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ABSTRACT

Because learning sometimes involves sensitive data, standard machine-learning
algorithms have been extended to offer strong privacy guarantees for training
data. However, in practice, this has been mostly an afterthought, with privacy-
preserving models obtained by re-running training with a different optimizer, but
using the same model architecture that performed well in a non-privacy-preserving
setting. This approach leads to less than ideal privacy/utility tradeoffs, as we
show here. Instead, we propose that model architectures and initializations are
chosen and hyperparameter tuning is performed, ab initio, explicitly for privacy-
preserving training. Using this paradigm, we achieve new state-of-the-art accu-
racy on MNIST, FashionMNIST, and CIFAR10 without any modification of the
fundamental learning procedures or differential-privacy analysis.

1 INTRODUCTION

Machine learning (ML) can be usefully applied to the analysis of sensitive data, e.g., in the domain of
healthcare (Kononenko, 2001). However, ML models may unintentionally reveal sensitive aspects
of their training data, e.g., due to overfitting (Shokri et al., 2017; Song & Shmatikov, 2019). To
counter this, ML techniques that offer strong privacy guarantees have been developed. Notably,
the differentially private stochastic gradient descent, or DP-SGD, of Abadi et al. (2016) is an easy-
to-use, generally-applicable modification of stochastic gradient descent. In addition to its rigorous
privacy guarantees, it has been empirically shown to stop the leaking of secrets (Carlini et al., 2019).

To strictly bound the impact of any training example, DP-SGD makes two changes to every gradient
step: first, each example’s gradient contribution is limited to a fixed bound (in practice, by clipping
all per-example gradients to a maximum `2 norm); second, random (Gaussian) noise of the scale
of the clipping norm is added to each batch’s combined gradient, before it is backpropagated to
update model parameters. Together, these changes create a new, artificial noise floor at each step of
gradient descent, such that the unique signal of any individual example is below this new noise floor;
this allows differential privacy to be guaranteed for all training examples (Dwork & Roth, 2014).

Training using DP-SGD is eminently practical and in addition to privacy offers advantages such
as strong generalization and the promise of reusable holdouts (Google, 2019; Dwork et al., 2015).
Unfortunately, its advantages have not been without cost: empirically, the test accuracy of differ-
entially private ML is consistently lower than that of non-private learning (e.g., see Papernot et al.
(2018)). Such accuracy loss may sometimes be inevitable: for example, the task may involve learn-
ing heavy-tailed distributions and adding noise will definitely hinder visibility of examples in the
ends of the tails. However, this does not explain the accuracy loss of differentially private learning
on standard benchmark tasks that are known to be relatively simple: MNIST (Yann et al., 1998),
FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009), etc.

This paper presents several new results for privacy-preserving learning that improve the state-of-
the-art in terms of both privacy and accuracy. Significantly, these new results stem from a single,
simple observation: differentially-private learning with DP-SGD is different enough that all aspects
of learning—model architecture, parameter initialization, and optimization strategy, as well as hy-
perparameter tuning—must be reconsidered. To achieve the best privacy/accuracy tradeoffs, we
must tune our learning strategies to the specifics of privacy-preserving learning; i.e., we must “learn
to learn” with privacy. Conversely, we concretely demonstrate how the architecture, initialization,
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and optimization strategy that gives the best accuracy for non-private learning can be a poor fit for
learning with privacy. Instead, by revisiting our choices, we can reduce the information loss induced
by clipping, limit the impact of added noise, and improve the utility of each gradient step when
learning with privacy. Our contributions facilitate DP-SGD learning as follows:

• We show how simple architecture changes, such as the use of tanh instead of ReLU acti-
vations, can improve a model’s private-learning suitability and achievable privacy/accuracy
tradeoffs, by eliminating the negative effects of clipping and noising large gradients.

• We explain how high-capacity models can be disadvantageous, as well as the advantages
of models with a final, fully-connected layer that can be independently fine tuned, and how
both help address the curse of dimensionality and high-dimensional noise.

• We demonstrate the importance of finding good initializations, and show how this can be
done with privacy using either transfer learning or weight scaling (Raghu et al., 2019).

• We show that better tradeoffs and increased wall-clock learning speeds can be achieved by
tuning hyperparameters and choosing optimizers directly for DP-SGD learning.

By applying the above, we advance the state of the art for MNIST, FashionMNIST, and CIFAR10,
significantly improving upon the privacy/accuracy tradoffs from prior work.

2 TRAINING-DATA MEMORIZATION, DIFFERENTIAL PRIVACY, AND DP-SGD

Machine-learning models will easily memorize whatever sensitive, personal, or private data that was
used in their training, and models may in practice disclose this data—as demonstrated by the attacks
of Shokri et al. (2017), Song & Shmatikov (2019), and Carlini et al. (2019).

For reasoning about the privacy guarantees of algorithms such as training by stochastic gradient
descent, differential privacy has become the established gold standard (Dwork & Roth, 2014). In-
formally, an algorithm can be differentially private if it will always produce effectively the same
output (in a mathematically precise sense), when applied to two input datasets that differ by only
one record. Formally, a learning algorithmA that trains models from the set S is (ε, δ)-differentially-
private, if the following holds for all training datasets d and d′ that differ by exactly one record:

Pr[A(d) ∈ S] ≤ eεPr[A(d′) ∈ S] + δ (1)

Here, ε gives the formal privacy guarantee, by placing a strong upper bound on any privacy loss,
even in the worst possible case. A lower ε indicates a stronger privacy guarantee or a tighter upper
bound (Erlingsson et al., 2019). The factor δ allows for some probability that the property may not
hold (in practice, this δ is required to be very small, e.g., in inverse proportion to the dataset size).

A very attractive property of differential-privacy guarantees is that they hold true for all attackers—
whatever they are probing and whatever their prior knowledge—and that they remain true under
various forms of composition. In particular, the output of a differentially-private algorithm can be
arbitrarily post processed, without any weakening of the guarantees. Also, if sensitive training data
contains multiple examples from the same person (or, more generally, the same sensitive group),
ε-differentially-private training on this data will result in model with a kε-differential-privacy guar-
antee for each person, as long as at most k training-data records are present per person.

Abadi et al. (2016) introduced DP-SGD as a method for training deep neural networks with
differential-privacy guarantees that was able to achieve better privacy and utility than previous ef-
forts (Chaudhuri et al., 2011; Song et al., 2013; Bassily et al., 2014). DP-SGD bounds the sensitiv-
ity of the learning process to each individual training example by computing per-example gradients
{gi}i∈0..n−1 with respect to the loss, for the n model parameters {θi}i∈0..n−1, and clipping each
per-example gradient to a maximum fixed `2 norm C. Subsequently, to the average of these per-
example gradients, DP-SGD adds (Gaussian) noise that whose standard deviation σ is proportional
to this sensitivity. In this work, we use the canonical implementation of DP-SGD and its associated
analysis that has been made available through the TensorFlow Privacy library (Google, 2019).
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Figure 1: Test accuracy as a function of the number of filters k in the convolutional architecture of
Table 1; when training with vanilla SGD and DPSGD. Each point corresponds to a model trained
on MNIST (left) or FashionMNIST (right) with minibatches of 100 examples for 40 epochs at a
learning rate of 0.15. When training with privacy, we set the clipping norm of DP-SGD to 1.0 and
the noise multiplier to 1.1, obtaining an (ε, δ) guarantee of (1.69, 10−5). For both datasets, there is
an inflection point after which adding filters is not beneficial to private learning whereas performance
of non-private learning monotonically increases with the number of filters.

3 MODEL ARCHITECTURES BETTER SUITED TO LEARNING WITH PRIVACY

We show here that learning with differential privacy imposes additional constraints that need to be
taken into account when designing neural network architectures. They help us control the sensi-
tivity of learning to training examples before the clipping operation is performed in DP-SGD, thus
reducing the potential negative impact of clipping on the estimated gradient direction.

3.1 MODEL CAPACITY

The success of neural networks is in part explained by their ability to scale to complex tasks through
an increase in model capacity. ResNets are an illustrative recent examples (He et al., 2016). Here, we
explain how additional capacity may not be beneficial when learning with privacy. One of the major
challenges in training models with differential privacy is the curse of dimensionality (Bassily et al.,
2014). The accuracy of privately trained models typically degrades with the increase in the number
of dimensions. Unfortunately, strong lower bounds suggest that this dependence on dimensionality
is necessary (Bassily et al., 2014).

Table 1: Convolutional Architecture.
Layer Parameters

Convolution k filters of 8x8, strides 2
Max-Pooling 2x2
Convolution k filters of 4x4, strides 2
Max-Pooling 2x2

Fully connected 32 units
Softmax 10 units

Consider the convolutional architecture described
to the right. With all other architectural details be-
ing fixed, we can control the model’s capacity by
varying the number of filters k in its two convo-
lutional layers. We report the model’s accuracy
when trained with SGD and DP-SGD in Figure 1,
both on MNIST (left) and FashionMNIST (right).
The test accuracy of models trained without pri-
vacy monotonically increases with the number of
filters in their convolutional layers. Instead, we ob-
serve an inflection point at about 15 filters for which models trained with privacy achieve their
highest test accuracy. Afterwards, the model’s generalization suffers as more filters are added.

There are two competing explanations of this behavior, both compatible with the lower bound stated
in Bassily et al. (2014). First, recall that DP-SGD performs a clipping operation on each per-example
gradient before the average gradients is used to update model parameters; i.e., each gradient is
subject to the following transformation

gi ← gi ·min

1,
C√∑n−1
i=0 g

2
i

 (2)

where gi is the gradient corresponding to model parameter i. For a fixed clipping norm C (corre-
sponding to a certain, fixed privacy guarantee), the quantity C√∑n−1

i=0 g2
i

by which individual param-

eters are multiplied decreases as the number n of parameters in a model increases. That is, the more
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Figure 2: Test accuracy as a function of the privacy loss when training a pair of models with DP-
SGD. The only difference between the two models is the activation function for their hidden layer:
ReLU or tanh. All other elements of the architecture (number, type, and dimension of layers) and
the training algorithm (optimizer, learning rate, number of microbatches, clipping norm, and noise
multiplier) are identical. Results are averaged over 10 runs for each curve.

parameters we have, the more likely DP-SGD is to clip the gradient (or signal) at each parameter.
This can explain the presence of an inflection point in Figure 1, after which learning with privacy
becomes increasingly difficult as capacity is increased. Second, as the number of parameters (i.e.,
gi’s) increases, the norm of the noise vector that DP-SGD must add to the gradient average to ensure
privacy also increases. This noise norm increases as

√
#parameters, and introduces another source

of accuracy degradation with an increased number of parameters.

Our observations may seem to contradict some of the findings in Abadi et al. (2016). However, their
limited experimental setup could offer few general lessons. First, they reduced data dimensionality
using PCA to have inputs of only 60 dimensions; second, they explored only a model architectures
using a single layer perceptron with between 200 and 2, 000 units. Instead, our experiments involve
a realistic setting where the full input is passed to a convolutional neural network with a total of 3
hidden layers and over 26,000 parameters.

3.2 ACTIVATION FUNCTIONS

When training a model with differential privacy, gradients computed during SGD are clipped (recall
Equation 2) to control the sensitivity of learning to training examples. If these gradients take large
values, some of the signal will be discarded as gradients are being clipped. One way to reduce the
magnitude (or at least control it), is to prevent the model’s activations from exploding. However,
a common choice of activation function in modern deep neural networks is the ReLU and, unlike
other activations functions, ReLUs are unbounded.

Here, we thus test the hypothesis that replacing ReLUs with a bounded activation function prevents
activations from exploding and thus keeps the magnitude of gradients to a more reasonable value.
This in turn implies that the clipping operation applied by DP-SGD will discard less signal from
gradient updates—eventually resulting in higher performance at test time.

We train two models based off the architecture of Table 1: the first model uses ReLU whereas the
second model uses tanh1 as the activation for its hidden layers. All other architectural elements are
identical. Figure 2 visualizes the learning curve of the two models trained with DP-SGD. Rather
than plotting the test accuracy as a function of the number of steps, we plot it as a function of the
privacy loss ε (but the privacy loss is a monotonically increasing function of the number of steps).
On MNIST, the test accuracy of the tanh model is 98.0% compared to 96.6% for the ReLU model
with an identical privacy loss of ε = 2.93. For comparison, baseline tanh and ReLU models trained
without privacy both achieve a test accuracy of 99.0%. Similarly, on FashionMNIST, the tanh model
trained with DP-SGD achieves 85.5% test accuracy compared to 81.9% with ReLUs. The baselines
on FashionMNIST are 89.3% for tanh and 89.4% with ReLUs.

1We obtained results similar to the tanh with a sigmoid and a learning rate increased by a factor of 2 to 8.
This is explained by the fact that the tanh is a rescaled sigmoid φ: tanh(x) = 2φ(x)− 1.
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Figure 3: `2 norm of the first conv activations.

To explain why a simple change in the activa-
tion function has a large impact on the model’s
test accuracy, we conjecture that the bounded
nature of the tanh functions prevents its acti-
vations from exploding during training. We
thus monitored the `2 norm of the activations
of the first convolutional layer of our MNIST
model while it is being trained in three scenar-
ios: (a) the model is trained without privacy
using vanilla SGD and ReLU activations, (b)
the model is trained with ReLU activations and
DP-SGD, and (c) the model is trained with tanh
activations and DP-SGD. The evolution of ac-
tivation vector norms on the test data is visual-
ized in Figure 3. As conjectured, the activations
of our ReLU network explode by a factor of 3 when training with privacy when compared to without
privacy. Switching to tanh activations brings down the norms of activations back to levels compara-
ble with the activations of our non-private ReLU network.

4 INITIALIZATIONS FOR LEARNING WITH DIFFERENTIAL PRIVACY

Because each gradient step expends some privacy budget, good initialization of learning is impor-
tant; here, we consider transfer learning (Pratt et al., 1991) and weight scaling (Raghu et al., 2019).

4.1 INITIALIZING FROM A PRE-TRAINED MODEL USING TRANSFER LEARNING

Transfer learning can improve the initialization used when learning with privacy, and allow better
privacy/accuracy tradoffs to be achieved.2 For example, to reach reasonable accuracy (> 80%)
on CIFAR10, a convolutional neural network may necessarily include many convolutional layers
comprising several hundred-thousand parameters. However, since convolutional layers for similar
image-processing tasks are known to learn similar representations—at least in early layers—it may
be possible to transfer most of these parameters from a public model, either as initializations or as
frozen parameters, and subsequently train with DP-SGD. For CIFAR10, the natural choice for such
transfer is a CIFAR100 model, and this has been previously explored by Abadi et al. (2016).

Table 2: Convolutional architecture of a CIFAR10
model with 2,395,434 parameters.

Layer Parameters
Conv × 2 32 filters of 3x3, strides 1

Max-Pooling 2x2
Conv × 2 64 filters of 3x3, strides 1

Max-Pooling 2x2
Conv × 2 128 filters of 3x3, strides 1

Fully connected 1024 units
Softmax 10 units

Taking the Abadi et al. (2016) transfer learn-
ing results for CIFAR10 as a baseline, we per-
form new experiments using much of the same
setup and the model architecture of Table 2.
As it is relatively simple, this model is a good
candidate for differentially-private learning (al-
though it reaches only 84.2% accuracy on CI-
FAR10 when all its parameters are trained non-
privately, whereas state-of-the-art models can
have over 10% higher accuracy).

We performed new transfer-learning experi-
ments based on training this model on CI-
FAR100 data in three different ways: trained on a total of 5000 examples from 10 classes picked at
random (Min-rand-10 ); trained on 25,000 examples from a random half of the CIFAR100 classes,
grouped into 10 new, evenly-sized meta classes (Half-rand-50 ); trained on all examples and all
100 separate classes (Max-100 ). From each of these trained models, transfer learning was used to
initialize a model to be trained on CIFAR10. In the subsequent CIFAR10 training, all but the last
layer was frozen, which simplifies the learning task to that of logistic regression (but also reduces
utility, with the best non-private accuracy reduced to 75% on CIFAR10).

2A different, formal take on how public models and data can facilitate learning with privacy is studied in
(Bassily et al., 2018; Feldman et al., 2018).
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Type Epoch 10 Epoch 50 Epoch 100 Epoch 200 Epoch 400
Min-rand-10 44.8% ± 4.6 49.6% ± 3.9 51.0% ± 3.9 52.8% ± 3.3 53.7% ± 3.5
(81.0% ± 4.0) 50% = best 54.1% = best 55.7% = best 56.9% = best 57.6% = best
Half-rand-50 39.4% ± 2.9 51.4% ± 0.8 54.7% ± 1.5 56.8% ± 1.3 59.0% ± 0.9
(62.1% ± 1.4) 44.3% = best 52.6% = best 56.6% = best 58.3% = best 60.2% = best

Max-100 57.0% ± 1.0 66.2% ± 0.6 68.4% ± 0.6 69.7% ± 0.6 71.0% ± 0.5
(54.9% ± 0.7) 59.1% = best 67.2% = best 69.5% = best 70.6% = best 72.1% = best

Table 3: Accuracy of learning with privacy (average/best of 10 runs) compared to a non-private
baseline of 75%. A CIFAR10 model is trained from a CIFAR100-transfer-learning initialization,
with all-but-the-last layer frozen during training. The DP-SGD ε upper bounds at δ = 10−5 are
ε10 = 0.32, ε50 = 0.73, ε100 = 1.04, ε200 = 1.48, ε400 = 2.12 for the subscript-indicated epochs.
The source model CIFAR100 accuracy (first column), is uncorellated to the CIFAR10 accuracy.

Table 4: CIFAR10 privacy
and accuracy tradeoffs.

This paper Abadi et al.
(ε, acc.) (ε, acc.)
(0.3, 59%) –
(1.0, 70%) –
(2.1, 72%) (2.0, 67%)

– (4.0, 70%)
– (8.0, 73%)

Table 3 shows CIFAR10 privacy and accuracy resulting from fine-
tuning of different transfer-learning models with DP-SGD. As shown
in Table 4, the results improve on those of Abadi et al. (2016), even
though they performed non-linear fine-tuning of two neural-network
layers, and their underlying model was able to achieve higher non-
private accuracy (86%). In addition, the results show the benefits of
model architectures whose final layer can be fine-tuned using logis-
tic regression training, or other forms of convex optimization. Such
training can be made possible by including a final fully-connected
layer into a network; in additional experiments (not detailed here),
the inclusion of such a layer did not harm the training of the original, source model from which
transfer learning was done. Furthermore, the number of parameters in this layer did not seem to
matter much: privacy/accuracy tradeoffs remained the same, even when the layer was grown by
an order of magnitude, which is consistent with what is known about differentially-private convex
optimization (Jain & Thakurta, 2014).

4.2 INITIALIZATION BY WEIGHT SCALING

Figure 4: Early performance from 10 DP-
SGD training runs starting from Mean
Var model initialization (in color, show-
ing great variance) and five random model
initialization (in black, showing almost no
variance). At each epoch, the privacy ε for
all models is identical. Mean Var initializa-
tion achieves substantially higher accuracy.

Initialization by transfer learning is well suited to the
case where a model trained on public data is avail-
able, whose weights can be leveraged to improve the
training of a model using sensitive data. However,
even in cases where no such public model is avail-
able, it is possible to improve the initialization used for
differentially-private training using the weight-scaling
approach of Raghu et al. (2019). The weight-scaling
approach does not directly transfer the parameters of
an existing model; instead, just the layer-wise mean
and variance of such a model are extracted, and those
statistics are used to configure the Gaussian random
distributions from which a second model with the same
architecture is initialized. Raghu et al. name this the
Mean Var initialization, and show that it can signif-
icantly speed up convergence over a straightforward
randomly-initialized model.

In the context of learning with privacy, Mean Var
weight scaling can be used to improve model initializa-
tion by transfer from one differentially-private model
to another. First, DP-SGD can be applied to train a
model with high utility, but less than ideal privacy, by using minimal noise. From this suspect
model, the relevant per-layer mean/variance statistics can be extracted, and used to initialize a new
model of the same architecture subsequently trained with strong privacy guarantees. (This extraction
can be done in a differentially-private manner, e.g., as in Papernot et al. (2018), although the privacy
risk of summary statistics that drive random initialization should be vanishing.) The idea is that the
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Figure 5: Learning curves for DP-SGD and DP-Adam. Early on in training, DP-Adam converges
faster to an accuracy that is within 1 point of its final accuracy, however DP-SGD increases more
steadily towards the end of training, thus both achieve comparable results. Given one of the datasets,
the privacy budget ε for both models is identical at each epoch.

mean and variance pairs can be obtained quickly and using only a small amount of the privacy bud-
get, but the faster convergence of the Mean Var initialized model both reduces the overall privacy
budget needed for training, and mitigates the increased wall-clock time of DP-SGD.

To evaluate the we ran experiments with a relatively deep and large CIFAR10 convolutional model
(see Appendix A), since Raghu et al. found the benefits of Mean Var initialization most pronounce
for large models. We first trained with low noise (σ = 0.001) seeing minimal utility loss, and did
weight scaling by transferred that model’s per-layer statistics to a new model trained with much
higher noise (σ = 0.50). Figure 4 shows the results of this experiment for some early training
epochs. Each run that used standard He random initialization (He et al., 2015) gave near identical
results, achiving 37% accuracy at epoch 33. The Mean Var initialization runs showed much higher
variance, with the best models having 7% better accuracy at epoch 33. These results are intriguing,
and reminiscent of the lottery ticket hypothesis (Frankle & Carbin, 2019); they suggest a strategy of
training a collection of Mean Var models and keeping those that show early promise.

5 TUNING OPTIMIZERS FOR PRIVATE LEARNING

Architectural choices presented in Section 3 enable us to control how sensitive learning is to individ-
ual training examples. This helps us to learn with privacy—because it eliminates the negative effects
of clipping and noising large gradients. We now turn our attention to the training algorithm itself.
We find that it is important to tailor algorithm and hyperparameter choices to the specificities of
differentially private learning: a batch size or learning rate that yields good results without privacy
may not perform well when one learns with privacy.

5.1 ADAPTIVE OPTIMIZERS PROVIDE MARGINAL GAINS WHEN LEARNING WITH PRIVACY

We first explore the choice of optimizer, and in particular whether adaptive optimizers that leverage
the history of iterates help convergence when learning with differential privacy. We compare learn-
ing curves for DP-SGD to learning curves for the differentially private counterpart of the canonical
adaptive optimizer: Adam (Kingma & Ba, 2014). A qualitative analysis of Figure 5 leads to the
same conclusion for all three datasets (MNIST, FashionMNIST, and CIFAR10). While DP-Adam
may converge faster initially, its convergence rate eventually slows down sufficiently for DP-SGD
to achieve comparable (if not higher) accuracy.

To explain the ineffectiveness of adaptive optimizers, we hypothesize that the iterates they accumu-
late during training are affected negatively by noise introduced to preserve privacy. Indeed, while
there is enough signal from the training data included in any given batch sampled early in training,
later in training most training examples have a loss of zero and do not contribute to the gradients
being noised. Carrying this noise from one gradient descent step to the next to adapt learning rates
therefore inadequately slows down training. To verify this, we track the estimate of the first moment
in Adam on MNIST. The mean absolute value of its components converges when learning without
privacy (from 0.5 after the first epoch to about 0.8 for epochs 45 through 60). Instead, it increases
steadily throughout training with privacy (from 0.5 at the first epoch to above 1. after 60 epochs).

Thus, choosing an adaptive optimizer (e.g., DP-Adam) is not necessary if one is interested in achiev-
ing maximal accuracy: given a fixed privacy budget, fine-tuning the learning rate is more important
as we confirm in Section 5.2. Note that this resonates well with recent results questioning the gen-
eralization capabilities of adaptive optimizers (Wilson et al., 2017).
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5.2 CHOOSING A (LARGE) BATCH SIZE AND LEARNING RATE

Having observed that few training examples contribute signal after the initial phase of learning, it is
natural to ask whether increasing the size of minibatches could improve the noise-to-signal ratio in
DP-SGD or DP-Adam.

To ensure a fair comparison, we fix the privacy budget ε and deduce the number of epochs we
can train the model for given a desired batch size. For instance, in Table 5, we compare models
trained for 7 epochs on batches of 1, 024 examples to models trained for 40 epochs on batches of
256 examples. In both cases, the total privacy budget for training these models is ε = 2.7.

We run a hyperparameter search to fine-tune the choice of learning rate for both DP-SGD and DP-
Adam. We then compare the test accuracy achieved with small and large batch sizes. We confirm
that using DP-Adam does not improve over DP-SGD. This experiment however shows how training
for a small number of epochs at a large batch size can do comparably well to training for a large
number of epochs at a small batch size: the wall-clock time gain is important (about 4×) and the
cost in performance is moderate—half a percentage point. This confirms that earlier theoretical
analysis (Talwar et al., 2014) also holds in the non-convex setting.

Non-private Differentially-private
Optimizer Batch size Epochs Learning Rate Test Acc. Learning Rate Test Acc.

SGD 256 40 1.07 · 10−1 90.3% 3.32 · 10−1 86.1%
1024 7 3.68 · 10−1 86.3% 4.46 85.1%

Adam 256 40 1.06 · 10−3 90.5% 1.32 · 10−3 86.0%
1024 7 4.32 · 10−3 88.7% 7.08 · 10−3 85.1%

Table 5: Impact of batch size on trade-off between accuracy and privacy. The privacy budget is
fixed to ε = 2.7 for all rows. Given a batch size of 256 or 1024, the number of epochs is computed
to obtain the desired privacy budget. A hyperparameter search is then conducted to find the best
learning rate to train the model with or without differential privacy on FashionMNIST.

Hyperparameters should be tuned for DP-SGD, not SGD. To conclude this section, we stress
the importance of conducting hyperparameter searches with privacy-preserving learning in mind.
That is, hyperparameters that yield optimal results for learning without privacy do not necessarily
yield optimal results for learning with privacy. Without privacy, it is clear that one should prefer to
train longer on a smaller batch size (40 epochs with a batch size of 256 in our case). This is different
with privacy, as described previously, where both batch size perform comparably. Furthermore, note
how much the optimal learning rates vary across the non-DP and DP settings.

6 CONCLUSIONS

Rather than first train a non-private model and later attempt to make it private, we bypass non-
private training altogether and directly incorporate specificities of privacy-preserving learning in the
selection of architectures, initializations, and tuning strategies. This improves substantially upon the
state-of-the-art privacy/accuracy trade-offs on three benchmarks, as summarized below.

Dataset Technique Acc. ε δ Assumptions
MNIST SGD w/ tanh (not private) 99.0% ∞ 0 -
MNIST DP-SGD w/ ReLU 96.6% 2.93 10−5 -
MNIST DP-SGD w/ tanh (ours) 98.1% 2.93 10−5 -
Fashion SGD w/ ReLU (not private) 89.4% ∞ 0 -
Fashion DP-SGD w/ ReLU 81.9% 2.7 10−5 -
Fashion DP-SGD w/ tanh (ours) 86.1% 2.7 10−5 -

CIFAR10 Transfer + SGD (not private) 75% ∞ 0 -
CIFAR10 Transfer + DP-SGD (Abadi et al.) 67% 2 10−5 Public Data
CIFAR10 Transfer + DP-SGD (ours) 72% 2.1 10−5 Public Data
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A DEEP CONVOLUTIONAL MODEL

Layer Parameters
Conv 64 filters of 3x3, strides 1
Conv 128 filters of 3x3, strides 1

Av pooling 2x2
Conv 128 filters of 3x3, strides 1
Conv 256 filters of 3x3, strides 1

Av pooling 2x2
Conv 256 filters of 3x3, strides 1
Conv 512 filters of 3x3, strides 1

Av pooling 2x2
Conv 10 filters of 3x3, strides 1

Reduce mean 1x2
Softmax 10 units

Table 6: All convolutional Architecture for CIFAR10 model with 2,334,730 parameters.
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