∑
t=1

 ∑
(x,y)∈Qt

Eqφ(ωt|ω1:t−1,St) log p(y|x,St,ωt)−DKL[qφ(ωt|ω1:t−1,St)||p(ωt|x,St)]

 .

(11)
Note that the variational approximate posterior qφ(ωt|ω1:t−1,St) is a multivariate Gaussian with a
diagonal covariance. Given the support set as input, the meanωµ and standard deviationωσ are output
from the LSTM inference network φ(·). To enable the back-propagation of the LSTM inference
network with the sampling operation during training, we leverage the reparametrization trick (Kingma
& Welling, 2013) as

ω(l) = ωµ + ωσ � ε(l) with ε(l) ∼ N (0, I). (12)

We use a permutation-invariant instance pooling layer to aggregate the support set St of a group of
examples, which essentially takes the average over the feature vectors of samples in the support set
into a single vector, as in (Zaheer et al., 2017). In practice, the feature representation e is extracted
for each image x by a shared convolutional network ψ(·), i.e., e = ψ(x). The aggregation of samples
in the support set is denoted as ē.

We propose an LSTM-type inference network inspired by the fact that the long-term memory can be
carried and refined in cell states c during its update (Gers & Schmidhuber, 2000). Specifically, we
design a simplified variant of LSTM with two gates to remove the effect of the short-term memory.
The common knowledge shared by tasks is stored in the cell state and updated with new information
in each episode. During inference, LSTM can remove trivial information and add knowledge with
a highly representational ability to the cell state. Once we have updated the cell state, the shared
knowledge stored within it is combined with the task-specific information from the input support set
to infer the spectral distribution. The update steps in the LSTM network are

f t = sigmoid(Wf · [ēt, ct−1] + bf );

it = sigmoid(Wi · [ēt, ct−1] + bi);

ĉt = tanh(Wc · [ēt] + bc);

ct = f t · ct−1 + it · ĉt;
ωtµ = tanh(Wo · [ēt, ct] + bo).

(13)

ωσ is computed in the same way. After training, the final state cT is the shared knowledge from the
meta-training set, which is directly used in the meta-testing set. In the meta-testing stage, we use the
LSTM inference network φ to obtain ωµ and ωσ from S and ω1:T . Then, a set of bases are sampled
from qφ(ωt|ω1:t−1,St) to construct the random features in the kernels. Finally, the base-learner is
optimized to obtain the predictor for testing.
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4 RELATED WORK

Meta-learning, or learning to learn, endues machine learning models the ability to improve their
performance with for a number of training tasks. It has received increasing research interest with
breakthroughs in many directions (Finn et al., 2017; Rusu et al., 2019; Gordon et al., 2019; Aravind Ra-
jeswaran, 2019). Metric-based methods cast few-shot learning as a matching problem (Vinyals et al.,
2016; Snell et al., 2017; Sung et al., 2018; Satorras & Estrach, 2018; Allen et al., 2019) by learning a
shared similarity function for diverse tasks. Graphical neural network (GNN) based model generalizes
the matching methods by learning the message propagation from the support set and transfer it to
the query set (Garcia & Bruna, 2018). Gradient-based methods (e.g., MAML (Finn et al., 2017))
learn an appropriate initialization of model parameters and adapt it on new tasks with only a few
gradient steps (Finn & Levine, 2018; Zintgraf et al., 2019; Rusu et al., 2019). Some other interesting
works propose to directly learn the gradient optimization process of networks using RNNs (Ravi &
Larochelle, 2017; Andrychowicz et al., 2016). Memory-based methods learn to leverage an external
memory module to store and leverage key knowledge for quick adaptation (Santoro et al., 2016;
Ramalho & Garnelo, 2019). Bayesian meta-learning methods (Edwards & Storkey, 2017; Finn et al.,
2018; Gordon et al., 2019) usually rely on hierarchical Bayesian models to learn the shared statistical
information among different tasks and reason about the uncertainty over models. Differentiable
solution methods (Liu et al., 2019; Bertinetto et al., 2019) learn a universal feature embedding and
obtain a task-specific learner with a closed-form solution.

While those meta-learning algorithms have achieved great success in solving few-shot learning tasks,
it remains an open challenge to explore shared knowledge across prior tasks. In this work, we
introduce kernel learning with data-driven random Fourier features to explore task dependency to
extract the shared knowledge.

Kernel learning with random Fourier features is a versatile and powerful tool in the machine
learning and statistics communities (Bishop, 2006; Hofmann et al., 2008; Shervashidze et al., 2011).
Pioneering works in this category (Bach et al., 2004; Gönen & Alpaydın, 2011; Duvenaud et al.,
2013) learn to combine predefined kernels in a multi-kernel learning manner. As an innovative feature
map, several studies have focused on random Fourier features (RFFs) (Rahimi & Recht, 2007), with
recent works (Wilson & Adams, 2013) learning kernels in the frequency domain by modeling the
spectral distribution as a mixture of Gaussians and computing its optimal linear combination. Instead
of modeling the spectral distribution with explicit density functions, other works focus on optimizing
the random base sampling strategy (Yang et al., 2015; Sinha & Duchi, 2016).

To the best of our knowledge, our work is the first to extend kernel learning with random features to
the meta-learning framework for few-shot learning. We propose training a meta-learner to infer the
spectral distribution of random features from the support set. The task-specific kernel can be leveraged
by the base-learner for the supervised learning. Compared with RFFs, our learned MetaVRF achieves
superior performance on few-shot learning tasks with a low sampling rate of bases.

5 EXPERIMENTS

In this section, we evaluate our MetaVRF on several few-shot learning problems for both regression
and classification. We conduct classification experiments on three commonly-used benchmark
datasets, i.e., Omniglot (Lake et al., 2015), miniImageNet (Vinyals et al., 2016) and CIFAR-FS
(Krizhevsky et al., 2009). More details about the three datasets are provided in the Appendix B. We
also conduct deeper analysis to validate the effectiveness of our MetaVRF.

5.1 FEW-SHOT REGRESSION

We begin with a k-shot regression problem, and compare our MetaVRF with MAML (Finn et al., 2017)
as the baseline method. We follow the MAML work (Finn et al., 2017) to fit a target sine function
y = A sin (wx+ b), with only a few annotated samples. A ∈ [0.1, 5], w ∈ [0.8, 1.2], and b ∈ [0, π]
denote the amplitude, frequency, and phase, respectively, which follow a uniform distribution within
the corresponding interval. The goal is to estimate the target sine function given only n randomly
sampled date points. In our experiments, we consider input in the range of x ∈ [−5, 5], and conduct
three tests under the conditions of k = 3, 5, 10. For a fair comparison, we compute the feature
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Figure 3: Performance comparison for few-shot regression. Values are in term of MSE between
three methods and ground truth.

embedding using a small multi-layer perceptron (MLP) with two hidden layers of size 40, following
the same settings as used in MAML. We have also experimented with our MetaVRF without using
LSTM (MetaVRF w/o LSTM) for the inference.

The comparison results are plotted in Figure 3. The proposed MetaVRF can fit the function accurately
with even three shots. With the increase of shots, our MetaVRF can perform better, almost entirely
fitting the target function with 10 shots. It clearly shows that the performance can be improved by
adopting the LSTM inference, which verifies the benefits of exploring task dependency. In addition,
we can see that our MetaVRF performs much better than MAML which is a representative meta-
learning algorithm for all three settings with different numbers of shots. More few-shot regression
results are provided in the Appendix D.

5.2 FEW-SHOT CLASSIFICATION

For the classification task, we compare the proposed MetaVRF with the baseline method, random
Fourier features (RFFs) and other state-of-the-art models. In particular, RFFs are the random feature
computed from the universal kernel without adaptation.

Experimental settings. Image features are extracted via a shallow convolutional neural network.
We employ the same architecture used in (Gordon et al., 2019). We do not use any fully connected
layer for these CNNs. The dimension of all feature vectors is 256. The inference network for RFFs
is replaced with a feed-forward network with a couple of dense blocks. The key hyperparameter of
the number of bases D in Eq. (6), is set to D = 512 for MetaVRF in all experiments, while we set
D = 2048 for RFFs. The sampling rate of MetaVRF is much lower than in previous studies on RFFs,
in which D is usually set to be 5 to 10 times the dimension of the input features (Yu et al., 2016;
Rahimi & Recht, 2007). All details are provided in the Appendix C.

Quantitive analysis. We evaluate our MetaVRF on three few-shot classification benchmarks using
the same meta-testing protocol as (Gordon et al., 2019), and present the results with 95% confidence
intervals. All reported results are for models trained from scratch for few-shot learning. Table 1
and 2 report the performance of MetaVRF compared to the current state of the arts with shallow
CNN architectures. Our MetaVRF method achieves the new state-of-the-art results on most of the
challenging datasets, (e.g., 54.3% for 5-way 1-shot on miniImageNet, which is a 1% improvement
over the second-best method). On the Omniglot dataset, previous approaches did not specify the splits
for training, validation, and testing, which may result in unfair comparisons. Our MetaVRF method
falls within the error bars of the state-of-the-art models on all experiments under 5-way 1-shot, 5-way
5-shot, 20-way 1-shot and 20-way 5-shot settings.

Since the feature extraction network used in our MetaVRF is different from that used in previous
works, in Table 2, we show the results of methods that have the same training procedures and
conventional CNN architectures as ours. In Vinyals et al. (2016); Snell et al. (2017); Ravi & Larochelle
(2017); Finn et al. (2017); Sung et al. (2018), they usually use 64 filters in each convolutional layer.
Ravi & Larochelle (2017); Finn et al. (2017) set the number of filters to 32 for miniImageNetto
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Table 1: Classification accuracies (%) on miniImageNet and CIFAR-FS.

miniImageNet, 5-way CIFAR-FS, 5-way
Method 1-shot 5-shot 1-shot 5-shot

MATCHING NET (Vinyals et al., 2016) 44.2 57 — —
MAML (Finn et al., 2017) 48.7±1.8 63.1±0.9 58.9±1.9 71.5±1.0
MAML (64C) 46.7±1.7 61.1±0.1 58.9±1.8 71.5±1.1
META-LSTM (Ravi & Larochelle, 2017) 43.4±0.8 60.6±0.7 — —
PROTO NET (Snell et al., 2017) 47.4±0.6 65.4±0.5 55.5±0.7 72.0±0.6
RELATION NET (Sung et al., 2018) 50.4±0.8 65.3±0.7 55.0±1.0 69.3±0.8
SNAIL (with 32C) (Mishra et al., 2018) 45.1 55.2 — —
GNN (Garcia & Bruna, 2018) 50.3 66.4 61.9 75.3
PLATIPUS (Finn et al., 2018) 50.1±1.9 — — —
VERSA (Gordon et al., 2019) 53.3±1.8 67.3±0.9 62.5±1.7 75.1±0.9
R2-D2∗ (Bertinetto et al., 2019) 50.5±0.2 65.4±0.2 62.3±0.2 77.4±0.2
R2-D2 (Devos et al., 2019) 51.7±1.8 63.3±0.9 60.2±1.8 70.9±0.9
CAVIA (Zintgraf et al., 2019) 51.8±0.7 65.6±0.6 — —
IMAML (Aravind Rajeswaran, 2019) 49.3±1.9 — — —

RFFS (2048d) 54.0±1.9 65.4±0.9 61.3±1.8 75.1±0.9
METAVRF (w/o LSTM, 512d) 52.9±1.8 67.3±0.9 62.3±1.8 75.9 ±0.9
METAVRF (512d) 54.3±1.9 68.0±0.9 62.9±0.7 76.3±0.3

∗training with 20 ways, test on 5 ways.

Table 2: Classification accuracies (%) on Omniglot.

Omniglot, 5-way Omniglot, 20-way
Method 1-shot 5-shot 1-shot 5-shot

SIAMESE NET (Koch, 2015) 96.7 98.4 88 96.5
MATCHING NET (Vinyals et al., 2016) 98.1 98.9 93.8 98.5
MAML (Finn et al., 2017) 98.7±0.4 99.9±0.1 95.8±0.3 98.9±0.2
PROTO NET (Snell et al., 2017) 98.5±0.2 99.5±0.1 95.3±0.2 98.7±0.1
GNN (Garcia & Bruna, 2018) 99.2 99.7 97.4 99.0
VERSA (Gordon et al., 2019) 99.7±0.2 99.8±0.1 97.7±0.3 98.8±0.2
R2-D2 (Bertinetto et al., 2019) 98.6 99.7 94.7 98.9
IMP (Allen et al., 2019) 98.4±0.3 99.5±0.1 95.0±0.1 98.6±0.1

RFFS (2048d) 99.5±0.2 99.5±0.2 97.2±0.3 98.3±0.2
METAVRF (w/o LSTM, 512d) 99.6±0.2 99.6±0.2 97.0±0.3 98.4±0.2
METAVRF (512d) 99.8±0.2 99.8±0.1 97.5±0.3 99.0±0.2

avoid overfitting. For a fair comparison, we increase the number of filters in MAML from 32 to 64
but obtains the inferior performance, indicating that MAML might be heavily prone to overfitting
as the model size increases. The graph neural network (GNN) (Garcia & Bruna, 2018) leverages
a large embedding network with [64, 96, 128, 256] filters and one fully connected layer. For R2-
D2 (Bertinetto et al., 2019), the numbers of filters are [96, 192, 384, 512] and we present the results
of two of its variants with 64 channels. Different training and testing conditions may also affect the
performance of the compared methods. We maintain consistent conditions to be consistent in our
experiments but present the results of R2-D2 (Bertinetto et al., 2019) trained in 20 ways for 5-way
tasks. The performance of the reproduced R2-D2 (Devos et al., 2019) is heavily impaired when this
strategy is not employed.

In addition, recent interesting works of (Rusu et al., 2019; Gidaris & Komodakis, 2019; Li et al., 2019;
Qiao et al., 2018; Gidaris & Komodakis, 2018) are not included for comparison because they rely on
pre-trained embeddings or large-scale deep architectures, e.g., ResNet (He et al., 2016b). In contrast,
we adopt a relatively shallow convolutional architecture for feature extraction to demonstrate the
effectiveness of the proposed MetaVRF instead of relying on huge, powerful convolutional networks.
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Figure 4: Performance with different numbers D of bases.
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Figure 5: Performance on test tasks with varied ways and shots on Omniglot.

5.3 FURTHER ANALYSIS

Efficiency. In Figure 4, we demonstrate the effectiveness on bases of our MetaVRF with a low
sampling rate by comparing it with conventional random Fourier features (RFFs) . We present the
mean testing accuracy of fully trained models w.r.t. RFFs and our MetaVRF as the number D of
bases in Eq. (6) varies. Given the same number of sampled bases, our MetaVRF method consistently
achieves much higher performance than RFFs, e.g., as shown for the 5-way, 5-shot condition in
Figure 4. The results verify the effectiveness of our MetaVRF in learning adaptive kernels and
exploring the tasks dependencies.

Versatility. Our MetaVRF also shows promising performance when the number of ways C and k
shots between training and testing are inconsistent. In Figure 5, we plot the testing accuracy of the
trained models on one particular C-way-k-shot task, with varied C and k in the testing stage. The
results demonstrate that the trained model can maintain reasonable discriminability for a high number
of testing ways. In particular, the model trained for the 20-way-5-shot task can retain high accuracy of
94% when tested under the 100-way condition, as shown in Figure 5(a). The results also indicate that
our MetaVRF exhibits considerable robustness and flexibility to a great variety of testing conditions.

6 CONCLUSIONS

In this paper, we explore kernel approximation based on random Fourier features in the meta-learning
framework for few-shot learning. We propose the novel meta variational random features (MetaVRF),
which leverages variational inference and meta-learning to infer the spectral distribution of random
Fourier features in a data-driven way. MetaVRF can generate random Fourier features of high
representational power and a relatively low spectral sampling rate by using an LSTM inference
network to explore the shared knowledge. In practice, our LSTM inference network demonstrates the
great ability to quickly adapt to specific tasks for improved performance. Experiments on few-shot
learning tasks for several benchmark datasets demonstrate the state-of-the-art performance over
previous methods and the importance of our contribution.
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A DERIVATIONS OF META ELBO

For a singe task, we begin with maximizing log-likelihood of the conditional distribution p(y|x,S)
to derive the ELBO of MetaVRF. By leveraging Jensen’s inequality, we have the following steps as

log p(y|x,S) = log

∫
p(y|x,S,ω)p(ω|x,S)dω (14)

= log

∫
p(y|x,S,ω)p(ω|x,S)

qφ(ω|S)

qφ(ω|S)
dω (15)

≥
∫

log

[
p(y|x,S,ω)p(ω|x,S)

qφ(ω|S)

]
qφ(ω|S)dω (16)

= Eqφ(ω|S) log [p(y|x,S,ωt)]−DKL[qφ(ω|S)||p(ω|x,S)]︸ ︷︷ ︸
Meta ELBO

. (17)

We can also derive Meta ELBO from the KL divergence between the posterior p(ω|y,x,S) and its
variational posterior qφ(ω|S) as following

DKL[qφ(ω|S)||p(ω|y,x,S)] (18)
= Eqφ(ω|S) [log qφ(ω|S)− log p(ω|y,x,S)] (19)

= Eqφ(ω|S)
[
log qφ(ω|S)− log

p(y|ω,x,S)p(ω|x,S)

p(y|x,S)

]
(20)

= log p(y|x,S) + Eqφ(ω|S) [log qφ(ω|S)− log p(y|ω,x,S)− log p(ω|x,S)] (21)

= log p(y|x,S)− Eqφ(ω|S) [log p(y|ω,x,S)] +DKL[qφ(ω|S)||p(ω|x,S)] (22)

≥ 0. (23)

Therefore, the lower bound of the evidence p(y|x) is at the RHS of

log p(y|x,S) ≥ Eqφ(ω|S) log [p(y|x,S,ωt)]−DKL[qφ(ω|S)||p(ω|x,S)], (24)

which is consistent with Eq. (17).

B FEW-SHOT CLASSIFICATION DATASETS

Omniglot (Lake et al., 2015) is a benchmark of few-shot learning that contain 1623 handwritten
characters (each with 20 examples). All characters are grouped in 50 alphabets. For fair comparison
against the state of the arts, we follow the same data split and pre-processing used in Vinyals et al.
(2016). The training, validation, and testing are composed of a random split of [1100, 200, 423]. The
dataset is augmented with rotations of 90 degrees, which results in 4000 classes for training, 400
for validation, and 1292 for testing. The number of examples is fixed as 20. All images are resized
to 28×28. For a C-way, k-shot task at training time, we randomly sample C classes from the 4000
classes. Once we have C classes, (k + 15) examples of each are sampled. Thus, there are C×k
examples in the support set and C×15 examples in the query set. The same sampling strategy is also
used in validation and testing.

miniImageNet (Vinyals et al., 2016) is a challenging dataset constructed from ImageNet (Rus-
sakovsky et al., 2015), which comprises a total of 100 different classes (each with 600 instances). All
these images have been downsampled to 84×84. We use the same splits of Ravi & Larochelle (2017),
where there are [64, 16, 20] classes for training, validation and testing. We use the same episodic
manner as Omniglot for sampling.

CIFAR-FS (CIFAR100 few-shots) (Bertinetto et al., 2019) is adapted from the CIFAR-100
dataset (Krizhevsky et al., 2009) for few-shot learning. Recall that in the image classification
benchmark CIFAR-100, there are 100 classes grouped into 20 superclasses (each with 600 instances).
CIFAR-FS use the same split criteria (64, 16, 20) with which miniImageNet has been generated. The
resolution of all images is 32×32.
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Table 3: The fully connected network ψ(·) used for regression.
Output size Layers

1 Input training samples
40 fully connected, RELU
40 fully connected, RELU

Table 4: The CNN architecture ψ(·) for Omniglot.
Output size Layers
28×28×1 Input images
14×14×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
7×7×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
256 flatten

C MORE EXPERIMENTAL DETAILS

We train all models using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001.
The other training setting and network architecture for regression and classification on three datasets
are different as following.

C.1 FEATURE EMBEDDING NETWORKS

Regression. The fully connected architecture for regression tasks is shown in Table 3. We train all
three models (3-shot, 5-shot, 10-shot) over a total of 20, 000 iterations, with 6 episodes per iteration.

Classification. The CNN architectures for Omniglot, CIFAR-FS, and miniImageNet are shown in
Table 4, 5, and 6.

C.2 INFERENCE NETWORKS

The architecture of the inference network for the regression task is in Table 7. For few-shot classifica-
tion tasks, all models share the same architecture, as in Table 8.

C.3 PRIOR NETWORKS

The architecture of the prior network for the regression task is in Table 9. For few-shot classification
tasks, all models share the same architecture, as in Table 10.

C.4 OPTIMIZATION SETTINGS

The number of training iterations and the batch size (episodes per iteration) are listed in Table 11.

Table 5: The CNN architecture ψ(·) for CIFAR-FS
Output size Layers
32×32×3 Input images
16×16×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
8×8×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten
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Table 6: The CNN architecture ψ(·) for miniImageNet
Output size Layers
84×84×3 Input images
42×42×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
21×21×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
10×10×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
5×5×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

Table 7: The inference network φ(·) used for regression.
Output size Layers

40 Input samples feature
40 fully connected, ELU
40 fully connected, ELU
40 LSTM cell, Tanh to µw, log σ2

w

Table 8: The inference network φ(·) used for Omniglot, miniImageNet, CIFAR-FS

Output size Layers
k × 256 Input feature

256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected, ELU
256 LSTM cell, tanh to µw, log σ2

w

Table 9: The prior network used for regression.
Output size Layers

80 The concatenation of query feature and aggregated support features
40 fully connected, ELU
40 fully connected, ELU
40 fully connected to µw, log σ2

w

Table 10: The prior network used for Omniglot, miniImageNet, CIFAR-FS

Output size Layers
512 The concatenation of query feature and aggregated support features
256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected to µw, log σ2

w

Table 11: Iteration and batch size for all datasets.
Dataset Iter. Batch size
Regression 20, 000 25
Omniglot 100, 000 6
CIFAR-FS 200, 000 8
miniImageNet 100, 000 6
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Figure 6: More results of few-shot regression.
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