
Under review as a conference paper at ICLR 2020

MIXED SETTING TRAINING METHODS FOR
INCREMENTAL SLOT FILLING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model training remains a dominant financial cost and time investment in machine
learning applications. Developing and debugging models often involve iterative
training, further exacerbating this issue. With growing interest in increasingly
complex models, there is a need for techniques that help to reduce overall training
effort. While incremental training can save substantial time and cost by training an
existing model on a small subset of data, little work has explored policies for de-
termining when incremental training provides adequate model performance versus
full retraining. We provide a method-agnostic algorithm for deciding when to in-
crementally train versus fully train. We call this setting of non-deterministic full-
or incremental training “Mixed Setting Training”. Upon evaluation in slot-filling
tasks, we find that this algorithm provides a bounded error, avoids catastrophic
forgetting, and results in a significant speedup over a policy of always fully train-
ing.

1 INTRODUCTION

The recent explosion in machine learning interest has led to substantial societal impact. However,
with ever-growing model complexity comes corresponding growth in training time and cost. Recent
models such as BERT (Devlin et al., 2019) can cost thousands of dollars and days to complete train-
ing, and similarly complex models consume staggering amounts of energy during training (Strubell
et al., 2019). Approaches for reducing the training burden are necessary for enabling continued
growth in the machine learning community.

Techniques such as incremental training can reduce the total time and financial investments asso-
ciated with training models, while also enabling model refinement when original training data is
unavailable. By using newly-added data as a basis for training, incremental training can lead to
dramatic train-time speedups with marginal losses in accuracy (Ade & Deshmukh, 2013). However,
little work has explored developing policies that inform users when incremental training can be used
versus a full retraining phase of a model.

Previous research/findings in incremental training have been limited to a single setting in which
the model either incrementally trains, or fully trains. In this paper, we describe an algorithm that
chooses whether to train a model fully after a new observation of data, or simply leave the model
incrementally trained. We refer to this kind of training as “Mixed Setting Training”, as the model
will have a decision rule of whether to train incrementally or not. Our goals for this method are as
follows:

• Training speedup. Training represents a substantial burden financially and with respect to
time. We seek a technique that saves training time overall.
• Bounded errors. We seek to apply incremental training such that a model’s predictive

performance is retained. We must provide a guarantee about how much error we introduce,
and fully train instead if we cannot meet that guarantee.
• Prevents catastrophic forgetting. Approaches to saving on training time should avoid

catastrophic forgetting.

We propose a new method, called ‘Parameterized Incremental Training’, to meet these goals. Our
design provides a substantial speedup over always fully training, and guarantees by design that there

1



Under review as a conference paper at ICLR 2020

will be an upper bound on error (ε%). A hyperparameter, N, describes the size of the reservoir
and thus provides predictable space requirements. Constant checks over an unbiased sample of the
dataset prevent catastrophic forgetting.

2 BACKGROUND

In this section, we introduce incremental training and slot filling. We also discuss a motivating
scenario that places our work in context.

Incremental training is is a setting where a machine learning model must be able to learn from newly
added data without access to the entire dataset or model. This is particularly useful in situations
where models must learn in an iterative fashion as new data is received, such as in online learning.
Incremental training can produce dramatic train-time speedups with only marginal losses in accuracy
(Ade & Deshmukh, 2013). Approaches typically reuse the previously trained weights and model on
new tasks, modifying either the incoming dataset or the model itself. In an approach called One Shot
Stochastic Gradient Descent (SGD), a single stochastic descent epoch is applied over the preexisting
model and with a new observation. This approach proves easy to implement but has previously
yielded disappointing results on text classification Golmant et al. (2017). Another approach is called
reservoir sampling, which is similar to one-shot SGD but re-samples a small subset from the original
dataset and trains the new example alongside the re-sampled examples. This has previously shown
more promise and remains relatively computationally efficient and prevents a significant drop-off in
accuracy as found with one shot gradient descent.

Slot-filling is a problem in natural language processing (NLP) where a model must be able to fill
predefined ‘slots’ of information from a sentence of which ‘values’ are to be extracted. Common
approaches to this are usually language models such as BERT (Devlin et al., 2019), ELMo (Peters
et al., 2018), and XLNet (Yang et al., 2019), coupled with sequence prediction models (Mesnil et al.,
2015). Slot-filling has applications across numerous domains, and is especially used in natural
language understanding (NLU) settings in task-driven dialog systems where the goal is to extract
relevant information (i.e. slots) from a human user who is trying to accomplish some task.

Research topics in incremental training have primarily focused on image processing, as computer
vision processing often occurs on low power computers such as cell phones (Alyamkin et al., 2019).
Information on the efficacy of incremental training techniques when applied to NLP is limited, and
in the case of slot-filling, practically non-existent.

3 RELATED WORK

In this section, we discuss three lines of related work: (1) extant incremental training methods, (2)
the concept of catastrophic forgetting, and (3) slot-filling as an example motivating application of
our approach.

3.1 INCREMENTAL TRAINING METHODS

The ability to train Support Vector Machine (SVM) models in an incremental fashion has been
explored by many researchers to handle the increasingly large training datasets, including Syed et al.
(1999), Cauwenberghs & Poggio (2000), and Shilton et al. (2005). Fei-Fei et al. (2004) introduced a
generative probabilistic model that can be trained incrementally in a Bayesian manner, which speeds
up the training process significantly and shows superior accuracy compared to maximum-likelihood
methods. Zhou et al. (2017) proposed AIFT, a convolutional neural network (CNN) architecture
that can be fine-tuned continuously incrementally, which leverages transfer learning techniques to
reduce the cost of data annotation for computer vision tasks by more than a half. Rebuffi et al. (2017)
explored a novel training technique, iCaRL, which allows only a small number of classes to present
at the beginning of the training process and new classes and samples can be added incrementally for
image classification tasks.

2



Under review as a conference paper at ICLR 2020

3.2 CATASTROPHIC FORGETTING

Goodfellow et al. (2013) investigated the impact of catastrophic forgetting on a variety of machine
learning algorithms including gradient-based neural networks, where they found the dropout algo-
rithm can significantly improve the ability to adapt to new tasks for neural networks. Lee et al.
(2017) presented a technique called incremental moment matching (IMM) that matches the poste-
rior distribution of the neural networks trained on different tasks in an incremental fashion, therefore
overcoming catastrophic forgetting. Kemker et al. (2018) formalized the metrics and benchmarks
for evaluating the ability to mitigate catastrophic forgetting for neural networks, and also presented
an empirical study of such techniques including regularization, ensembling, rehearsal, dual-memory,
and sparse-coding. To mitigate the negative impact of catastrophic forgetting, Ritter et al. (2018)
introduced the Kronecker factored online Laplace approximation that recursively approximates the
posterior after each task using a Gaussian distribution, penalizing changes to the weights quadrati-
cally.

3.3 SLOT-FILLING

Surdeanu et al. (2010) presented an early attempt to use a distant supervision approach to tackle
the slot-filling task, and an improved version that allows multi-label predictions is introduced by
Surdeanu et al. (2011) one year later. Mesnil et al. (2015) proposed a recurrent neural network
(RNN) architecture to capture the past and future temporal dependencies in natural language for
semantic slot-filling tasks, which outperformed shallower conventional conditional random field
(CRF) models. A more generalized multi-domain model architecture that can perform multiple
tasks including slot-filling was described by Hakkani-Tür et al. (2016), which is composed of a bi-
directional RNN with long-short term memory (LSTM) cells. To better extract relational knowledge
among entities in slot-filling tasks, Zhang et al. (2017) combine an LSTM sequence model with
a position-aware attention model achieving a 26.7% F1 score improvement. This last approach,
using an attention model, is time consuming to train. Moreover, none of the slot-filling approaches
described above have been investigated under an incremental training setting.

4 APPROACH

In this section, we discuss our approach to informing incremental training policy. At a high level,
we consider a scenario in which a user has built and deployed a model, and seeks to debug or refine
the model by training it on samples seen subsequent to deployment. In such a setting, we seek to
reduce the amount of time and resources the user must expend to train their model. We elect to apply
incremental training, then rapidly evaluate the model to determine whether the accuracy of the model
falls below a given threshold defined by the user (we denote this threshold with ε). We hypothesize
that this policy will enable rapid retraining of a model in light of new data while retaining acceptable
predictive performance. We describe our approach more rigorously in the remaining subsections.

4.1 PARAMETERIZED INCREMENTAL TRAINING

Algorithm 1 Parameterized Incremental Training
1: procedure PARAMETERIZED TRAINING(examples, n, ε, W )
2: for example in examples do
3: reservoir ← RESERVOIR SAMPLE(examples, n)
4: W ← TRAIN INCREMENTALLY(example, W )
5: F1 ← EVAL(reservoir)
6: if 100− F1 ≤ ε then
7: W ← TRAIN FULLY(examples)
8: end if
9: end for

10: return W
11: end procedure

3



Under review as a conference paper at ICLR 2020

New Observation

Run Observation
Through
Reservoir
Sampling

Keep Incrementally
Trained Model

Incrementally Train

Evaluate on
reservoir

Fully Train

Figure 1: Visualization of Parameterized Incremental Training

We present a policy for determining when incremental training is an acceptable substitute for fully
training a model. We assume we are given an initial dataset D on which we wish to tune a model
characterized by a weight matrix W . We seek to ensure that the model does not catastrophically
forget previously-learned patterns, so the algorithm retains a reservoir of size n that is randomly
sampled from a stream of samples for which we have ground truth labels. This reservoir of samples
is inferred before a training epoch. If the accuracy in this inference session is below an observed
accuracy in the training session, then we fully train. Otherwise, we keep the candidate incrementally
trained weight parameters, W . The algorithm is expressed in Algorithm 1.

In this algorithm, RESEVOIR SAMPLE is a reservoir sampling algorithm that yields a resovoir set
that enables incremental training while avoiding catastrophic forgetting; TRAIN INCREMENTALLY
is function that updates the model weights given a training sample (e.g., One Shot SGD or Reservoir
Sampling Based SGD); TRAIN FULLY is a function that trains the model from scratch (e.g., SGD);
and EVAL is a function that computes the model performance measured using f1 score on all of the
samples in the reservoir. Since the reservoir is an unbiased sample of the training dataset as a whole
and we ensure that the model’s performance does not decrease below ε on the sample, the model’s
performance will not degrade by more than ε on the full training set.

4.2 RESERVOIR SAMPLING

Our approach leverages reservoir sampling to simultaneously retain predictive performance of
incrementally-trained models while reducing the likelihood that catastrophic forgetting occurs dur-
ing model training. Reservoir sampling is class of algorithms for sampling k items from a list S
containing n items where n is unknown or very large or of limited access (Vitter, 1985). Let there
be a sequence of items, denoted by S. We want to sample N number of items from that sequence.
At the ith item of the sequence, S[i], where i < N , those items are stored into a sample array. When
we see S[i] where i ≥ N we decide with probability i−1 to add the new item into the set. We then
decide to replace one of the old items, with each having i−1 probability of replacement.

The reservoir sampling algorithm that our incremental training algorithm uses is defined in Algo-
rithm 2. Here, UNIF generates an integer from a discrete uniform distribution.

4



Under review as a conference paper at ICLR 2020

Algorithm 2 Reservoir Sampling
1: procedure RESERVOIR SAMPLE(S, k)
2: R← []
3: for i = 1 to k do
4: R[i]← S[i]
5: end for
6: for i = k + 1 to n do
7: j ← UNIF(1, i)
8: if j 6= k then
9: R[i]← S[i]

10: end if
11: end for
12: return R
13: end procedure

Table 1: Dataset features.
Dataset Domain Number of Samples Number of Slots
ATIS (Hemphill et al., 1990) —- 5,871 63

Jaech et al. (2016) OpenTable 3,151 6

5 EVALUATION

We begin by evaluating the effectiveness of two candidate incremental training strategies for slot-
filling tasks. These two strategies are One-Shot SGD and One-Shot SGD on a reservoir sample of
size 100. We evaluate the effectiveness of our strategies on two commonly used slot-filling datasets:
1) ATIS (Hemphill et al., 1990), a dataset constructed for evaluating a flight-booking system; 2)
the datasets introduced in Jaech et al. (2016), which are crowdsourced datasets covering 4 domains
related to booking reservations for travel and restaurants. These datasets are summarized in Table 1,
and the number of samples and slots in the datasets cover a wide range. Training was performed
on an Intel Core i7 CPU with 16GB of RAM to simulate a resource constrained environment. Time
measurements were taken just before beginning training, and just after training.

Figure 2: (Left) F1 score on test set as model is incrementally trained in a one-shot SGD setting as a
function of ratio of initial to incremental data (Right) F1 score on test set as model is incrementally
trained in a reservoir sampling batch setting as a function of ratio of initial to incremental data.
n=100

We start by comparing the effects of gradually increasing the incremental set, gradually increasing
the initial training set, and varying both simultaneously. For the reservoir, our N was a size of 100.
This was chosen because it represents a use case for incremental training: a practitioner looks at the
model and then decides to gather 100 more examples. For each data point we train a model with
an initial partition of the data, incrementally train once on another set of the data, and then evaluate
the F1 score. In figure 3 we start out in all cases by initially training on 50% of the dataset. We
chose 50% as an arbitrary starting point because we assume that the average practitioner will collect

5



Under review as a conference paper at ICLR 2020

Figure 3: (Left) F1 score on test set as model is incrementally trained in a one-shot SGD setting as
the number of incremental examples increases. (Right) F1 score on test set as model is incrementally
trained in a one-shot SGD setting as the number of initial examples increases

Table 2: Empirical measurements of model training time and performance using our approach to
inform training policy.

Dataset F1 Score Seconds to Train Ratio Fully Trained
OpenTable 87.54 15147.28 90.00%
ATIS 91.8 106718.53 78.57%

up to twice the size of the original dataset before retraining. We use a RNN slot-filling approach
using ELMo embeddings. We find that One Shot SGD performs admirably in all settings similar
to reservoir sampling the training set. Because of the performance and ease of implementation, we
chose one shot SGD as our incremental training method for Parameterized Incremental Training.
Additionally, we also report good performance as long as the model initially trains on 20% of the
data.

We then move into a streamed data setting. We compare the F1 score and ratio of training sessions
that were fully trained to those that were incrementally trained. The acceptable accuracy loss in
Table 2 was set to 5%. Our number of examples per observation was set to 100 and this again was
done with the ATIS dataset and OpenTable. We observe that the policy that never incrementally
trains is dramatically slower than the other methods, but provides higher accuracy. Parameterized
Incremental Training provides a reasonable tradeoff of speed and accuracy, offering a 10% reduction
in time on the OpenTable dataset and a 22.43% reduction in time on the ATIS dataset with no greater
than 5% accuracy loss.

6 CONCLUSION AND DISCUSSION

Incremental training is an important technique when training models quickly with limited access to
data. Research has been done previously on techniques, and our data shows a policy to decide when
to incrementally train. We find that on slot-filling tasks on the ATIS and Opentable datasets that
One Shot SGD and reservoir sampling methods have roughly equivalent accuracy on the training
set. This is in contrast to the findings in Golmant et al. (2017), where they found a significant
accuracy increase for reservoir sampling. We suspect that slot-filling tasks differ architecturally
from classification tasks such that one shot SGD provides better accuracy. We hope that this paper
will open a field of inquiry into decision algorithms for training in a mixed setting.

REFERENCES

R. R. Ade and R. Deshmukh. Methods for incremental learning: A survey. International Journal of
Data Mining Knowledge Management Process, 3:119–125, 2013.

Sergey Alyamkin, Matthew Ardi, Alexander Berg, Achille Brighton, Bo Chen, Yiran Chen, Hsin-
Pai Cheng, Zichen Fan, Chen Feng, Bo Fu, Kent Gauen, Abhinav Goel, Alexander Goncharenko,
Xuyang Guo, Soonhoi Ha, Andrew Howard, Xiao Hu, Yuanjun Huang, Donghyun Kang, and

6



Under review as a conference paper at ICLR 2020

Shaojie Zhuo. Low-power computer vision: Status, challenges, and opportunities. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):411–421, 2019.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. In Proc. of NIPS, 2000.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL, 2019.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Proc. of CVPR,
2004.

Noah Golmant, Evan R. Sparks, and Joseph Gonzalez. Batch methods for incremental learning. pp.
4, 2017.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint, 2013.

Dilek Hakkani-Tür, Gokhan Tür, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng Gao, Li Deng, and
Ye-Yi Wang. Multi-domain joint semantic frame parsing using bi-directional rnn-lstm. In Proc.
of Interspeech, 2016.

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. The ATIS spoken language
systems pilot corpus. In Proc. of the Workshop on Speech and Natural Language, 1990.

Aaron Jaech, Larry Heck, and Mari Ostendorf. Domain adaptation of recurrent neural networks for
natural language understanding. In Proc. of Interspeech, 2016.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher Kanan. Mea-
suring catastrophic forgetting in neural networks. In Proc. of AAAI, 2018.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Proc. of NIPS, 2017.

G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. Hakkani-Tür, X. He, L. Heck, G. Tur, D. Yu,
and G. Zweig. Using recurrent neural networks for slot filling in spoken language understanding.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3):530–539, 2015.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. In Proc. of CVPR, July 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In Proc. of NIPS. 2018.

A. Shilton, M. Palaniswami, D. Ralph, and Ah Chung Tsoi. Incremental training of support vector
machines. IEEE Transactions on Neural Networks, 16(1):114–131, 2005.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proc. of ACL, 2019.

Mihai Surdeanu, David McClosky, Julie Tibshirani, John Bauer, Angel X. Chang, Valentin I.
Spitkovsky, and Christopher D. Manning. A simple distant supervision approach for the tac-kbp
slot filling task. In Proc. of Third Text Analysis Conference, 2010.

Mihai Surdeanu, Sonal Gupta, John Bauer, David McClosky, Angel X. Chang, Valentin I.
Spitkovsky, and Christopher D. Manning. Stanford’s distantly-supervised slot-filling system. In
Proc. of Fourth Text Analysis Conference, 2011.

Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling concept drifts in incremental learn-
ing with support vector machines. In Proceedings of the Fifth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 1999.

7



Under review as a conference paper at ICLR 2020

Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, March
1985. ISSN 0098-3500.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
XLNet: Generalized autoregressive pretraining for language understanding. arXiv:1906.08237,
2019.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. Position-
aware attention and supervised data improve slot filling. In Proc. of EMNLP, 2017.

Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth Gurudu, Michael Gotway, and Jianming Liang.
Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incre-
mentally. In Proc. of CVPR, 2017.

8


	Introduction
	Background
	Related Work
	Incremental Training Methods
	Catastrophic Forgetting
	Slot-Filling

	Approach
	Parameterized Incremental Training
	Reservoir Sampling

	Evaluation
	Conclusion and Discussion

