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ABSTRACT

Vanishing gradients pose a challenge when training deep neural networks, result-
ing in the top layers (closer to the output) in the network learning faster when com-
pared with lower layers closer to the input. Interpreting the top layers as a clas-
sifier and the lower layers a feature extractor, one can hypothesize that unwanted
network convergence may occur when the classifier has overfit with respect to the
feature extractor. This can lead to the feature extractor being under-trained, pos-
sibly failing to learn much about the patterns in the input data. To address this
we propose a good classifier hypothesis: given a fixed classifier that partitions the
space well, the feature extractor can be further trained to fit that classifier and learn
the data patterns well. This alleviates the problem of under-training the feature
extractor and enables the network to learn patterns in the data with small partial
derivatives. We verify this hypothesis empirically and propose a novel top-down
training method. We train all layers jointly, obtaining a good classifier from the
top layers, which are then frozen. Following re-initialization, we retrain the bot-
tom layers with respect to the frozen classifier. Applying this approach to a set of
speech recognition experiments using the Wall Street Journal and noisy CHiME-4
datasets we observe substantial accuracy gains. When combined with dropout, our
method enables connectionist temporal classification (CTC) models to outperform
joint CTC-attention models, which have more capacity and flexibility.

1 INTRODUCTION

Deep neural networks (DNNs) have given impressive results in many domains, such as speech recog-
nition (Hinton et al., 2012), natural language processing (Bahdanau et al., 2014) and computer vision
(Krizhevsky et al., 2012); however, gradient-based training of DNNs remains a non-trivial task, ow-
ing to the vanishing gradient problem (Bengio et al., 1994; Hochreiter, 1998) which arises from the
deep model structure.

The vanishing gradient problem does not only make the training slow, it can also result in the bottom
layers closer to the input being under-trained, while over-training the top layers closer to the output.
We can interpret the bottom layers of the neural network as the feature extractor, and the top layers
as the classifier. During back-propagation, the gradient is decided by the current values of the
parameters and all layers are trained jointly. Thus, the feature extractor is learning to provide features
which fit the partition of the space defined by the current classifier, while the classifier is learning to
fit the features generated by the current feature extractor.

Ideally, the speed of learning for the feature extractor and the classifier should be similar. However,
since the partial derivatives of the top layers are much larger than the partial derivatives of the bottom
layers, the classifier learns to fit to the feature extractor much faster than the feature extractor learns
to fit to the classifier. Thus, the feature extractor layers are usually “under-trained” (they underfit the
classifier) while the classifier are in general “over-trained” (they overfit the feature extractor). Also,
since the feature extractor learns more slowly, then potentially the classifier may overfit the feature
extractor before the feature extractor is able to learn much about the underlying pattern of the data.

Pre-training techniques can alleviate this problem (Hinton et al., 2006; Bengio et al., 2007;
Larochelle et al., 2009; Erhan et al., 2010). In these methods, each layer is pre-trained to learn
the key patterns of the distribution of outputs of the previous layer. Thus, the feature extractors are
initialized in a region where they have already captured relevant information. Another method is
using “short-cut” or “highway” connections (He et al., 2016; Huang et al., 2017; Srivastava et al.,
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2015). In these methods, the feature extractor and classifier are updated in a more synchronized
manner. Moreover, an auxiliary loss (Szegedy et al., 2015; Lu et al., 2019) can be added to the inter-
mediate layers to bring the training signal closer to them and the layers below. Lu et al. (2019) show
that for speech recognition tasks, even with 30,000 hours of training data, the training still suffers
from the vanishing gradient problem.

In this paper, we propose to alleviate the vanishing gradient problem in a top-down manner. Instead
of pre-training a feature extractor bottom-up layer by layer, we first train a good classifier, then
freeze it, and then train the bottom layers with respect to the classifier.

To be more precise, we denote the loss function by L, the function defined by the frozen top layers
by T and the composition of these two functions by L ◦ T . Training the bottom layers is equivalent
to training a shallower network with the loss function L ◦ T . Although the partial derivatives of
the bottom layers may be small since ∂L/∂T can be small, this will only lead to slow training, not
to under-fitting the feature extractor; this is because the classifier cannot be updated to overfit the
outputs of the feature extractor or stop the training. Instead, the training terminates only when the
feature extractor has fitted the current frozen classifier. Thus, the feature extractor cannot be left in
an under-trained state. Moreover, the well-trained feature extractor has the potential of making the
model generalize better. We summarize this argument as the good classifier hypothesis.

The good classifier hypothesis. We interpret the top layers of a neural network as a classifier and
the bottom layers as a feature extractor. The vanishing gradient problem leads to the classifier being
over-trained and the feature extractor under-trained. The under-trained feature extractor tends to
capture the underlying patterns in the data less well. However, When trained with a frozen classifier,
the feature extractor can fit to the classifier and becomes well-trained. If the classifier is good enough
– that is, if it divides the space in a way such that the features that fit the partition reflect more about
the essential patterns of the data – then the well-trained feature extractor is able to capture these
patterns. As a result, the model will generalize better.

In this paper, we present a novel top-down training method based on the good classifier hypothesis,
which we investigate with a set of speech recognition experiments. In these experiments we observe
that the top-down approach leads to better generalization compared to conventional joint training.
To our knowledge, this is the first time that this hypothesis is proposed. Also, to our knowledge,
this is the first time that supervised top-down training is proposed and significant performance gains
observed. Our findings have the potential to guide the development of new training algorithms and
new transfer learning methods.

2 TRAINING FEATURE EXTRACTOR BASED ON A GOOD CLASSIFIER

In this section, we empirically justify the good classifier hypothesis. Before we give grounds for the
hypothesis, we define the notion of a “good classifier”. Here, the word “good” is a relative term. To
better illustrate what is a good classifier, we first define a cut of a neural network.

A cut of a neural network. For a n-layer neural network, a cut Ci is a partition of the lay-
ers l = (l1, . . . , li, li+1, . . . , ln) into two ordered sequences of layers b = (l1, . . . , li) and
t = (li+1, . . . , ln), where l1 denotes the bottom-most layer and ln denotes the top-most layer.

With this definition, we define a good classifier.

A good classifier for a neural network. For a n-layer neural network, we apply a cutCi to it. To the
top layers t we assign a set of parameters and denote it as ta. We assign t another set of parameters
and denote it as tb. If the features fit to ta contain more information about the data pattern than the
features fit to tb, then ta is a good classifier relative to tb.

By the good classifier hypothesis, the model trained with the frozen classifier ta should generalize
better than the model trained with the frozen classifier tb, since ta will force the feature extractor
to learn more about the underlying pattern. To verify this, we have conducted a series of end-to-
end speech recognition experiments using the Wall Street Journal (WSJ: Paul & Baker, 1992) and
CHiME-4 (Vincent et al., 2017; Barker et al., 2017) corpora. We train a network on the WSJ si284
dataset, a large vocabulary clean speech dataset. We construct a subset (25% size) of the si284
dataset by randomly sampling utterances from si284. Then we train a model on the si284 subset.
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CER results for clean (WSJ) and noisy (CHiME-4) training and test conditions
Training set CER(valid) CER(eval) Sum of |∆θ| for each BLSTM layer
si284 subset dev92 eval93 BLSTM4 BLSTM3 BLSTM2 BLSTM1
Joint training 20.3 17.5 41309 35512 32863 18798
Frozen Classifier
(Classifier trained
on si284 subset)

19.6 17.1 42466 38985 22135

Frozen Classifier
(Classifier trained
on full si284 )

15.6 12.5 51279 47988 27492

tr05 multi dt05 multi et05 real BLSTM4 BLSTM3 BLSTM2 BLSTM1
Joint training 42.0 32.3 46777 39982 39258 18602
Frozen Classifier
(Classifier trained
on tr05 multi)

41.5 31.0 40052 37980 17093

Frozen Classifier
(Classifier trained
on full si284 )

38.8 27.7 66670 61078 29197

Table 1: CER for models trained on smaller clean (WSJ si284 subset) and noisy (CHiME tr05 multi)
data. We view the softmax layer, the topmost projection layer and the topmost BLSTM layer as the
classifier. Joint training means all layers are trained jointly. The next experiments are to freeze the
classifier trained from the joint training then reinitialize and retrain the feature extractor. The final
experiments are to freeze the classifier which trained on full si284 and train the feature extractors on
si284 subset/tr05 multi. The right part of the table is the sum of the absolute values of the changes
of all parameters of each BLSTM layer from epoch 1 to the epoch which has the lowest valid loss.
∆θ denotes the change of a parameter.

We also train a model using CHiME-4 tr05 multi, a dataset containing WSJ utterances with real and
simulated noise.

We assume the top layers of the model trained on the full WSJ si284 set is a good classifier, while
the top layers of the models trained on si284 subset or on tr05 multi are poorer classifiers – since
it is easier for a network trained on a relatively large, clean dataset (such as si284) to learn the
underlying patterns in the data, compared with a network trained on the smaller (si284 subset) or
noisier (tr05 multi) dataset. Therefore, if we can show that a good classifier (trained on si284)
forces the feature extractor to learn useful patterns even from a small (si284 subset) or noisy dataset
(CHiME-4), then this is evidence to support the good classifier hypothesis.

Experimental setup. We use Kaldi (Povey et al., 2011) to extract 40-dimension filterbank features
with three pitch features, and the toolkit ESPnet (Watanabe et al., 2018) to implement the end-to-
end models. We build bidirectional long short-term memory (BLSTM) (Hochreiter & Schmidhuber,
1997) connectionist temporal classification (CTC) models (Graves et al., 2006). All models have the
same architecture. The network has 4 BLSTM layers. On top of each BLSTM layer is a projection
layer, which is a linear layer with tanh activation functions. The top-most layer is a softmax layer.
Thus, the model has 9 layers in total. Except for the softmax layer, each layer has 320 hidden units.
The outputs are 26 characters, apostrophe, period, dash, space, noise, sos/eos tokens and some other
special tokens, making 50 output labels in total. We used the adadelta (Zeiler, 2012) optimization
algorithm. We used WSJ dev93 and CHiME-4 dt05 multi isolated 1ch track as validation sets for
the models trained on WSJ and CHiME-4 respectively. The training stops if after 5 epochs there is
no improvement upon the best validation loss.

Table 1 summarizes the experiment results in terms of character error rates (CER), and indicates that
the feature extractor can be trained to fit a frozen classifier. Furthermore, it shows that the classifier
trained on the full si284 dataset is a good classifier – with the frozen classifier trained on full si284,
the model trained on the si284 subset and CHiME-4 has significiant lower CERs. Lower CERs also
indicate that the network learns more about the underlying pattern. Thus, the experiments of training
with the good classifier show that to capture underlying patterns, the weights of the feature extractor
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should have large changes. However, the vanishing gradient makes this almost impossible when all
layers are trained jointly. These experiments support the good classifier hypothesis.

When the classifier trained on the si284 subset is frozen, the feature extractor become well-trained
compared with the under-trained feature extractor in joint training. When trained with a frozen
classifier from the joint training, the weights of the feature extractor have larger changes, indicating
that it fits the classifier. For the CHiME-4 experiments, however, fixing the classifier from the joint
training only makes the top layer of the feature extractor have a larger weight change. We suggest
that the reason for this is that when all layers are trained on the noisy dataset jointly, the middle
layers overfit the bottom-most layers much faster than the bottom-most layers are able to learn input
features. Thus, at the end of training, the middle layers are also over-trained and should be viewed as
part of the over-trained classifier. Only the bottom-most layers should be viewed as the under-trained
feature extractor. One piece of evidence for this is if we compare joint training on tr05 multi and
on si284, the changes of weights for the first BLSTM layer is comparable. However, for all other
higher layers, the weights have larger changes if they are trained on tr05 multi, the noisy dataset.
Our further experiments support this argument (section 5).

In these experiments, training with the frozen good classifier terminates after more epochs compared
to joint training or the training with poorer classifiers. This is consistent with the assumption that
when training with a frozen good classifier, the main drawback of potentially small partial derivatives
is slowing down training. Additionally, when taking the classifier from the model trained on full
si284, we only take the top-most BLSTM layer and the layers above it. We do not make the classifier
deeper, since if we take and freeze more layers, the model will become very similar to the model
trained on full si284. As a result, it would be questionable whether the gains in accuracy are from
better training through the fixed good classifier or because the model is indistinguishable from the
model trained on full si284. Finally, note that these experiments are conducted to support the good
classifier hypothesis. The intention is not to perform transfer learning, although it is possible to
develop a transfer learning method based on this approach.

3 TOP-DOWN TRAINING METHOD

The good classifier hypothesis states that if we have a good classifier, we can use it to guide the
training of the lower feature extraction layers and the model will generalize better. We argue that
when joint training converges, the top layers of a network make a potential good classifier – after
convergence, the top layers will (further) overfit the bottom layers; before convergence, it is possible
that the network does not learn much essential information and the top layers may not be well-
trained yet. Hence we freeze the top layers at the time of convergence, then reinitialize and retrain
the bottom layers. This top-down training strategy is presented as Algorithm 1.

Algorithm 1 The top-down training strategy

1: For a n-layer neural network, train all layers jointly to obtain a trained network An

2: i← n, j ← i− 1
3: while i > 1 and j > 0 do
4: j ← i− 1
5: while j > 0 do
6: Apply cut Cj to Ai to get classifier t and feature extractor b
7: Freeze t; reinitialize and retrain b to obtain Aj

8: if Aj performs better on the valid set than Ai then
9: i← j

10: break
11: else
12: j ← j − 1
13: end if
14: end while
15: end while
16: Output: A model Ak with the best validation performance
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Table 2: CER for training on WSJ si284

Model(WSJ si284) dev 93 eval 92
Baseline 1 12.4 9.7
+ top-down training 10.8 8.2
+ fix bottom layer 13.1 10.5
Baseline 2 12.6 10.4
+ top-down training 10.6 8.5
Baseline 3 12.6 10.2
+ top-down training 11.5 8.9
Dropout 0.2 11.0 8.7
Dropout 0.5 9.6 7.6
Dropout 0.7 11.1 8.9
Dropout 0.5 9.6 7.6
+ top-down training 8.2 6.3
Previous work (Kim et al., 2017)
CTC 11.5 9.0
Attention (location) 12.0 8.2
CTC-Attention 11.3 7.4

In this training strategy, if cutCj fails to improve validation performance, then retraining takes place
using cut Cj−1. Since the top layers learn faster, it is possible the top layers with cut Cj already
overfit. However, the middle layers learn slower and they are less prone to overfitting. Thus, if we
add more middle layers to the classifier, the classifier may overfit less. Furthermore, although with
cut Cj−1, the feature extractor has less capacity, the classifier is more powerful. Thus, it reduces the
burden on the feature extractor to learn complex features, making training easier. We observe this
situation in the noisy speech recognition tasks.

If retraining with cut Cj gives better validation performance, the top layers defined by Cj−1 may be
a good classifier compared with the top layers defined by the same cut Cj−1 before the retraining
with the cut Cj . Thus, we continue this training method from top to bottom.

The complexity of this method is O(n), where n is the number of the layers of the network. In our
experiment, we execute this algorithm in a greedy manner. The inner while loop is only performed
when i = n. After that, the algorithm goes down layer by layer, unless it reaches the bottom or the
validation performance stops increasing. If retraining with the fixed classifier defined by cutCj does
give an improvement on the validation set, instead of testing cut Cj−1, another possible solution is
to choose the top layers at some epoch before convergence as the potential good classifier. However,
this makes the computation more expensive and we have not conducted experiments on it.

4 TOP-DOWN TRAINING ON CLEAN DATASET

We test our top-down training method on the full WSJ si284 dataset. To reduce random factors, we
train three baselines with different initialization. We apply our training method to all three baseline
models. The architecture of the models is same as in section 2. Each model has 9 layers in total.
To make the computation faster, we view each BLSTM layer and its following projection layer as
“one layer”. In this view, the network has 5 layers – one softmax layer and four BLSTM with its
projection layers. For baseline 1, we also tested freezing the bottom-most BLSTM layer as well as
its projection layer, then reinitialize and retrain all the top layers.

Table 2 demonstrates that top-down training reduces significantly the CER for each of the baseline
models, further supporting the good classifier hypothesis. It indicates that in the joint training, when
the classifier already has learned a reasonable partition, the feature extractor is usually under-trained.
The additional experiment on baseline 1, indicates that if we freeze the bottom-most layer and retrain
the top layers, the accuracy of the model drops, which is also consistent with our hypothesis – since
the bottom layers are under-trained, fixing them and retraining the top layers is not helpful.

Figure 1 shows further training of the baseline does not bring any improvement. Rather, the val-
idation loss is increasing during the long training, indicating that instead of making the feature
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Figure 1: Validation loss Figure 2: Validation character error rate

extractor well-trained and learn more about the data pattern, it makes the classifier further overfit
the feature extractor. Furthermore, compared to the baseline, some rounds of retraining take more
epochs to reach the lowest validation loss, confirming that the small partial derivatives of the bottom
layers may make the training slow but cannot prevent the feature extractor from being well-trained.
Figure 2 shows that in each round of the top-down training, we obtain better feature extractors.

Note that although our network has an identical architecture to that used by Kim et al. (2017), our
baseline models have higher CER. We assume that this may be caused by other inconsistent training
settings, such as the input features and the output labels. To ensure we have valid baselines and our
training method can be combined with other training strategies, such as dropout (Srivastava et al.,
2014), we use dropout during training and then combined it with our method. We also built a deep
convolutional neural network (CNN)-BLSTM CTC model to get a better baseline. The architecture
and results for CNN-BLSTM are in the appendix.

Using the same initial weights as the initial weights of baseline 3 (where our method brings the least
improvement, although the improvement is also significant), we train three models with different
dropout probabilities, with dropout probability 0.5 yielding the best model, followed by top-down
training (still using dropout probability 0.5).

The results in Table 2 show that when combined with dropout, top-down training brings large gains
in accuracy over both the baseline and the model trained with dropout (38% and 17% relative gain,
respectively). The combination of these two training methods performs impressively, with the CTC
model outperforming the joint CTC-attention model significantly (15% relative gain).

The top-down training can be viewed as shrinking the size of network “vertically”, as the fixed clas-
sifier can be viewed as part of the loss function. Dropout can be regarded as an approach to reduces
the size of the network horizontally, by dropping nodes in each layer according to a probability.
Combining these methods results in a network which at training time is effectively shallower and
narrower, while retaining a deep and wide network at run-time.

5 TOP DOWN TRAINING ON NOISY DATA

To test if our training method is valid using noisy data, we run experiments using the CHiME-4 data
set, using the same architecture as in section 2. We again investigated combining top-down training
with dropout. All the models had the same initial weights. Results are summarized in table 3.

Compared with the clean WSJ experiment, top-down training brings smaller relative improvement
(5% vs. 13%). For this experiment, in the first round of retraining, we needed to view the softmax
layer and the top two BLSTM layers with their projection layers as the fixed classifier to get perfor-
mance gain on the validation set. By contrast, for WSJ, in the first round of retraining, fixing the
softmax layer alone was sufficient. This is indicative of the difficulty of learning underlying patterns
from the noisy data. Thus, overfitting of the top layers contributes more to the convergence of the
model. To have a good classifier rather than having a classifier that overfits, we need to add more
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Table 3: Character error rate (CER) on CHiME-4

tr05 + si284 dt 05 (CER) et 05 (CER)
baseline 25.2 36.0
+top-down training 23.4 34.2
dropout 0.2 22.8 34.7
dropout 0.5 19.9 30.8
dropout 0.7 20.3 30.3
dropout 0.5 + top-down training 18.5 28.7
dropout 0.5 + fix the bottom layer 20.6 31.4

middle layers to the classifier, which are less prone to overfitting. Furthermore, with more layers, the
classifier has increased capacity, freeing the feature extractor from needing to learn more complex
features from the noisy data.

Dropout reduces CER significantly. It indicates that models trained with dropout learn more about
the data patterns and the top layers of these models make good classifiers compared to the poorer
classifiers of the baseline model trained with joint training. Thus, in the first round of retraining of
the model trained with dropout (probability 0.5), fixing the softmax layer and the topmost BLSTM
layer with its projection layer yields validation accuracy gains. Finally, dropout (probability 0.5)
combined with top-down training resulting in a relative gain of 7%.

Even for the model trained with dropout, if we fix the bottom-most BLSTM layer with its projection
layer and retrain the top layers, the accuracy of the model drops. This observation also supports the
argument that due to the vanishing gradient, the bottom layer is under-trained and it does not capture
much underlying patterns. So, retraining with fixed bottom layers does not help.

6 DISCUSSION AND CONCLUSION

In the clean WSJ experiments, when combined with dropout, top-down training enables a CTC
model to significantly outperform a CTC-attention model with the same encoder architecture. The
CTC results could be improved through techniques such as a more complex network architecture,
curriculum learning, data perturbation, and language model fusion. We do not use these approaches
in order to ensure precise comparisons on the networks trained with top-down training and with
conventional joint training. The main goal of this work is to show that the top-down training method
alleviates the problem of under-trained feature extractors, which is caused by vanishing gradients.
Testing our training method on more elaborate models and on different datasets and domains is left
as a further work.

In this work, we show that top-down training can be combined with dropout, resulting in substantial
accuracy gains. Moreover, top-down training does not conflict with bottom-up pretraining or the
residual/highway connections, leading to some interesting future directions.

Currently, we propose fixing the classifier and retraining the feature extractor. An alternative ap-
proach is to halt the training of the classifier instead of fixing it. Since our training method can en-
able the feature extractor to be better trained, adjusting the classifier according to the better-trained
feature extractor may bring further gains. Thus, after top-down training, we could freeze the feature
extractor and continue to train or re-train the classifier.

In top-down training, we view the fixed classifier as part of the loss function. The supervision signal
is still the true label. Alternatively, we could compute the pseudo-inverses of the weight matrices of
the classifier and use these inverses as well as the true label to compute the expected input for the
classifier with the current true label, using the expected input as the label for the feature extractor.
We could interpret this process as a form of label smoothing.

Obtaining a good classifier is essential to top-down training. To stabilize the approach, it is possible
to train several networks with different initializations, resulting in a set of trained classifiers with
different weights. In this case, training the feature extractors can be interpreted as a form of multi-
task learning with each trained classifier in the set.
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Although many popular optimization algorithms dynamically adjust the learning rate (Qian, 1999;
Duchi et al., 2011; Zeiler, 2012; Kingma & Ba, 2014; Dozat, 2016), they do not explicitly consider
the information of the position of the layers. Our results indicate that this information is crucial in
adjusting the learning rate (the frozen classifier has a learning rate 0).

Also, by using the classifier trained on WSJ to guide the training of feature extractors on CHiME-4,
we observe significant performance gains. Therefore, it is possible that by fitting a classifier trained
on a large clean dataset, the feature extractor is forced to learn denoising. This observation suggests
a route to design new transfer learning methods from clean datasets to noisy datasets, which is
important for robust speech recognition.

In summary, we observe that the vanishing gradient problem causes the classifier to be over-trained
and the feature extractor to be under-trained. Top-down training alleviates this problem and results
in better model generalization.

7 RELATED WORK

To better train DNNs, layer-wise pre-training has been widely studied (Hinton et al., 2006; Bengio
et al., 2007; Larochelle et al., 2009; Erhan et al., 2010). In this method, each layer learns to capture
the most relevant variations of the distribution of the input or the outputs of the previous layer.
Finally, fine-tuning is applied for the classification tasks. In terms of the feature extractor-classifier,
pre-training restricts the initialization of the feature extractors to a good region, while top-down
training creates good classifiers and adjusts feature extractors based on good classifiers. These two
methods can be easily combined and may lead to further improvements. Supervised pre-training
is also studied, but in general this method does not outperform unsupervised pre-training (Bengio
et al., 2007; Larochelle et al., 2009).

Recently, bottom-up layer-wise training (Hettinger et al., 2017; Belilovsky et al., 2018; Zhao et al.,
2018) has been investigated in which the network is trained in a bottom-up way and no fine-tuning
is applied. The training method of Hettinger et al. (2017) yields worse results compared to con-
ventional training on their DNN experiments on the MNIST dataset (LeCun, 1998). Belilovsky
et al. (2018) report that by performing bottom-up layer-wise training using auxiliary networks, they
build networks that outperform AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan & Zisser-
man, 2014) on ImageNet (Deng et al., 2009). However, if the networks with auxiliary networks
are trained conventionally, further gains are obtained. Zhao et al. (2018) train all layers jointly and
retrain the topmost layer multiple times to obtain a large ensemble of networks. It is unclear how
efficient this method is for each single training.

Architectures with skip connections, such as ResNets (He et al., 2016), dense nets (Huang et al.,
2017) and highway networks (Srivastava et al., 2015) also alleviate the vanishing gradient problem.
Through the skip connections, the error signal from the higher layers can be directly back-propagated
to the lower layers, without passing through the non-linear intermediate layers. Alternatively the
supervision signal can be routed directly to the lower layers. Szegedy et al. (2015) propose adding
an auxiliary classifier to the intermediate layers. Lu et al. (2019) propose to add the KL divergence
between the output of the top layer and the output of a middle layer as an auxiliary loss. They obtain
word error rate reductions after training on 30,000 hours of speech data, which indicates that even
with large amounts of training data, the vanishing gradient problem is still significant. Top-down
training alleviates the vanishing gradient problem from a different angle and can be integrated with
these methods.
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A TOP-DOWN TRAINING FOR CNN-BLSTM MODELS

We test our method in training a deep CNN-BLSTM CTC model. The purpose of this experiment
is to verify our training method works for a hybrid CNN-BLSTM architecture. The model has 6
BLSTM layers. Each BLSTM layer is followed by a linear layer with tanh activation. Each BLSTM
layer, as well as each linear layer, has 320 hidden units. The bottom-most BLSTM layer is on top of
CNN layers. The architecture of the CNNs is in Table 4.

Table 4: The CNN architecture for the CNN-BLSTM model

in channel out channel kernel size stride
conv 1 64 3× 3 1
conv 64 64 3× 3 1
maxpool 2× 2 2
conv 64 128 3× 3 1
conv 128 128 3× 3 1
maxpool 2× 2 2

Table 5: Character error rate (CER) for WSJ of the CNN-BLSTM model

Model(WSJ si284) dev 93 eval 92
CNN-BLSTM 10.9 8.2
+ top-down training 9.7 7.3
Dropout 0.2 9.9 7.5
Dropout 0.5 10.3 7.6
Dropout 0.7 11.6 9.3
Dropout 0.2 9.9 7.5
+ top-down training 8.4 6.3
BLSTM 12.6 10.2
+ dropout 0.5 + top-down training 8.2 6.3
Previous work (Kim et al., 2017)
CTC 11.5 9.0
Attention (location) 12.0 8.2
CTC-Attention 11.3 7.4

Table 5 demonstrates our training method is still successful in training a much deeper hybrid CNN-
BLSTM model. Furthermore, in this set of experiments, applying our training method solely outper-
forms applying dropout solely. Moreover, with dropout (probability 0.2) combined with top-down
training, further gain is obtained. In these experiments, the top-down training method for the CNN-
BLSTM stops at the second top-most BLSTM layer. Further accuracy gains may obtained if we
execute the inner loop in Algorithm 1. We also tested from the joint trained CNN-BLSTM model
(with dropout probability 0.2), fixing all BLSTM layers together and retraining all the CNN lay-
ers in the same time. No further layer-wise cuts or retraining were applied to the CNN layers yet.
With a 9.7% valid CER and a 7.4% eval CER, the model with retrained CNN layers outperforms
the baseline, but has inferior results compared to the model trained with top-down training from the
top-most softmax layer.

One interesting observation is although the baseline CNN-BLSTM model has lower CERs compared
to the baseline BLSTM model, applying the combination of dropout and top-down training to both
models yields similar CERs. CNNs are effective in extracting features, making the CNN-BLSTM
model outperforms the BLSTM model. Our top-down training method enables the network learn
the patterns of the data well and extract appropriate features. Therefore, after applying the top-
down training method (with dropout), the pure BLSTM model has a similar performance to the
CNN-BLSTM model.
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B PRELIMINARY STUDIES ON LANGUAGE MODEL

To verify the effectiveness of our top-down training method is not limited to the domain of speech
recognition, we tested our method for a language modelling task. We train a two-layer LSTM lan-
guage model using the transcriptions of WSJ si284 dataset. Each LSTM layer has 256 hidden units.
The transcriptions contain 644,177 words. The vocabulary size is 20,000. The out of vocabulary rate
is 2.45%. The optimisation algorithm is stochastic gradient descent with a learning rate 1.0. We also
tested to use Adam (Kingma & Ba, 2014) and adadelta (Zeiler, 2012) as the optimisation algorithm,
but they give inferior results. Dropout (probability 0.5) is applied. We use the transcriptions of WSJ
dev 93 and WSJ eval 92 as the validation/test set. They contain 8,334 and 5,700 words respectively.

Table 6: Perplexity of the 2-layer LSTM model.

dev 93 (perplexity) eval 92 (perplexity)
Joint Training 84.0 81.2
Top-down Training 82.6 79.0

From Table 6, our preliminary study shows the proposed training method is helpful in a natural lan-
guage processing task. Further studies on more advanced models should be conducted on benchmark
language model datasets.
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