
Under review as a conference paper at ICLR 2020

LEARNING TO RECOGNIZE THE UNSEEN VISUAL
PREDICATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual relationship recognition models are limited in the ability to generalize
from finite seen predicates to unseen ones. We propose a new problem setting
named predicate zero-shot learning (PZSL): learning to recognize the predicates
without training data. It is unlike the previous zero-shot learning problem on
visual relationship recognition which learns to recognize the unseen relationship
triplets (<subject, predicate, object>) but requires all components
(subject, predicate, and object) to be seen in the training set. For the
PZSL problem, however, the models are expected to recognize the diverse even
unseen predicates, which is meaningful for many downstream high-level tasks,
like visual question answering, to handle complex scenes and open questions. The
PZSL is a very challenging task since the predicates are very abstract and follow
an extreme long-tail distribution. To address the PZSL problem, we present a
model that performs compatibility learning leveraging the linguistic priors from the
corpus and knowledge base. An unbalanced sampled-softmax is further developed
to tackle the extreme long-tail distribution of predicates. Finally, the experiments
are conducted to analyze the problem and verify the effectiveness of our methods.
The dataset and source code will be released for further study.

1 INTRODUCTION

Visual relationship recognition (Johnson et al., 2015; Lu et al., 2016; Xu et al., 2017) aims to
estimate the relationships between pairs of localized entities, i.e., performing the recognition of
triplets <subject, predicate, object>. It structurally describes images, which provides
rich semantic information of an image to many applications including visual question answering
(VQA) (Li et al., 2018), image captioning (Yang et al., 2019) and image retrieval (Johnson et al.,
2015). The relationship recognition methods are mainly supervised that recognize the entities and
then combine various entities in pairs to identify predicates between them. There is an increasing
interest in relationship zero-shot learning (ZSL) that learns to recognize the unseen relationship
triplets, where the studies (Lu et al., 2016; Yu et al., 2017) on this ZSL problem setting assume the
components (subject, predicate, and object) of the relationship triplet are seen. However,
almost all of them only focus on dozens of frequent predicates and do not study on generalizing the
seen predicates to the unseen ones.

In this work, we propose the predicate zero-shot learning (PZSL) problem setting focusing on
recognizing the unseen predicates (no manual annotations or real samples). For example, no instance
of chew in the training data, the model is expected to recognize it during testing. Recognizing diverse
even unseen predicates is significant for providing very rich relationship information, describing the
complex scenes, and analogizing the known abstract concepts to the novel ones. The solution of the
PZSL problem will greatly promote many downstream tasks, such as generating image caption with
vivid predicates which are even unseen in the description corpus (image captioning) and answering
the open questions (with novel predicates) on the complex scene (VQA).

Although zero-shot learning in image classification has received increasing attention (Larochelle
et al., 2008), PZSL is not explored. Furthermore, the PZSL problem is more challenging in the
following aspects. a) Recognizing predicates is difficult since predicates are often abstract not as
specific as objects. Analogizing the seen abstract predicates to the unseen ones further escalates the
difficulty. Furthermore, unlike many object ZSL methods (Lampert et al., 2014; 2009) adopting the
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Figure 1: A basic model for recognizing unseen visual predicates. The visual data and knowledge
graph’s nodes are mapped into a common space by a visual and knowledge module respectively,
where the sub-spaces from visual and knowledge module are named with visual feature and semantic
embedding space correspondingly. Note that the visual predicate feature contains features of the
subject, object and the union of them. The basic model contains two stages. First, the visual feature
and semantic embedding space are aligned by taking the seen predicates in the training set as anchors,
the so-called compatibility learning. Second, the samples in the test set are mapped into visual feature
space and matched with the nearest predicate neighbor from the semantic embedding space.

pre-defined attributes of objects, it is hard to define the attributes of predicates to recognize the unseen
ones. b) Predicates of existing datasets follow an extreme long-tail distribution (92.26% predicates
with the number of instances lower than 10 in Visual Genome (Krishna et al., 2017)). Under this
distribution, the model tends to collapse to output few frequent predicates. Note that if the infrequent
predicates are not recognized, the unseen predicates are more unlikely to be recognized.

To address the PZSL problem, we introduce a basic model to perform compatibility learning (Frome
et al., 2013a; Akata et al., 2016; 2015) (Fig. 1), leveraging the linguistic priors from the corpus and
knowledge base (Wang et al., 2018; Kampffmeyer et al., 2018). To represent the abstract predicates,
we adopt the pre-trained word (sentence) vectors to initialize the predicates, connect them with
linguistic relations defined in knowledge bases, and map them into a semantic embedding space
(middle of Fig.1). A visual module is then applied to map paired image regions (left of Fig. 1) into a
visual feature space. The visual feature and semantic embedding spaces fall in the common space
(top of Fig. 1). During training, the visual feature and semantic embedding space are aligned with
the seen predicates as anchors, i.e., a visual feature and semantic embedding labeled with the same
predicate fall onto the same point/area in the common space. During testing, the samples in the
test set are mapped into the visual feature space and matched with the nearest neighbor semantic
embeddings of predicates (like chew). Furthermore, to tackle the long-tail distribution, an unbalanced
sampled-softmax is developed to adjust the gradient penalty of the infrequent predicates.

The main contributions of our work include: a) We define the predicate zero-shot learning (PZSL)
problem setting and introduce the corresponding dataset (based on Visual Genome) for further study.
b) We propose a basic model to address the PZSL problem by compatibility learning leveraging the
linguistic priors from the corpus and knowledge base. c) We develop an unbalanced sampled-softmax
for handling the extreme long-tail distribution of predicates.

2 RELATED WORK

Visual relationships have been studied from various aspects including statistical motifs (Zellers
et al., 2018), entity-relationship dependencies (Xu et al., 2017), spatial priors (Dai et al., 2017),
language statistics (Li et al., 2017). Almost all of them focus on recognizing dozens of the most
frequent predicates. By contrast, our work explores to train a model with about 1000 predicates and
test it with about 100 unseen predicates. The two most relevant problem settings of visual relationship
recoginiton are relationship zero-shot learning setting (Lu et al., 2016) and open vocabulary setting
(Zhang et al., 2018). Lu et al. (2016) try to recognize the unseen relationships (e.g., <elephant,
stand on, street>) by transfer knowledge learned from similar relationships (e.g., <dog,

2



Under review as a conference paper at ICLR 2020

stand on, street>) in training set. Note that all the test predicates (e.g., stand on) and
entities are seen in the training set. By contrast, the main difference and difficulty in our problem
setting are that all predicates in the test set are unseen in the training set. Zhang et al. (2018) perform
visual relationship recognition with an open vocabulary setting focusing on large-scale recognition
problem without study on ZSL.

Zero-shot learning (ZSL). To recognize unseen objects, compatibility learning frameworks (Frome
et al., 2013b; Fu et al., 2015; Fu & Sigal, 2016) map visual and semantic features into the common
space and align the visual and semantic manifolds with the seen categories. During testing, these
methods recognize the given visual feature by performing a nearest neighbor search on the semantic
embeddings of the categories. Recent works (Wang et al., 2018; Kampffmeyer et al., 2018) utilize
the linguistic relations between seen and unseen categories in a knowledge graph (KG) for zero-shot
object recognition. Wang et al. (2018) propose to train a GCN supervised by the classifier’s weights
of neural network. Our method can be considered as a hybrid of compatibility learning frameworks
and knowledge graph based methods. The node embedding of KG is mapped into the same space
with the visual feature, where the mapping modeled by GCN takes the relations between seen and
unseen categories into consideration.

External knowledge bases (KB), such as Wikipedia and ConceptNet (Speer & Havasi, 2013), has
been introduced in visual relationship recognition to provide linguistic and commonsense priors.
Yu et al. (2017) extract the <subject, predicate, object> triplets from Wikipedia and
leverage the statistics P(pred|sub, obj) to help recognizing the unseen relationship triplets. Gu et al.
(2019) takes the detected objects to retrieve on the ConceptNet to obtain a set of triplets to enhance the
visual features. Unlike the prior works essentially using the statistics of <subject, predicate,
object> from the external KB, our work leverages the linguistic relations of predicates defined in
WrodNet (Miller, 1992) to explicitly connect the predicates, such as <attack, is a hyponym
of, fight>, for recognizing the unseen predicates.

3 PROBLEM SETUP

Setting: Let the full predicate vocabulary as Vpred = Vtr
pred ∪ Vte

pred and entity vocabulary as Ven,
where Vtr

pred and Vte
pred are the training and test predicate vocabulary respectively, and “entity” refers

to “subject” and “object”. The training and test predicates are disjoint, i.e., Vtr
pred ∩ Vte

pred = φ. The
dataset is denoted as D = {(Ii, 〈bsij , sij ; pij ; boij , oij〉)} , where sij , oij ∈ Ven denote subject and
object labels of the j-th relationship in i-th image Ii (the green box in Fig. 2 (A)), bsij , boij are the
corresponding boxes of the subject and object, and pij ∈ Vtr

pred∪Vte
pred is the corresponding predicate

label. Any image that contains a test predicate p ∈ Vte
pred is assigned to the test set Dte, and only the

regions with test predicate p ∈ Vte
pred are used for evaluation. The rest data is split into the training

set Dtr and validation set Dval. During testing, given an image and pair of subject and object boxes
from the test set Dte, the model (trained on Dtr) recognizes a triplet <subject, predicate,
object>, where the accuracy of predicates is in concern.

Assumption: We assume that, for any test predicate pte ∈ Vte
pred, there exists training predicate

ptr ∈ Vtr
pred having semantic association with pte. For example, if predicate chew is a test predicate,

the predicates meaning an action using teeth (like bite) or intaking something (like eat) is expected
be included in the training vocabulary. Let the visual features and semantic embedding of bite are
aligned, so does that of eat. As a result, the visual feature of chew, visual similar to that of bite
and eat, is able to match to the predicates likes bite and eat in the semantic embedding space.
To satisfy this assumption, the training predicates should be in large-scale to cover as much semantics
as possible.

4 APPROACH

In this section, we first present the pipeline of our basic model, then the fast graph convolutional
networks (fast GCNs) for propagating on the large-scale knowledge graph, and finally unbalanced
sampled-softmax to handle the extreme long-tail distribution.

3



Under review as a conference paper at ICLR 2020

𝑬𝒑

𝑽𝒑

Visual module

𝑽𝒔

𝑽𝒐

SeenObject
𝑀𝐿𝑃𝑒𝑛

𝐹𝐶𝑝

𝑀𝐿𝑃𝑒𝑛

𝑀𝐿𝑃𝑝

Knowledge moduleImage Loss WordNet

𝑬𝒐

𝑬𝒔
UnseenPredicate

layer 1: 𝒩(𝑢)⋃𝒩2(𝑢)

(B) Fast GCN

𝒖𝒖

Second-order UnsampledTarget First-order Sampled sub-graph

(A) Pipeline

𝒆𝒙𝒑(𝑽𝒑 ∙ 𝑬𝒑)
σ𝒌∈𝓑𝒏 𝒆𝒙𝒑(𝑽𝒑 ∙ 𝑬𝒌)

Sampling

Predicate ID

Fr
eq

ue
nc

y

(C) Unbalanced sampled-softmax

𝒖

#Neighbor = 3

layer 2: 𝒩(𝑢)

Faster-RCNN

Fast GCN

#Neighbor = 3

𝒖

Fast GCN

Entity

Predicate
Word Vector

Figure 2: A) The pipeline of our basic model. The visual features (from the visual module) and
corresponding semantic embeddings (from the knowledge module) are constrained to be close. B)
Fast GCN. We sample the graph nodes in two aspects during training. Take 2-layer GCN as an
example, for on-demand sampling, to get the final embedding of the target node u, the neighbors
of u are needed. Backtracking in this way, we only need first and second-order neighbors of u.
For the neighbor-limit sampling, the number of each node’s neighbors is limited by a constant. C)
Unbalanced sampled-softmax. To tackle the long-tail distribution problem, a negative predicate
batch Bn is sampled from the predicate distribution to calculate the loss function.

4.1 PIPELINE

The pipeline of our method consists of visual and knowledge modules, refer to Fig.2. They are
modeled by a Faster R-CNN (Ren et al., 2017) and two GCNs (Kipf & Welling, 2016) respectively.

Visual module aims to extract visual features of entity and predicate. Given an image as input, the
corresponding features of the subject, object and context region are cropped out, where context region
refers to the union of subject and object regions. All these feature regions are ROI aligned (He et al.,
2017) as ROI features with fixed size (7×7). The ROI features of subjects (blue) and objects (yellow)
are then mapped into visual entity features Vs and Vo by the same multilayer perceptron MLPen.
Furthermore, the ROI feature of context region (green box) is fed to MLPp and the output of which
is fused with Vs and Vo to generate visual predicate feature Vp. All these features Vs, Vo and Vp will
be aligned with the corresponding semantic embeddings Es, Eo and Ep.

Knowledge module aims to generate the meaningful semantic embeddings of the categories (including
predicates and entities). To introduce the language prior and implicit association of the categories, the
embeddings of the categories are initialized with word (sentence) vectors pre-trained on a large-scale
corpus (like GloVe (Pennington et al., 2014)). The categories are then connected by the linguistic
relations (defined by a knowledge base WordNet) to build a knowledge graph. Note that many
categories are not directly connected, but can be indirectly connected through categories within the
knowledge base outside the dataset. Thus the knowledge graph contains a huge number of nodes and
provides rich linguistic information. Taking the knowledge graph as input, the semantic embeddings
of predicate Ep and entity Een are generated by graph convolutional networks GCNp, GCNen

respectively. For this part, the fast GCN is introduced for fast processing on the large-scale graph,
refer to § 4.2.

Loss function is defined as a summation of the entity and predicate terms as follows:

L = Lentity + Lpredicate, (1)

where Lpredicate is designed with the proposed unbalanced sampled-softmax for tackling the long-tail
distribution of predicates, refer to § 4.3, while Lentity is a negative log likelihood with softmax:

Lentity = E(Vc,c)[−log
exp(Vc · Ec)∑

k∈Ven exp(Vc · Ek)
], (2)
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where c ∈ Ven is the label of the visual entity feature Vc.

4.2 FAST GRAPH CONVOLUTIONAL NETWORK

A fast graph convolutional network (fast GCN) is adopted to map the knowledge graph into an
embedding space for PZSL, see Fig.2 (B). Inspired by PinSage (Ying et al., 2018), the propagation
algorithm is divided into three steps: message passing, skip shortcut and normalization. We denote
FCW,B ◦ x =Wx+B, and the process of graph propagation is formulated as follows:

zk−1u =
1

|N (u)|
∑

v∈N (u)

ReLU(FCWtk
,Btk
◦ hk−1v ), (3)

h̃ku = ReLU(FCWck
,Bck
◦ [zk−1u , hk−1u ]), (4)

hku = h̃ku/‖h̃ku‖2, (5)
where Eq. (3), (4) and (5) indicate message passing, skip shortcut and normalization respectively,
N (u) in Eq. (3) denotes the neighbor set of u (u also falls into N (u)), [·, ·] in Eq. (4) means
“concatenate”, h0u is the initial embedding, and hku is output of k-th graph propagation layer. For
n-layer GCN, FWout,Bout

takes hnu as input to get the final embedding E lying in the same space
with the visual feature V . Note that the main computation in forward propagation is related to the
number of edges (Eq. (3)). It is too computation and space consuming to perform propagation on the
whole knowledge graph with about 2.2 billion edges. The graph sampling technology in web-scale
recommender system (Ying et al., 2018; Eksombatchai et al., 2018) is introduced as an solution.

On-demand sampling. For generating embeddings of mini-batch categories, we only need to sample
a necessary sub-graph as input to GCN (GCNp or GCNen), avoiding propagating on the whole
knowledge graph. Take 2-layer GCN as an example. Only first and second-order neighbors are
needed to compute the final embedding of the target nodes. Refer to Fig. 2 (B), to get the embedding
of u (deep blue), the second layer of GCN needs the embeddings (outputs of the first layer) of
neighbors (blue) of u for message passing, i.e., N (u). To get the embeddings of N (u) in the first
layer, the neighbors of the node setN (u) are needed (light blue), i.e.,N 2(u). Hence, we only sample
a sub-graph containing the node setN (u)∪N 2(u) to get the final embedding of u. In general, to get
final embeddings of nodes batch U for n-layer GCN, only 1st to n-th order neighbors are needed, i.e.,
∪ni=1N i(U).
Neighbor-limit sampling. Many nodes of the knowledge graph contain a large number of neighbors,
which makes computation and space consumption uncontrollable. To further reduce the consumption,
we limit the number of neighbors per node to a threshold τ , i.e., randomly sampling τ neighbors.
Refer to Fig. 2 (B), the unsampled neighbors (gray) do not contribute to the propagation. For testing,
all neighbors are sampled to calculate the final embeddings, and we only need to propagate once to
obtain the final semantic embeddings. The experiments in § 5 show that neighbor-limit sampling can
be considered as a dropout-like operation for greatly avoiding overfitting.

Thus, to obtain embedding of k predicates from n-layer GCN, the number of edges are not greater than
a relaxed upper bound kτn, where k, τ ≤ 100 and n ≤ 3. Thus we have kτn ≤ 108 � 2.2× 1010.

4.3 UNBALANCED SAMPLED-SOFTMAX

A variant softmax function is proposed to measure the similarity between visual features and semantic
embeddings, inspired by sampled softmax (Jean et al., 2014) in machine translation. For training
of predicate recognition, if all elements of training vocabulary are sampled as negative embeddings,
such as standard softmax, the visual features may always match the few most frequent predicate
embeddings since the long-tail distribution of the predicates in the dataset. The impact of this
distribution on zero-shot learning is devastating. To tackle this problem, we propose an unbalanced
sampled-softmax (USS):

Si =
exp(Vp · Ei)∑

k∈Bn
exp(Vp · Ek)

,Bn ∼ Ppred, (6)

where Vp is the visual feature whose predicate category is p, Ei is the corresponding semantic
embedding of predicate i. Unlike sampled softmax that adopts the pre-divided sub-vocabulary as
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negative categories, the negative predicates Bn ⊂ Vtr is sampled from the predicate distribution
Ppred. It is possible that Bn includes the GT predicate p. Finally, the loss function of predicate
recognition is in the form of

Lpredicate = E(Vp,p)[−log(Sp)]. (7)

The sampling method is vital for Eq. (7). The uniform sampling, degrading into an estimated version
of softmax, does not help with long-tail distribution. We design a sampling method to ensure the
recognition of predicates with fewer samples so that the model can be further generalized to recognize
unseen predicate categories. The idea is that the fewer categories appear as positive categories, the
less they are sampled as negative categories. We adopt the frequency of predicates as the probability
Ppred to sample the negative predicates, see Fig. 2 (C). This sampling method handles the long-tail
distribution problem by adjusting the gradient of the infrequent predicates.

Let hi = V · Ei, the gradient of Sp w.r.t hi is discussed as follows:

∂Sp

∂hi
=

{
Sp(1(p = i)− Si) if i ∈ Bn
1(p = i)Si if i /∈ Bn.

(8)

Frequent predicates often fall into the first case in Eq. (8), which is the same as standard softmax. To
the opposite, infrequent predicates always fall into the second case that the reward is increased when
it is GT (p = i) and that there is no punishment when it is a negative predicate (p 6= i).

5 EXPERIMENTS

In this section, we start by discussing the datasets, knowledge graph, and implementation details. We
then perform the ablation studies to verify the components of our model and visualize our results.

VG-zero dataset. We introduce a new dataset based on the latest released Visual Genome dataset
(VG v1.4) (Krishna et al., 2017) which contains 108,077 images with 21 relationships (triplets) on
average per image. We manually cleaned up the box annotations in the same way with Xu et al.
(2017). Since the original annotation is noisy, 1155 synsets in WordNet are used to replace the original
predicate categories as regularization, where the correspondence between the original categories and
synsets is provided in the VG dataset. About 10% of predicates (105 predicates) are selected as test
vocabulary. The frequency of the selected predicates falls in a range from 10 to 300, where the lower
bound 10 is set to guarantee the quality of test set for the infrequent labels are noisy, and the upper
bound 300 follows the rule that categories in test set should be least populated or rare (Xian et al.,
2017) in zero-shot learning. Images annotated with predicates in test vocabulary are selected as the
test set (containing 4350 images). We then randomly select 5000 images as the validation set with the
rest as the training set. Similar to predicates, the entity categories are also replaced by 7k+ synsets. In
addition, we use hypernym relationships to cluster entity categories into 96 categories since the entity
synsets are still so specific that include numerous names and object recognition is not our focus. For
example, categories like woman, father are clustered into the person category.

Knowledge graph. The knowledge graph G(V, E) is built from WordNet (Miller, 1992), where V and
E are nodes set and edges set respectively. Synsets (synonym set) in WordNet are nodes in G. Edge
〈u, v〉 is added into E if u and v have one of the following relationships: hypernym, hyponym, part
meronym, part holonym, substance meronym, substance holonym, entailment, substance holonym
and sharing lemmas. Notice that the self-loop will be included by the “sharing lemmas” relationship.
Finally, the resulted knowledge graph contains 101,260 nodes and about 2.2 billion edges.

Implementation details. For all experiments, the model is trained for 150k iterations with batch
size set to 4. We set the learning rate as 2e−3 and is reduced by 0.1 times at the 100k and 130k,
respectively. We adopt the warmup strategy (Goyal et al., 2017) at the beginning. ResNet50 (He et al.,
2016) is used as a backbone network with weights pre-trained on COCO (Lin et al., 2014), which is
fixed during training. Images are resized such that their short edge is 800 pixels. For the knowledge
graph, we use the definitions of synsets as the input of off-the-shelf language models to generate the
initial embeddings. More specifically, we use the word (GloVe) and sentence (InferSent (Conneau
et al., 2017)) embedding methods to get the initial embeddings. For the word embedding method, we
take every word of the definition as a token to GloVe and average all the word embeddings to get the
300-D embedding. For the sentence embedding method, the whole definition is used as the input of
InferSent to get the 4096-D embedding. The common space and hidden features in GCN are 512-D.
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5.1 ABLATION STUDY

Table 1: Accuracy of unseen predicate recognition.

NO. Propagation Embedding Loss
Hit@k (%)

Generalized setting Traditional setting
5 10 20 1 2 5 10 20

1 W/O KG GloVe |Bn| = 10 0.0 0.0 0.0 2.5 5.2 13.0 23.1 37.9
2 1-layer GCN GloVe |Bn| = 10 1.9 4.7 10.1 5.8 10.7 20.2 32.3 48.5
3 2-layer GCN GloVe |Bn| = 10 4.3 7.0 11.3 7.5 12.2 22.2 33.2 48.7
4 3-layer GCN GloVe |Bn| = 10 1.9 3.9 8.4 5.3 9.3 19.9 33.3 49.1
5 2-layer GCN GloVe Softmax 0.0 0.0 0.0 2.2 4.2 10.8 19.0 33.0
6 2-layer GCN GloVe |Bn| = 5 3.2 6.5 10.6 6.5 10.9 20.1 32.5 48.1
7 2-layer GCN GloVe |Bn| = 20 4.1 7.4 11.8 8.9 13.0 21.3 32.0 49.5
8 2-layer GCN GloVe |Bn| = 50 2.0 4.7 9.9 5.5 10.4 21.7 32.9 48.6
9 2-layer GCN GloVe |Bn| = 100 1.3 3.8 8.5 4.6 8.8 18.3 29.5 46.2
10 τ = 5 GloVe |Bn| = 10 1.9 4.7 10.1 4.2 8.9 20.2 31.7 48.6
11 τ = 20 GloVe |Bn| = 10 1.2 4.1 8.7 3.9 8.3 19.8 32.6 50.5
12 τ = 50 GloVe |Bn| = 10 2.5 5.3 9.2 4.5 9.1 18.1 30.8 48.8
13 τ = 100 GloVe |Bn| = 10 1.9 4.0 7.8 4.4 8.1 17.5 31.4 50.3
14 2-layer GCN Normal |Bn| = 10 0.0 0.0 0.0 1.4 2.4 5.0 10.2 19.6
15 2-layer GCN InferSent |Bn| = 10 4.1 7.0 11.4 7.3 12.4 23.1 35.8 53.5
16 Random guess 0.1 0.8 1.7 0.9 1.9 4.7 9.5 19.0

Table 2: Accuracy of recognition of triplets with unseen predicates.

Methods
Hit@k (%)

Generalized setting Traditional setting
5 10 20 1 2 5 10 20

W/O KG 0.0 0.0 0.0 1.1 2.3 7.8 12.5 20.1
Softmax 0.0 0.0 0.0 0.9 1.9 5.0 9.9 17.5

Ours 1.3 2.8 5.8 3.2 6.0 11.6 18.0 26.1
Random guess 4.7e−7 9.4e−7 1.9e−6 1.0e−6 2.1e−6 5.2e−6 1.0e−5 2.1e−5

We evaluate methods with the percentage of hitting the ground-truth labels among the top k predictions
(Hit@k) on generalized and traditional settings, as shown in Tab. 1 and 2. For the region pairs labeled
with unseen predicates, both seen and unseen predicates Vtr ∪ Vte are considered as alternative
answers (search space) in the generalized setting, while only unseen predicates Vte are considered in
the traditional setting. Note that recognizing entities is a supervised task, so the training vocabulary
is the same as the test vocabulary. Observing Tab. 1, we can draw the following conclusions.

Knowledge graph prior is critical to our algorithm. As shown in the first row of the Tab. 1, a simple
2-layer MLP for semantic embedding, which neglects the relationship of predicates, cannot identify
the unseen predicates in the generalized setting (0 accuracies) and can only obtain a lower recognition
rate on the traditional setting. An 1-layer GCN that simply considers node relationships can already
deliver significant performance gains (row 2 of Tab. 1), with a large margin (10.6 (%)) on Hit@20
traditional setting. The results show that by modeling the explicit connection between predicates,
the knowledge can be effectively transferred from seen categories to unseen ones, which results in a
performance boost on the unseen predicate. The same conclusion can be obtained from Tab. 2.

The unbalanced sampled-softmax effectively tackles the long-tail distribution problem. Refer to
row 5 in Tab. 1, adopting the softmax loss function results in the worst performance since the outputs
collapse into few frequent predicates and could not be generalized to novel predicates. By contrast,
adopting the frequency of predicates as sampling probability has obvious advantages with a 15.7 (%)
increase on Hit@20 traditional setting (comparing row 3 and 5 in Tab. 1). The same conclusion can
be made by comparing row 2 and 3 in Tab. 2.

The number of negative categories should be moderate (row 3 and 6∼9). Note that the larger |Bn|,
the higher probability that the infrequent predicates fall into Bn, e.g., if |Bn| = |Vtr ∪ Vte|, the USS
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Figure 3: The images and given paired located entities are on the top, where the blue and yellow
boxes represent subject and object respectively. The results of the generalized and traditional setting
are at the first two rows (correct: green, wrong: red), while the ground truth triplets are at the last row.

degenerates to softmax. When |Bn| < 100, the performance of models with different |Bn| become
similar, while setting with |Bn| = 20 approach the best accuracy (49.5 (%) on Hit@20 traditional
setting). However, the performance of the version with |Bn| = 100 drops significantly (46.2 (%)).

Embedding initialization is necessary, but the impact of different embedding methods on perfor-
mance is minor. Refer to row 14 in Tab.1, we adopt noise following normal distribution to initialize
node embeddings, whose results are almost the same as random guessing (row 16). The initial
embedding method clusters the semantically similar categories, which implicitly connects seen and
unseen categories. These implicit connections are helpful for zero-shot learning. While using different
embedding methods results in little difference: the InferSent method enjoys advantages over the
GloVe method on the traditional setting with Hit@5∼20 but with no advantage in other evaluations.

The numbers of neighbors and layers result in negligible performance. For traditional setting,
observing row 10∼13 in Tab. 1, the impact of τ is limited. Similarly, GCNs with different layers
achieve almost equal accuracies, refer to row 2∼4. For the generalized setting, row 4 (3-layer GCN)
and 13 (with 100 neighbors) achieve relatively low accuracy, reducing 2.9 (%) on Hit@20 generalized
setting. It can be interpreted that a large number of training parameters and complete neighborhood
information in the knowledge module make the model overfit the training vocabulary.

5.2 QUALITATIVE RESULTS

Fig.3 shows the results of our method, where output is in the form of <subject, predicate,
object>. The recognition of predicates includes generalized and traditional settings shown at row 1
and 2 (green/red font represent correct/wrong), while the ground truth triplets are displayed in the last
row. The case a is completely correct in both settings. In case b, our method makes a mistake in the
generalized setting while the result of the recognition (swing.v.01) is close to the ground truth
(slug.v.01). This case shows that predicate zero-shot learning in the generalized setting is hard
for semantically similar categories across training and test vocabularies. The case c is confusing that
even humans can make misjudgment. In case d, our method determines the predicate as chew.v.01
and output a more appropriate answer than the ground truth on the recognition of the object. In
conclusion, the predicate zero-shot learning is challenging, but our method is effective.

6 CONCLUSIONS & FUTURE WORK

In this work, we define a predicate zero-shot learning problem and propose a solution to recognize
unseen visual predicates. By mapping visual features and semantic embeddings from the knowl-
edge graph into the same common space, our method performs recognition on novel predicates.
Furthermore, the node sampling strategy is introduced for accelerating graph propagation, and the
unbalanced sampled-softmax is proposed for tackling the long-tail distribution of the dataset. Finally,
we plan to explore the following future work for this problem. a) Consistency of differences of
visual predicate feature and semantic embedding space can be considered to model the cross-modal
analogy. b) A semantic-aware negative sampling of predicate categories is a solution worth exploring.
c) Learning the visual feature of a predicate as a translation vector Bordes et al. (2013); Wang et al.
(2014); Lin et al. (2015); Ji et al. (2015)from object to subject such as VtransE Zhang et al. (2017)
deserve attempted.
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