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ABSTRACT

Semi-supervised learning, i.e. jointly learning from labeled an unlabeled sam-
ples, is an active research topic due to its key role on relaxing human annotation
constraints. In the context of image classification, recent advances to learn from
unlabeled samples are mainly focused on consistency regularization methods that
encourage invariant predictions for different perturbations of unlabeled samples.
We, conversely, propose to learn from unlabeled data by generating soft pseudo-
labels using the network predictions. We show that a naive pseudo-labeling overfits
to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate
that mixup augmentation and setting a minimum number of labeled samples per
mini-batch are effective regularization techniques for reducing it. The proposed
approach achieves state-of-the-art results in CIFAR-10/100 and Mini-ImageNet
despite being much simpler than other state-of-the-art. These results demonstrate
that pseudo-labeling can outperform consistency regularization methods, while the
opposite was supposed in previous work. Code will be made available.

1 INTRODUCTION

Convolutional neural networks (CNNs) have become the dominant approach for many computer
vision tasks (He et al., 2016a; Lin et al., 2017; Liu et al., 2018; Kim et al., 2018; Xie et al., 2018). The
main requirement to best exploit them is the availability of vast amounts of labeled data. Obtaining
such volumes of data, however, is not trivial, and the research community is exploring alternatives to
alleviate this (Li et al., 2017; Wang & Deng, 2018; Oliver et al., 2018; Liu et al., 2019).

Knowledge transfer via deep domain adaptation (Wang & Deng, 2018) is a popular alternative
that seeks to learn more transferable representations from source to target domains by embedding
domain adaptation in the learning pipeline. Other approaches focus exclusively on learning useful
representations from scratch in a target domain when annotation constraints are relaxed (Oliver et al.,
2018; Arazo et al., 2019; Gidaris et al., 2018). Semi-supervised learning (Oliver et al., 2018) focuses
on scenarios with sparsely labeled data and extensive amounts of unlabeled data; learning with label
noise (Arazo et al., 2019) seeks robust learning when labels are obtained automatically and may not
represent the image content; and self-supervised learning (Gidaris et al., 2018) uses data supervision
to learn from unlabeled data in a supervised manner. This paper focuses on semi-supervised learning
for image classification, a recently very active research area (Li et al., 2019).

Semi-supervised learning is a transversal task for different domains including images (Oliver et al.,
2018), audio (Zhang et al., 2016), time series (González et al., 2018), and text (Miyato et al.,
2016). Recent approaches in image classification primarily focus on exploiting the consistency
in the predictions for the same sample under different perturbations (consistency regularization)
(Sajjadi et al., 2016; Li et al., 2019), while other approaches directly generate labels for the unlabeled
data to guide the learning process (pseudo-labeling) (Lee, 2013; Iscen et al., 2019). Consistency
regularization and pseudo-labeling approaches apply different strategies such as a warm-up phase
using labeled data (Sajjadi et al., 2016; Laine & Aila, 2017; Tarvainen & Valpola, 2017; Qiao et al.,
2018; Iscen et al., 2019), uncertainty weighting (Shi et al., 2018; Li et al., 2019), adversarial attacks
(Miyato et al., 2018; Qiao et al., 2018; Iscen et al., 2019), or graph-consistency (Luo et al., 2018;
Iscen et al., 2019). These strategies deal with confirmation bias (Li et al., 2019), also known as the
noise accumulation problem (Zhang et al., 2016). This bias stems from using incorrect predictions
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on unlabeled data for training in subsequent epochs and, thereby increasing confidence in incorrect
predictions and producing a model that will tend to resist new changes.

This paper explores pseudo-labeling for semi-supervised deep learning from the network predictions
and shows that, contrary to previous evidences on pseudo-labeling capabilities (Oliver et al., 2018),
simple modifications to prevent confirmation bias lead it to state-of-the-art performance. We adapt
the approach proposed by Tanaka et al. (2018) in the context of label noise and apply it exclusively
on unlabeled samples. Experiments show that this naive pseudo-labeling is limited by confirmation
bias as prediction errors are fit by the network. To deal with this issue, we propose to use mixup
augmentation (Zhang et al., 2018) as an effective regularization that helps calibrate deep neural
networks (Thulasidasan et al., 2019) and, therefore, alleviates confirmation bias. We find that mixup
alone does not guarantee robustness against confirmation bias when reducing the amount of labeled
samples or using certain network architectures (see Subsection 4.3), and show that, when properly
introduced, dropout regularization (Srivastava et al., 2014) and data augmentation mitigates this issue.
Our purely pseudo-labeling approach achieves state-of-the-art results (see Subsection 4.4) without
requiring multiple networks (Tarvainen & Valpola, 2017; Qiao et al., 2018; Li et al., 2019; Verma
et al., 2019), nor does it require over a thousand epochs of training to achieve peak performance
in every dataset (Athiwaratkun et al., 2019; Berthelo et al., 2019), nor needs many (ten) forward
passes for each sample (Li et al., 2019). Compared to other pseudo-labeling approaches, the proposed
approach is simpler in that it does not require graph construction and diffusion (Iscen et al., 2019) or
combination with consistency regularization methods (Shi et al., 2018), but still achieves state-of-
the-art results. Additionally, we are the first to show that pseudo-labeling is a viable alternative for
semi-supervised learning, as opposed to previous results in the state-of-the-art (Oliver et al., 2018).

2 RELATED WORK

Semi-supervised learning for image classification is an active research topic (Oliver et al., 2018); this
section focuses on reviewing closely related methods, i.e. those using deep learning with mini-batch
optimization over large image collections. Previous work on semi-supervised deep learning differ in
whether they use consistency regularization or pseudo-labeling to learn from the unlabeled set (Iscen
et al., 2019), while they all share the use of a cross-entropy loss (or similar) on labeled data.

Consistency regularization Imposes that the same sample under different perturbations must
produce the same output. This idea was used in (Sajjadi et al., 2016) where they apply randomized
data augmentation, dropout, and random max-pooling while forcing softmax predictions to be similar.
A similar idea is applied by the so-called Π-model (Laine & Aila, 2017), which also extends the
perturbation to different epochs during training, i.e. the current prediction for a sample has to be
similar to an ensemble of predictions of the same sample in the past. Here the different perturbations
come from networks at different states, dropout, and data augmentation. In (Tarvainen & Valpola,
2017), the temporal ensembling method is interpreted as a teacher-student problem where the network
is both a teacher that produces targets for the unlabeled data as a temporal ensemble, and a student
that learns the generated targets by imposing the consistency regularization. Tarvainen & Valpola
(2017) naturally re-define the problem to deal with confirmation bias by separating the teacher and
the student. The teacher is defined as a different network with similar architecture whose parameters
are updated as an exponential moving average of the student network weights during training. This
method is extended in (Li et al., 2019), where they apply an uncertainty weight over the unlabeled
samples to incrementally learn from the unlabeled samples with low uncertainty, with uncertainty
defined as the variance or entropy of the predictions for each sample under random perturbations.
Additionally, Miyato et al. (2018) use Virtual Adversarial Training (VAT) to carefully introduce
perturbations to data samples as adversarial noise and later impose consistency regularization on the
predictions. More recently, Luo et al. (2018) propose to use a contrastive loss on the predictions
as a regularization that forces predictions to be similar (different) when they are from the same
(different) class. This method extends the consistency regularization previously considered only
in-between the same data samples to in-between different samples. Their method can naturally be
combined with (Tarvainen & Valpola, 2017) or (Miyato et al., 2018) to boost their performance.
Similarly, Verma et al. (2019) propose Interpolation Consistency Training (ICT), a method inspired
by (Zhang et al., 2018) that encourage predictions at interpolated unlabeled samples to be consistent
with the interpolated predictions of individual samples. Also, authors in (Berthelo et al., 2019) apply
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consistency regularization by guessing low-entropy labels, generating data-augmented unlabeled
examples and mixing labeled and unlabeled examples using mixup (Zhang et al., 2018). Both (Verma
et al., 2019) and (Berthelo et al., 2019) adopt (Tarvainen & Valpola, 2017) to estimate the targets
used in the consistency regularization of unlabeled samples.

Co-training (Qiao et al., 2018) combines several ideas from the previous works, using two (or more)
networks trained simultaneously to agree on their predictions (consistency regularization) and disagree
on their errors. Errors are defined as different predictions when exposed to adversarial attacks, thus
forcing different networks to learn complementary representations for the same samples. Recently,
Chen et al. (2018) measure the consistency between the current prediction and an additional prediction
for the same sample given by an external memory module that keeps track of previous representations
of a sample. They additionally introduce an uncertainty weighting of the consistency term to reduce
the contribution of uncertain predictions given by the memory module. Consistency regularization
methods such as Π-model (Laine & Aila, 2017), mean teachers (Tarvainen & Valpola, 2017), and
VAT (Miyato et al., 2018) have all been shown to benefit from stochastic weight averaging (SWA)
method (Athiwaratkun et al., 2019). SWA averages network parameters at different training epochs
to move the SGD solution on borders of flat loss regions to their center and improve generalization.

Pseudo-labeling Seeks the generation of labels or pseudo-labels for unlabeled samples to guide
the learning process. An early attempt at pseudo-labeling proposed in (Lee, 2013) uses the network
predictions as labels. However, they constrain the pseudo-labeling to a fine-tuning stage, i.e. there is a
pre-training or warm-up, as with the consistency regularization approaches. A recent pseudo-labeling
approach proposed in (Shi et al., 2018) uses the network class prediction as hard labels for the
unlabeled samples. They also introduce an uncertainty weight for each sample loss, it being higher for
samples that have distant k-nearest neighbors in terms of feature representation distance. They further
include a loss term to encourage intra-class compactness and inter-class separation, and a consistency
term between samples with different perturbations. They combine their method with mean teachers
(Tarvainen & Valpola, 2017) to achieve state-of-the-art performance. Finally, a recently published
work (Iscen et al., 2019) implements pseudo-labeling through graph-based label propagation. The
method alternates between two steps: training from labeled and pseudo-labeled data and using the
representations of the network to build a nearest neighbor graph where label propagation is applied
to refine hard pseudo-labels on unlabeled images. They further add an uncertainty score for every
sample (softmax prediction entropy based) and class (class population based) to deal, respectively,
with the unequal confidence in network predictions over unlabeled samples and class-imbalance.

3 PSEUDO-LABELING

We formulate semi-supervised image classification as the task to learn a model hθ(x) from a set
of N training examples D. These samples are split into the unlabeled set Du = {xi}Nu

i=1 and the
labeled set Dl = {(xi, yi)}Nl

i=1 with yi ∈ {0, 1}C being the one-hot encoding ground-truth label for
C classes corresponding to xi and N = Nl + Nu. In our case, hθ is a CNN and θ represents the
model parameters (weights and biases). As we seek to perform pseudo-labeling for the Nu unlabeled
samples, we assume that a pseudo-label ỹ is available for these samples. We can then reformulate the
problem as training using D̃ = {(xi, ỹi)}Ni=1, being ỹ = y for the Nl labeled samples.

The CNN parameters θ can be optimized using categorical cross-entropy:

`∗(θ) = −
N∑
i=1

ỹTi log (hθ(xi)) , (1)

where hθ(x) are the softmax probabilities produced by the model and log(·) is applied element-wise.
A key decision is how to generate the pseudo-labels ỹ for the Nu unlabeled samples. Previous
approaches have used hard pseudo-labels (i.e. one-hot vectors) directly using the network output
class (Lee, 2013; Shi et al., 2018) or the class estimated using label propagation on a nearest neighbor
graph (Iscen et al., 2019). We adopt the former approach, but use soft pseudo-labels, as we have seen
this outperforms hard labels, confirming the observations noted in (Tanaka et al., 2018) in the context
of relabeling when learning with label noise. In particular, we store the softmax predictions hθ(xi)
of the network in every mini-batch of an epoch and use them to modify the soft pseudo-label ỹ for
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the Nu unlabeled samples at the end of the epoch. We proceed as described from the second to the
last training epoch, while in the first epoch we use the softmax predictions for the unlabeled samples
from a model trained in a 10 epochs warm-up phase using the labeled data subset Du.

We use the two regularizations applied in (Tanaka et al., 2018) to improve convergence. The first
regularization deals with the difficulty of converging at early training stages when the network’s
predictions are mostly incorrect and the CNN tends to predict the same class to minimize the loss.
Assignment of all samples to a single class is discouraged by adding:

RA =

C∑
c=1

pc log

(
pc

hc

)
, (2)

where pc is the prior probability distribution for class c and hc denotes the mean softmax probability
of the model for class c across all samples in the dataset. As in (Tanaka et al., 2018), we assume a
uniform distribution pc = 1/C for the prior probabilities (RA stands for all classes regularization)
and approximate hc using mini-batches. The second regularization is needed to concentrate the
probability distribution of each soft pseudo-label on a single class, thus avoiding the local optima in
which the network might get stuck due to a weak guidance:

RH = − 1

N

N∑
i=1

C∑
c=1

hcθ(xi) log (h
c
θ(xi)) , (3)

where hcθ(xi) denotes the c class value of the softmax output hθ(xi) and again using mini-batches
(i.e. N is replaced by the mini-batch size) to approximate this term. This second regularization is the
average per-sample entropy (RH stands for entropy regularization), a well-known regularization in
semi-supervised learning (Grandvalet & Bengio, 2004). Finally, the total semi-supervised loss is:

` = `∗ + λARA + λHRH , (4)

where λA and λH control the contribution of each regularization term. We stress that this pseudo-
labeling approach adapted from Tanaka et al. (2018) is far from the state-of-the-art for semi-supervised
learning (see Subsection 4.2), and are the mechanisms proposed in Subsection 3.1 which make pseudo-
labeling a suitable alternative.

3.1 CONFIRMATION BIAS

Network predictions are, of course, sometimes incorrect. This situation is reinforced when incorrect
predictions are used as labels for unlabeled samples, as it is the case in pseudo-labeling. Overfitting
to incorrect pseudo-labels predicted by the network is known as confirmation bias. It is natural to
think that reducing the confidence of the network on its predictions might alleviate this problem
and improve generalization. Recently, mixup data augmentation (Zhang et al., 2018) introduced a
strong regularization technique that combines data augmentation with label smoothing, which makes
it potentially useful to deal with this bias. Mixup trains on convex combinations of sample pairs (xp
and xq) and corresponding labels (yp and yq):

x = δxp + (1− δ)xq, (5)

y = δyp + (1− δ)yq, (6)
where δ ∈ {0, 1} is randomly sampled from a beta distribution Be (α, β), with α = β (e.g. α = 1
uniformly selects δ). This combination regularizes the network to favor linear behavior in-between
training samples, reducing oscillations in regions far from them. Additionally, Eq. 6 can be re-
interpreted in the loss as `∗ = δ`∗p + (1− δ)`∗q , thus re-defining the loss `∗ used in Eq. 4 as:

`∗ = −
N∑
i=1

δ
[
ỹTi,p log (hθ(xi))

]
+ (1− δ)

[
ỹTi,q log (hθ(xi))

]
. (7)

As shown in (Thulasidasan et al., 2019), overconfidence in deep neural networks is a consequence
of training on hard labels and it is the label smoothing effect from randomly combining yp and yq
during mixup training that reduces prediction confidence and improves model calibration. In the
semi-supervised context with pseudo-labeling, using soft-labels and mixup reduces overfitting to
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model predictions, which is especially important for unlabeled samples whose predictions are used
as soft-labels. Note that training with mixup generates softmax outputs hθ(x) for mixed inputs
x, thus requiring a second forward pass with the original images to compute unmixed predictions.
Subsections 4.2 and 4.3 experimentally show that mixup and other techniques (minimum number
of samples per mini-batch, dropout, and data augmentation) reduce confirmation bias and make
pseudo-labeling a suitable alternative to consistency regularization methods.

4 EXPERIMENTAL WORK

4.1 DATASETS AND TRAINING

We use three image classification datasets, CIFAR-10/100 (Krizhevsky & Hinton, 2009), and Mini-
ImageNet (Vinyals et al., 2016), to validate our approach. Part of the training images are labeled and
the remaining are unlabeled. Following (Oliver et al., 2018), we use an independent validation set of
5K samples for CIFAR-10/100 for studying hyperparameters in Subsections 4.2 and 4.3. However, as
done in (Athiwaratkun et al., 2019), we add the 5K samples back to the training set for comparison
with the state-of-the-art in Subsection 4.4, where we report test results (model from the best epoch).

CIFAR-10 and CIFAR-100 These datasets contain 10 and 100 classes, both with 50K color images
for training and 10K for testing with resolution 32×32. We perform experiments with a number of
labeled images Nl = 0.25K, 0.5K, 1K, and 4K (4K and 10K) for CIFAR-10 (CIFAR-100). We use
the well-known “13-CNN” architecture (Athiwaratkun et al., 2019) for CIFAR-10/100. We also
experiment with a Wide ResNet-28-2 (WR-28) (Oliver et al., 2018) and a PreAct ResNet-18 (PR-18)
(Zhang et al., 2018) in Subsection 4.3 to study the generalization to different architectures.

Mini-ImageNet We emulate the semi-supervised learning setup Mini-ImageNet (Vinyals et al.,
2016) (a subset of the well-known ImageNet (Deng et al., 2009) dataset) used in (Iscen et al., 2019).
Train and test sets of 100 classes and 600 color images per class with resolution 84 × 84 are selected
from ImageNet, as in (Ravi & Larochelle, 2017). 500 (100) images per-class are kept for train
(test) splits. The train and test sets therefore contain 50k and 10k images. As with CIFAR-100, we
experiment with a number of labeled images Nl = 4K and 10K. Following (Iscen et al., 2019), we
use a ResNet-18 (RN-18) architecture (He et al., 2016a).

Hyperparameters We use the typical configuration for CIFAR-10/100 (Laine & Aila, 2017) and
the same for Mini-ImageNet. Image normalization using dataset mean and standard deviation together
and subsequent data augmentation (Laine & Aila, 2017) by random horizontal flips and random 2 (6)
pixel translations for CIFAR (Mini-ImageNet). Additionally, color jitter is applied as in (Asano et al.,
2019) in Subsections 4.3 and 4.4 for higher robustness against confirmation bias. We train using SGD
with a momentum of 0.9, a weight decay of 10−4, and batch size of 100. Training always starts with
a high learning rate (0.1 in CIFAR and 0.2 in Mini-ImageNet), dividing it by ten twice during training.
We always train the model 400 epochs (reducing learning rate in epochs 250 and 350) and use 10
epoch warm-up with labeled data. We do not attempt careful tuning of the regularization weights λA
and λH and just set them to 0.8 and 0.4 as done in (Tanaka et al., 2018). When using dropout, it is
introduced between consecutive convolutional layers of ResNet blocks in WR-28, PR-18, and RN-18,
while for 13-CNN we introduce it as in Laine & Aila (2017). Following (Athiwaratkun et al., 2019)1,
we use weight normalization (Salimans & Kingma, 2016) in all networks.

4.2 EFFECT OF MIXUP ON CONFIRMATION BIAS

This section demonstrates that carefully regularized pseudo-labeling is a suitable alternative for
semi-supervised learning. Figure 1 illustrates our approach on the “two moons” toy data. Figure 1
(left) shows the limitations of a naive pseudo-labeling adapted from (Tanaka et al., 2018), which fails
to adapt to the structure in the unlabelled examples and results in a linear decision boundary. Figure 1
(middle) shows the effect of mixup, which alleviates confirmation bias to better model the structure
and gives a smoother boundary. Figure 1 (right) shows that combining mixup with a minimum
number of labeled samples k per mini-batch improves the semi-supervised decision boundary.

1https://github.com/benathi/fastswa-semi-sup
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Figure 1: Pseudo-labeling in the “two moons” data (4 labels/class) for 1000 samples. From left to
right: no mixup, mixup, and mixup with a minimum number of labeled samples per mini-batch. We
use an NN classifier with one hidden layer with 50 hidden units as in (Miyato et al., 2018).

Table 1: Confirmation bias alleviation using mixup and a minimum number of k labeled samples
per mini-batch. Left: Validation error for naive pseudo-labeling without mixup (C), mixup (M), and
alternatives with minimum k. Right: Study of the effect of k on the validation error.

CIFAR-10 CIFAR-100

Labeled images 500 4000 4000

C 52.44 11.40 48.54
C* (k = 16) 35.08 10.90 46.60
M 32.10 7.16 41.80
M *(k = 16) 13.68 6.90 38.78

CIFAR-10 CIFAR-100

Labeled images 500 4000 4000

k = 8 13.14 7.18 42.32
k = 16 13.68 6.90 38.78
k = 32 14.58 7.06 39.62
k = 64 19.40 8.20 46.28

Naive pseudo-labeling leads to overfitting the network predictions and high training accuracy in
CIFAR-10/100. Table 1 (left) reports mixup effect in terms of validation error. Naive pseudo-labeling
leads to an error of 11.40/48.54 for CIFAR-10/100 when training with cross-entropy (C) loss for
4000 labels. This error can be greatly reduced when using mixup (M) to 7.16/41.80. However, when
further reducing the number of labels to 500 in CIFAR-10, M is insufficient to ensure low-error
(32.10). We propose to set a minimum number of samples k per mini-batch to tackle the problem.
Table 1 (right) studies this parameter k when combined with mixup, showing that 16 samples per
mini-batch works well for both CIFAR-10 and CIFAR-100, dramatically reducing error in all cases
(e.g. in CIFAR-10 for 500 labels error is reduced from 32.10 to 13.68).

Confirmation bias causes dramatic increase the certainty of incorrect predictions during training.
To demonstrate this behavior we compute the average cross-entropy of the softmax output with
a uniform U across the classes in every epoch t for all incorrectly predicted samples {xmt

}Mt

mt=1

as: rt = − 1
Mt

∑Mt

mt=1 UT log (hθ(xmt
)). Figure 2 shows that mixup and minimum k are effective

regularizers for reducing rt, i.e. confirmation bias is reduced. We also experimented with using label
noise regularizations (Xie et al., 2016), but setting a minimum k proved more effective.

4.3 GENERALIZATION TO DIFFERENT ARCHITECTURES

There are examples in the recent literature (Kolesnikov et al., 2019) where moving from one ar-
chitecture to another modifies the belief of which methods have a higher potential. Kolesnikov
et al. (2019) show that skip-connections in ResNet arquitectures play a key role on the quality of
learned representations, while most approaches in previous literature were systematically evaluated
using AlexNet (A. Krizhevsky, 2012). Ulyanov et al. (2018) showed that different architectures lead
different and useful image priors, highlighting the importance of exploring different networks. We,
therefore, test our method with two more architectures: a Wide ResNet-28-2 (WR-28) (S. Zagoruyko,
2016) typically used in semi-supervised learning (Oliver et al., 2018) (1.5M parameters) and a PreAct
ResNet-18 (PR-18) (He et al., 2016b) used in the context of label noise (Zhang et al., 2018) (11M
parameters). Table 2 presents the results for the 13-CNN (AlexNet-type) and these network archi-
tectures (ResNet-type). Our pseudo-labeling with mixup and k = 16 (M*) works well for 4000 and
500 labels across architectures, except for 500 labels for WR-28 where there is large error increase
(29.50). This is due to a stronger confirmation bias in which labeled samples are not properly learned,
while incorrect pseudo-labels are fit. Interestingly, PR-18 (11M) is more robust to confirmation bias
than WR-28 (1.5M), while the 13-layer network (3M) has fewer parameters than PR-18 and achieves
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Figure 2: Example of certainty of incorrect predictions rt during training when using 500 (left) and
4000 (right) labeled images in CIFAR-10. Moving from cross-entropy (C) to mixup (M) reduces rt,
whereas adding a minimum number of samples per mini-batch (*) also helps in 500 labels, where M*
(with slightly lower rt than M) is the only configuration that converges, as shown in Table 1 (left).

Table 2: Validation error across architectures is stabilized using dropout p and data augmentation (A).

M* M* + p = 0.1 M* + p = 0.3 M* + p = 0.1 + A

Labeled images 500 4000 500 4000 500 4000 500 4000

13-layer 13.68 6.90 12.62 6.58 11.94 6.66 9.16 6.22
WR-28 29.50 6.40 14.14 7.06 30.56 11.44 10.94 6.74
PR-18 13.90 5.94 14.78 5.90 14.78 6.62 14.96 6.32

better performance. This suggests that the network architecture plays and important role, being a
relevant prior for semi-supervised learning with few labels.

We found that dropout (Srivastava et al., 2014) and data augmentation is needed for good performance
across all architectures. Table 2 shows that dropout p = 0.1, 0.3 helps in achieving better convergence
in CIFAR-10, whereas adding color jitter as additional data augmentation (details in Subsection 4.1)
further contributes to error reduction. Note that the quality of pseudo-labels is key, so it is essential to
disable dropout to prevent corruption when computing these in the second forward pass. We similarly
disable data augmentation in the second forward pass, which consistently improves performance.
This configuration is used for comparison with the state-of-the-art in Subsection 4.4.

4.4 COMPARISON WITH THE STATE-OF-THE-ART

We compare our pseudo-labeling approach against related work that makes use of the 13-CNN
(Tarvainen & Valpola, 2017) in CIFAR-10/100: Π model (Laine & Aila, 2017), TE (Laine & Aila,
2017), MT (Tarvainen & Valpola, 2017), Π model-SN (Luo et al., 2018), MA-DNN (Chen et al.,
2018), Deep-Co (Qiao et al., 2018), TSSDL (Shi et al., 2018), LP (Iscen et al., 2019), CCL (Li et al.,
2019), fast-SWA (Athiwaratkun et al., 2019) and ICT (Verma et al., 2019). The table divides methods
into those based on consistency regularization and pseudo-labeling. Note that we include pseudo-
labeling approaches combined with consistency regularization ones (e.g. MT) in the consistency
regularization set. The proposed approach clearly outperforms consistency regularization methods, as
well as other purely pseudo-labeling approaches and their combination with consistency regularization
methods in CIFAR-10/100. These results demonstrate the generalization of the proposed approach
compared to other methods that fail when decreasing the number of labels. Furthermore, Table 4 (left)
demonstrates that the proposed approach successfully scales to higher resolution images, obtaining an
over 10 point margin on the best related work in Mini-ImageNet. Note that all supervised baselines
are reported using the same data augmentation and dropout as in the proposed pseudo-labeling.

Table 4 (right) compares against recent consistency regularization approaches that use mixup. We
achieve better performance than ICT (Verma et al., 2019), while being competitive with MM (Berthelo
et al., 2019) for 500 and 4000 labels using WR-28. Regarding PR-18, we converge to reasonable
performance for 4000 and 500 labels, whereas for 250 we do not. Finally, the 13-CNN robustly
converges even for 250 labels where we obtain 9.37 test error (see Appendix A.1 for some details
on different architectures convergence). Therefore, these results suggest that it is worth exploring
the relationship between number of labels, dataset complexity and architecture type. As shown
in Subsection 4.3, dropout and additional data augmentation help with 500 labels/class across
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Table 3: Test error in CIFAR-10/100 for the proposed approach using the 13-CNN network. (*)
denotes that we have run the algorithm. Bold indicates lowest error. We report average and standard
deviation of 3 runs with different labeled/unlabeled splits.

CIFAR-10 CIFAR-100

Labeled images 500 1000 4000 4000 10000

Supervised (C)* 43.64 ± 1.21 34.83 ± 1.15 19.26 ± 0.26 54.49 ± 0.53 41.14 ± 0.26
Supervised (M)* 37.60 ± 0.65 28.59 ± 1.21 15.94 ± 0.26 52.70 ± 0.28 39.42 ± 0.37

Consistency regularization methods

Π model - - 12.36 ± 0.31 - 39.19 ± 0.36
TE - - 12.16 ± 0.24 - 38.65 ± 0.51
MT 27.45 ± 2.64 19.04 ± 0.51 11.41 ± 0.25 45.36 ± 0.49 36.08 ± 0.51
Π model-SN - 21.23 ± 1.27 11.00 ± 0.13 - 37.97 ± 0.29
MA-DNN - - 11.91 ± 0.22 - 34.51 ± 0.61
Deep-Co - - 9.03 ± 0.18 - 38.77 ± 0.28
MT-TSSDL - 18.41 ± 0.92 9.30 ± 0.55
MT-LP 24.02 ± 2.44 16.93 ± 0.70 10.61 ± 0.28 43.73 ± 0.20 35.92 ± 0.47
MT-CCL - 16.99 ± 0.71 10.63 ± 0.22 - 34.81 ± 0.52
MT-fast-SWA - 15.58 ± 0.12 9.05 ± 0.21 - 34.10 ± 0.31
ICT - 15.48 ± 0.78 7.29 ± 0.02 - -

Pseudo-labeling methods

TSSDL - 21.13 ± 1.17 10.90 ± 0.23 - -
LP 32.40 ± 1.80 22.02 ± 0.88 12.69 ± 0.29 46.20 ± 0.76 38.43 ± 1.88
Ours* 8.80 ± 0.45 6.85 ± 0.15 5.97 ± 0.15 37.55 ± 1.09 32.15 ± 0.5

Table 4: Test error in Mini-ImageNet (left) and CIFAR-10 with few labeled samples (right). (*)
denotes that we have run the algorithm. Bold indicates lowest error. We report average and standard
deviation of 3 runs with different labeled/unlabeled splits.

Labeled images 4000 10000

Supervised (C)* 75.69 ± 0.24 63.24 ± 0.33
Supervised (M)* 72.03 ± 0.21 59.96 ± 0.40

Consistency regularization methods

MT 72.51 ± 0.22 57.55 ± 1.11
MT-LP 72.78 ± 0.15 57.35 ± 1.66

Pseudo-labeling methods

LP 70.29 ± 0.81 57.58 ± 1.47
Ours* 56.49 ± 0.51 46.08 ± 0.11

Labeled images 250 500 4000

MM (WR-28) 11.08 ± 0.87 9.65 ± 0.94 6.24 ± 0.06
ICT* (WR-28) 52.19 ± 1.54 42.33 ± 0.08 7.26 ± 0.04
Ours* (WR-28) 24.81 ± 5.35 14.25 ± 0.86 6.28 ± 0.3

Ours* (13-CNN) 9.37 ± 0.12 8.80 ± 0.45 5.97 ± 0.15
Ours* (PR-18) 23.86 ± 4.82 12.16 ± 1.06 5.86 ± 0.17

architectures, but are insufficient for 250 labels. Better data augmentation (Ho et al., 2019) or
self-supervised pre-training (Rebuffi et al., 2019) might overcome this challenge. Furthermore,
hyperparameters such as the regularization weights λA = 0.8 and λH = 0.4 from Eq. 4 and the
mixup α require further study. However, it is already interesting that a straightforward modification of
pseudo-labeling, designed to tackle confirmation bias, gives a competitive semi-supervised learning
approach, without any consistency regularization, and that future work should take this into account.

5 CONCLUSIONS

This paper presented a semi-supervised learning approach for image classification based on pseudo-
labeling. We proposed to directly use the network predictions as soft pseudo-labels for unlabeled data
together with mixup augmentation, a minimum number of labeled samples per mini-batch, dropout
and data augmentation to alleviate confirmation bias. This conceptually simple approach outperforms
related work in CIFAR-10/100 and Mini-ImageNet datasets, demonstrating that pseudo-labeling is a
suitable alternative to the dominant approach in recent literature: consistency-regularization. The
proposed approach is, to the best of our knowledge, both simpler and more accurate than most recent
approaches. Future research will explore careful hyperparameter selection and larger-scale datasets.
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Figure 3: Cross-entropy loss for labeled samples. First (second) row show 500 (250) labels in
CIFAR-10. From left to right: 13-CNN, WR-28 and PR-18. The heavy lines represent the median
losses and the shaded areas are the interquartile ranges.

A APPENDIX

A.1 CONVERGENCE FOR FEW LABELS

Figure 3 presents the cross-entropy loss for labeled samples when training with 13-CNN, WR-28
and PR-18 and using 500 and 250 labels in CIFAR-10. This loss is a good indicator of a robust
convergence to reasonable performance as the interquartile range for cases failing (250 labels for
WR-28 and PR-18) is much higher.
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