Under review as a conference paper at ICLR 2020

AN EXPONENTIAL LEARNING RATE SCHEDULE FOR
BATCH NORMALIZED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Intriguing empirical evidence exists that deep learning can work well with exotic
schedules for varying the learning rate. This paper suggests that the phenomenon
may be due to Batch Normalization or BN(Ioffe & Szegedy, 2015), which is ubiq-
uitous and provides benefits in optimization and generalization across all standard
architectures. The following new results are shown about BN with weight decay
and momentum (in other words, the typical use case which was not considered in
earlier theoretical analyses of stand-alone BN (Ioffe & Szegedy, 2015; Santurkar
et al., 2018; Arora et al., 2018)

e Training can be done using SGD with momentum and an exponentially in-
creasing learning rate schedule, i.e., learning rate increases by some (1 + «)
factor in every epoch for some o > 0. (Precise statement in the paper.)
To the best of our knowledge this is the first time such a rate schedule has
been successfully used, let alone for highly successful architectures. As ex-
pected, such training rapidly blows up network weights, but the net stays
well-behaved due to normalization.

e Mathematical explanation of the success of the above rate schedule: a rigor-
ous proof that it is equivalent to the standard setting of BN + SGD + Standard
Rate Tuning + Weight Decay + Momentum. This equivalence holds for other
normalization layers as well, Group Normalization(Wu & He, 2018), Layer
Normalization(Ba et al., 2016), Instance Norm(Ulyanov et al., 2016), etc.

e A worked-out toy example illustrating the above linkage of hyper-
parameters. Using either weight decay or BN alone reaches global minimum,
but convergence fails when both are used.

1 INTRODUCTION

Batch Normalization (BN) offers significant benefits in optimization and generalization across archi-
tectures, and has become ubiquitous. Usually best performance is attained by adding weight decay
and momentum in addition to BN.

Usually weight decay is thought to improve generalization by controlling the norm of the parameters.
However, it is fallacious to try to separately think of optimization and generalization because we are
dealing with a nonconvex objective with multiple optima. Even slight changes to the training surely
lead to a different trajectory in the loss landscape, potentially ending up at a different solution! One
needs trajectory analysis to have a hope of reasoning about the effects of such changes.

In the presence of BN and other normalization schemes, including GroupNorm, LayerNorm, and
InstanceNorm, the optimization objective is scale invariant to the parameters, which means rescaling
parameters would not change the prediction'. The current paper introduces new modes of analysis
for such settings. This rigorous analysis yields the surprising conclusion that the original learning
rate (LR) schedule and weight decay can be folded into a new exponential schedule for learning rate:
in each iteration multiplying it by (1 + «) for some @ > 0 that depends upon the momentum and
weight decay rate.

'Often the parameters that compute the output do not have BN and are thus not scale-invariant. In our
experiments we found that fixing the output layer randomly doesn’t harm the performance of the network. So
the trainable parameters satisfy scale-invariance

Under review as a conference paper at ICLR 2020

Theorem 1.1 (Main, Informal). SGD on a scale-invariant objective with initial learning rate 7,
weight decay factor)\, and momentum -y is equivalent to SGD where at iteration t, the learning rate
fj; in the new exponential learning rate schedule is defined as 7y = o~ 2'~1n), where o is a non-zero
root of equation

22— (14~ =)z +~y=0.

Specifically, when momentum ~y = 0, the above schedule can be simplified as 7j; = (1 — \n) =%~
and vy = 0.

The above theorem requires that the product of learning rate and weight decay factor, An, is small
compared to 1 — v, which is almost always satisfied in practice. The rigorous and most general ver-
sion of above theorem is Theorem 2.5, which deals with adaptive learning rate schedule, momentum
and weight decay.

Such an exponential increase in learning rate seems absurd at first sight and to the best of our
knowledge, no deep learning success has been reported using such an idea before. It does highlight
the above-mentioned viewpoint that in deep learning, optimization and regularization are not easily
separated. Of course, the exponent trumps the effect of initial Ir very fast, which serves as another
explanation of the standard wisdom that initial Ir is unimportant when training with BN.

Note that it is customary in BN to switch to a lower learning rate upon reaching a plateau in the
validation loss. According to the analysis in the above theorem, this corresponds to an exponential
growth with a smaller exponent, except for a transient effect when a correction term is needed for
the two processes to be equivalent (see discussion around Theorem 2.4).

Thus the final training algorithm is roughly as follows: Start from a convenient learning rate like
0.1, and grow it at an exponential rate with a suitable exponent. When validation loss plateaus,
switch to an exponential growth of Ir with a lower exponent. Repeat the procedure until the training
loss saturates.

In Section 3, we demonstrate on a toy example how weight decay and normalization are inseparably
involved in the optimization process. With either weight decay or normalization alone, SGD is
guaranteed to achieve zero training error. But with both turned on, SGD fails to converge to global
minimum.

In Section 4 of experiments, we verify our theoretical findings on CNNs and ResNets. We also con-
struct better Exponential learning rate schedules by incorporating the Cosine learning rate schedule,
which opens the possibility of even more general theory of rate schedule tuning towards better per-
formance.

1.1 RELATED WORK

There have been other theoretical analyses of training models with scale-invariance. (Cho & Lee,
2017) proposed to run Riemmanian gradient descent on Grassmann manifold G(1,n) since the
weight matrix is scaling invariant to the loss function. (Hoffer et al., 2018) observed that the effective
stepsize is proportional to H"Z# (Arora et al., 2019) show the gradient is always perpendicular to
the current parameter vector which has the effect that norm of each scale invariant parameter group
increases monotonically, which has an auto-tuning effect. (Wu et al., 2018) proposes a new adaptive
learning rate schedule motivated by scale-invariance property of Weight Normalization.

Previous work for understanding Batch Normalization. (Santurkar et al., 2018) suggested that
the success of BNhas does not derive from reduction in Internal COvariate Shift, but by making
landscape smoother. (Kohler et al., 2018) shows 2-layer linear nets with BN could achieve expoen-
ntial convergence rate, but their analysis is for a variant of GD with an inner optimization loop rather
than GD itself. (Bjorck et al., 2018) observe that the higher learning rates enabled by BN empirically
improves generalization. (Arora et al., 2019) prove that with certain mild assumption, (S)GD with
BN finds approximate first order stationary point with any fixed learning rate. None of the above
analyses incorporated weight decay, but (Zhang et al., 2019) argued qualitatively that weight decay
makes parameters have smaller norms, and thus larger effective learning rate. None of the above
analyses deals with momentum.

Under review as a conference paper at ICLR 2020

1.2 PRELIMINARIES AND NOTATIONS

For batch B = {z;}B |, network parameter 6, we use fq to denote the network and use L;(fg) =
L(fg, B:) to denote the loss function at iteration t. When there’s no ambiguity, we also use L;(6)
for convenience.

We say a loss function L(0) is scale invariant to its parameter 6 is for any ¢ € RT, L(0) =
L(cB). In practice, the source of scale invariance is usually different types of normalization layers,
including Batch Normalization(Ioffe & Szegedy, 2015), Group Normalization(Wu & He, 2018),
Layer Normalization(Ba et al., 2016), Instance Norm(Ulyanov et al., 2016), etc.

Implementations of SGD with Momentum/Nesterov comes with subtle variations in literature. We
adopt the variant from (Sutskever et al., 2013), also the default in PyTorch(Paszke et al., 2017). L2
regularization (a.k.a. Weight Decay) is another common trick used in deep learning. Combining
them together, we get the one of the mostly used optimization algorithms below.

Definition 1.2. [SGD with Momentum and Weight Decay][cite] At iteration ¢, with randomly sam-
pled batch B;, update the parameters 8; and momentum v; as following:

0; =0;_1 — vy (D

A
vy =yvi_1 + Vg (Lt(9t1) + t2 ! |0t1||2> ; 2)

where 7); is the learning rate at epoch ¢, +y is the momentum coefficient, and A is the factor of weight
decay. Usually, v, is initialized to be 0.

For ease of analysis, we will use the following equivalent of Definition 1.2.

6, —0;_ 0,1 —0,_ Ai—
t t—1 :’y t—1 t—2 —Vg ((L(0t1)+ t 1||0t1||§> ; (3)
M1 Ng—2 2
where 1_1 and @_; must be chosen in a way such that vy = % is satisfied, e.g. 6_1 = 6y and

1—1 could be arbitrary.

2 DERIVING EXPONENTIAL LEARNING RATE SCHEDULE

As warmup in Section 2.1 we show how to interpret Fixed LR + Fixed WD + Fixed Momentum as
an equivalent Exponential LR + Fixed Momentum. However, usually in deep learning fixed LR is
insufficient to reach full training accuracy and instead one needs a few phases where LR is reduced
by some factor between phases. Section 2.2 shows how to interpret such a multiphase LR schedule
+ WD as a certain multiphase exponential LR schedule.

In principle all results can be derived from the Main Theorem 2.5 but that is harder to understand.
Hence the simpler Theorems 2.1 and Theorem 2.4 are given separately. There are also other possible
variants where momentum can also be changed (as discussed later in experiments section) but for
simplicity momentum is left unchanged.

2.1 REPLACING WD BY EXPONENTIAL LEARNING RATE: CASE OF CONSTANT LR

In this subsection, we use notation of Section 1.2 and assume 7 (LR), v (Momentum) and A\ (WD)
are fixed. The following lemma shows how to replace WD with an exponential LR schedule.

Theorem 2.1. The following two sequences of parameters ,{0,}5° , and {6,}52,, define the same
sequence of network functions, i.e. fg, = fgt, vVt €N, given g = 0y, 0_1 = 0_;q.

1. 6, — 0,1y =7(0;—1 — 6;—2) — nVe(L(6i—1) + 56:—1I3)

2. gt — gt—l = ’y(gt_l — gt_g) — a_Qt_an.gL(gt_l)

Under review as a conference paper at ICLR 2020

95.0
—— Train Acc 10%7{ — |lw_t]|

92.51 —— Test Acc 1022, [|w_t]|~2
90.01 — LR

’ 1017_
87.51 1012_
85.0 1071
82.51 1021
80.0— T T : . : . r r T : - . .

0 25 50 75 100 125 150 0 25 50 75 100 125 150

Figure 1: Taking PreResNet32 with published hyperparameters and replacing WD during first phase
(Fixed LR) by exponential LR according to Theorem 2.1 to the schedule 77; = 0.1 x 1.481%, momen-

tum 0.9. Plot on right shows weight norm w of the first convolutional layer in the second residual

2
block grows exponentially, satisfying % = constant. Reason being that according to the proof it

is essentially the norm square of the weights when trained with Fixed LR + WD + Momentum, and
published hyperparameters kept this norm roughly constant during training.

where o is a positive root of equation

2> — (14+v =Mz +7v=0, 4)

which is always smaller than 1. When \ = 0, then a = vy is the unique non-zero solution.

Remark 2.2. We implicitly assume A and y are small enough such that o, are always positive, which
is always true in practice, and so is P;. (In case of constant LR, we need the quadratic equation to
have at least one positive root.) The reason behind this requirement is that our definition of “scale
invariance” only holds for all positive scalar c, since in neural networks, multiplying activations by
-1 before a normalization layer usually yields completely different outputs. Using very high rate of
weight decay can flip the sign of the weight.

2.2 REPLACING WD BY EXPONENTIAL LR: CASE OF MULTIPLE LR PHASES

Usual practice in deep learning shows that reaching full training accuracy requires reducing the
learning rate a few times.

Definition 2.3. Step Decay is the (standard) learning rate schedule, where training has K phases,
where phase [starts at iteration 77, and all iterations in phase I use a fixed learning rate of 7;.

Translating WD into the learning rate here leads to the following result. We give an informal version
here, and the exact version is Theorem 2.7 later in Section 2.2. The version below is correct up
to a correction term in the learning rate schedule. The correction is nontrivial only in the first
few iterations of the phase. It is also nontrivial at the end of training when learning rate in the
original schedule falls a lot, like 0.001. These effects are also explored in the experiments, where
we empirically find on CIFAR10 that ignoring the correction term does not change performance
much.

Theorem 2.4 (Tapered-Exponential LR Schedule). (Informal) If WD is turned off, the following
sequence of learning rates {1} is almost equivalent throughout phase I, (y = 11)

—2
- (HV,\,UJF\/W) if t # Ty for some I

Mt
-2

~ — A/ — 2_ .

X - x <1+7 Azt (;JW Anr)” 4y ift =Tt for some I

nr—1

&)

ﬁt+1 =

2.3 PROOF SKETCH

In this subsection, we will first give the most general statement of the equivalence .

Under review as a conference paper at ICLR 2020

Y
951 Sl T-EXP

o 041 o s T Step Decay

|

90+ z .

g |

g 0.2' i

@ [

20.0 : "
8074 100 200 300 °© 0 100 200 300

Figure 2: PreResNet32 trained with standard Step Decay and its corresponding Tapered-Exponential
LR schedule. As predicted by Theorem 2.4, they have similar trajectories and performances.

Theorem 2.5 (Main Theorem). The following two sequences of parameters ,{0:}32, and {gt}fio,
define the same sequence of network functions, i.e. fo, = f(;t, Vt € N, given the initial conditions,

50 = Pogo, 5_1 =P_16_,.

MNt—1 Nt—2

1 80 o 010 gy ((L(Ot_l) + A ||0t_1||§>,fort =1,2,..

2. b _ OO Gur@,) fort=1,2,...,

MNt—1 Nt—2

t
wherey = PoPeyiny, P = [] a;l, Vt > —1 and oy recursively defined as

i=—1
Nt—1
L)

= N1 -1+ 1+ (1 —ah), vt > 1. (6)

needs to be always positive. Here o, a—1 are free parameters. Different choice of o, a—1 would
lead to different trajectory for {0}, but the equality that 0; = P,0, is always satisfied. If the initial

o . ; 60—6_
condition is given via vy, then it’s also free to choose A_1,0_1, as long as =5

- = vp.

Now we are ready to give the exact version of Theorem 2.4.

Definition 2.6 (Tapered-Exponential LR Schedule, Full version). Given a Step Decay LR schedule
with {77} {n;}E |, the corresponding Tapered-Exponential schedule is the following (ap =
a_1 = 1)2

. {m_M F14y(1 =) VT <t < Ty —1;
t p—

—nrA+ 14 Jly(1 - o,), vt =Tr;

— 17t —1.
Py =1l 0

)

Nt = Py Pry1my.

Theorem 2.7 (Rigorous Theorem 2.4). The schedule of Theorem 2.4 is the same as that of Defini-
tion 2.6 throughout phase I, (1g = n1), in the sense that

3 v t—T7 3 29 t—T7
— | —= = - | = VT 1<t<T — 1.
<2<<z%>2> 2() e

Nt—1 Ne—1

Mt e

where 21 is the larger root of x> — (1+~y— 1)x+v = 0. In Appendix A, we show that z; > 1— %

When A\n is small compared to 1 — ~, which is usually the case in practice, one could approximate
1
zy by 1.

Before sketching the proof, we restate a simple but key lemma from (Arora et al., 2019).

Under review as a conference paper at ICLR 2020

Lemma 2.8 (Scale Invariance). If for any ¢ € Rt, L(0) = L(c8), then
(1). <V9L, 0> =0,
(2). VoLl|y_g =cVoLly_ o, foranyc>0

Proof Sketch of Theorem 2.5. This core of this proof relies on the property of scale invariance prop-
erty of normalization layers, which allows us to have access to the gradients of ;_; from its scaled

version, 0;_1.

The proof is based on induction — assuming 5,5,1 = P6,_q, gt,g = P, _50; 5, and using
Lemma 2.8 we could replace Vg(L(60;—1) by %, and thus have all three basis for 6, in

hand. The goal is now reduced to pick a suitable 77; such that the coefficients in update rule 2 are the
same of those in Update rule 1, under global rescaling. This rescaling will be called P;. In the full
proof we show we can always find such 7, given proper initial condition. O

3 EXAMPLE ILLUSTRATING INTERPLAY OF WD AND BN

The paper so far has shown that effects of different hyperparameters in training are not easily sep-
arated, since their combined effect on the trajectory is complicated. We give a simple example to
illustrate this, where convergence is guaranteed if we use either BatchNorm or weight decay in iso-
lation, but convergence fails if both are used. (Momentum is turned off for clarity of presentation,
but the analysis below could be easily extended to the case with momentum. See Appendix A).

Setting: Suppose we are fine-tuning the last linear layer of the network, where the input of the
last layer is assumed to follow a standard Gaussian distribution N (0, I,;,), where m is the in-
put dimension of last layer. We also assume this is a binary classification task with logistic loss,
l(u,y) = In(1+exp(—uy)), where label y € {—1,1} and u € R is the output of the neural net. For
simplicity we assume the the input of the last layer are already separable, and w.l.0.g. we assume
the label is equal to the sign of the first coordinate of © € R™, namely sign (x1) . Thus the training
loss and training error are simply

[a:T'wy < O] = arccos W

L(w) = E [In(1 +exp(~zTwy))] ol

Pr
x~N(0,1,),y=sign(z1) x~N(0,I,),y=sign(z1)

Case 1: WD alone: Since both the above function and L2 regularization are convex w,vanilla
SGD with suitably small learning rate could get arbitrarily close to the global minimum for this
regularized objective, which has 100% training accuracy.

Case 2: BN alone: Add a BN layer after the linear layer(here we use global batch statistics for
simplicity), and fix scalar and bias term to 1 and 0. The objective becomes

w
L = E In(1 —x —
BN(w) @~ N(0,1,).y=sign(z1) H(+exp(T Hw”y))

The following lower bound holds for the norm of the stochastic gradient, (see Appendix A) where
cw(x) € R is arandom variable with constant distribution (independent of w).

Cu ()

[[w]]

|IVwLpn(w,z)|| > Vw e R™,

C2
By Pythagorean Theorem, [[wy+1/[> = [wel|* + 7% VwLpn (w,)| > [we]* + 0 54 Asa

result, for any fixed learning rate, ||[wqy1||* > |Jw|* + 2n%c2, grows linearly with high probability.
Following the analysis of (Arora et al., 2019), this is like reducing the effective learning rate, and
when ||w;|| is large enough, the effective learning rate is small enough, and thus SGD can find the
local minimum, which is the unique global minimum.

Under review as a conference paper at ICLR 2020

Case 3: Both BN and WD: Suppose weight decay factor is A, learning rate is), the width of the last
layer is m > 2, Now the SGD updates have the form

w1 =wp —nV (1n(1 + exp(—m:‘l%”yt)) + %Hwt\P)

1
HWt Tt

- Yt
w
1""9"13(:1%T szﬂ Yt) [lwe]l

=(1-Anp)wy

y .
where ;" N'(0, 1),y = sign (2¢1), and I, =1— %

Theorem 3.1. [Nonconvergence] Starting from iteration any Ty, with probability arbitrarily close

to 1 — 0 over the randomness of samples, the training error will be larger than € at least once for

. . 1 32||wT0H2s 1 . .
the following consecutive SN =227 In o~ + 61n 5 iterations.

Sketch. (See full proof in Appendix A.) The high level idea of this proof is that if the test error is
low, the weight is restricted in a small cone around the global minimum, and thus the amount of the
gradient update is bounded by the size of the cone. In this case, the growth of the norm of the weight
by Pythagorean Theorem is not large enough to cancel the shrinkage brought by weight decay. As a
result, the norm of the weight converges to 0 geometrically.

Again we need to use the lower bound for size of the gradient, that |V, L | = G)(T\]Tﬁ) holds with
constant probability. Thus the size of the gradient will grow along with the shrinkage of ||w || until
they’re comparable, forcing the weight to leave the cone in next iteration. O

It’s interesting that the only property of the global minimum we use is that the if both w;, w,;; are €
optimal, then the angle between w; and wy; is at most 2e. Thus we indeed have proved a stronger
1 In 32wy 1%
—2e?) nvm
and w1 will be larger than 2e. In other words, if the the amount of the update stablizes in terms
of angle, then this angle must be larger than /2n\ for this simple model.

statement: At least once in every S0 + 6 ln% iterations, the angle between w;

4 EXPERIMENTS

The translation to exponential Ir schedule is exact except for correction term which happens when
original schedule reduces Ir a lot. The experiments explore the effect of this correction term. The
Tapered-Exponential LR schedule contains two parts when entering a new phase I: an instant LR
decay (n:’—il) and an adjustment of the growth factor. The first part is relative small compared to the

huge exponential growing. Thus a natural question arises: Can we simplify T-EXP LR schedule by
dropping the part of instant LR decay?

Also, previously we have only verified our equivalence theorem in Step Decay LR schedules. But it’s
not sure how would the Exponential LR schedule behave on more rapid time-varying LR schedules
such as Cosine LR schedule.

Settings: The initial learning rate is 0.1 and the momentum is 0.9 in all settings. We fix all the scalar
and bias of BN, because otherwise they together with the following conv layer grow exponentially,
sometimes exceeding the range of float32 when trained with large growth rate for a long time. We
fix the parameters in the last fully connected layer for scale invariance of the objective.

4.1 THE BENEFIT OF INSTANT LR DECAY

We tried the following LR schedule (we call it 7-EXP v2). Interestingly, up to fluctuations of growth
factor when entering a new phase, this schedule is equivalent to a constant LR schedule, but with
the weight decay coefficient reduced correspondingly at the beginning of each phase.

-2
1+7—Am+\/(1+7—/\m)2—4v
2)

ﬁt«l»l - ﬁt X VT[S t < TI+1 (7)

Under review as a conference paper at ICLR 2020

- 0.5

n — T-EXP V2 95.0/

$'0.4 — T-EXP

-, v2; Decay once 92.51

203

5 90.01

202

Z

g 87.5 —— T-EXPVv2

001 650 —— TEXP

S 0.0 - ' —— v2; Decay once

0 50 100 150 200 250 300 0 100 200 300

Figure 3: Instant LR decay is crucial when ”’ — 1 is very small. When n"’ — 1 is divided by

100, it would take T-EXP hundreds of epochs t0 reach its equilibrium. As a result, T-EXP achieves

better test accuracy than T-EXP in shorter time. As a comparison, when n”i — 1 is divided by 10,

it only takes 70 epochs to return to equilibrium. It’s even faster without growth rate decay.

95.0 , o n —— COSINE
e w 5,041 COS-EXP
92.51 » ,,[il = — T-EXP
M 21031 —— Step Deca
3 90.01 .»,'W*'H' 4 303) p y
z c "
[} W,
7 87.51 $0.2] -
H —— COSINE 2 W
85.0 1 i 9 \
8251 Step D g \
600 ep Decay 0.0 -
~ 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 4: Both Cosine and Step Decay schedule behaves almost the same as their exponential coun-
terpart, as predicted by our equivalence theorem. The (exponential) Cosine LR schedule achieves
better test accuracy, with a entirely different trajectory.

4.2 BETTER EXPONENTIAL LR SCHEDULE WITH COSINE LR

We apply the T-EXP LR schedule (Theorem 2.4) on the Cosine LR schedule by (Loshchilov &
Hutter, 2016), where the learning rate changes every epoch, and thus correction terms cannot be
ignored. Learning rate at epoch ¢ < T is defined as:

1+ cos(#)

Cosine LR schedule: N = 1o 5

®)
Our experiments show this hybrid schedule with Cosine LR performs better on CIFAR10, but this
finding needs to be verified on other datasets.

5 CONCLUSIONS

The paper shows rigorously how BN allows a host of very exotic learning rate schedules in deep
learning, and verifies these effects in experiments. The Ir increases exponentially in almost every
iteration during training. The exponential increase derives from use of weight decay.

This also is a substantial improvement over earlier theoretical analyses of BN, since it accounts for
weight decay and momentum, which are always combined in practice.

Our tantalising experiments with a hybrid of exponential and cosine rates suggest that more surprises
may lie out there. Our theoretical analysis of interrelatedness of hyperparameters could also lead to
faster hyperparameter search.

Under review as a conference paper at ICLR 2020

REFERENCES

Sanjeev Arora. Is optimization a sufficient language for understanding deep learning? URL http:
//www.offconvex.org/2019/06/03/trajectories/.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244-253,2018.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rkxQ-nA9FX.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 31, pp. 7705-7716. Curran Asso-
ciates, Inc., 2018.

Minhyung Cho and Jachyung Lee. Riemannian approach to batch normalization. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 5225-5235. Curran Associates, Inc., 2017.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and linden-
strauss. Random Structures & Algorithms, 22(1):60-65, 2003.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp- 2164-2174. Curran Associates, Inc., 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448-456,
2015.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas Hof-
mann. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. arXiv preprint arXiv:1805.10694, 2018.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv
e-prints, art. arXiv:1608.03983, Aug 2016.

David Page. How to train your resnet 6: Weight decay? @ URL https://myrtle.ai/
how-to-train-your—-resnet—-6-weight-decay/.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch nor-
malization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 2488—
2498. Curran Associates, Inc., 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning - Volume 28, ICML’13, pp. III-1139-
II-1147. JMLR.org, 2013. URL http://dl.acm.org/citation.cfm?id=3042817.
3043064.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

http://www.offconvex.org/2019/06/03/trajectories/
http://www.offconvex.org/2019/06/03/trajectories/
https://openreview.net/forum?id=rkxQ-nA9FX
https://openreview.net/forum?id=rkxQ-nA9FX
https://myrtle.ai/how-to-train-your-resnet-6-weight-decay/
https://myrtle.ai/how-to-train-your-resnet-6-weight-decay/
http://dl.acm.org/citation.cfm?id=3042817.3043064
http://dl.acm.org/citation.cfm?id=3042817.3043064

Under review as a conference paper at ICLR 2020

Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad: Learn the Learning Rate in Gradient De-
scent. arXiv preprint arXiv:1803.02865, 2018.

Yuxin Wu and Kaiming He. Group normalization. In The European Conference on Computer Vision
(ECCV), September 2018.

Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional Networks.
arXiv e-prints, art. arXiv:1708.03888, Aug 2017.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1l1lz—-3Rct7.

A OMITTED PROOFS

A.1 OMITTED PROOF IN SECTION 2

Some Facts about Equation 4: Suppose 21, 22(21 > z2) are the two real roots of the the follow-
ing equation, we have

22— (1+y=)zr+y=0

LL0<z <z <1
_An t .
2. Lett—ﬁ,wehavel—zlgm,

3. if we view z; as a function of

Proof. Let f(z) = 2% — (1 + v — An)x + 7, we have f(1) = f(7) = A > 0. Note the minimum
of f istaken at & = w € [0, 1], the both roots of f () = 0 must lie between 0 and 1, if exists.

1=+ A+ /(1 =7)%2 =201+ 7) A+ \n?

2
Lt — /1 — 242
1—
(I=7) 5
) 2t + 27824
gl
2141+ /1 — {2t +¢2)
_4 ¢

R
t

(1+1)

=(1-

Proof of Theorem 2.5. We will prove by induction. By assumption S(t) : P.0; = 6, fort = —1,0.
Now we will show that S(t) = S(¢t + 1), Vt > 0.

10

https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7

Under review as a conference paper at ICLR 2020

0, — 6, 01— 0, A
t t—1 =~ t—1 t—2 —VB ((L(et_l) t— 1||9t 12)
Nt—1 M—2
ake gradient @y — @ _ 0,1 -6,
Take gradient U¢ t—1 = t—1 t—2 —ng(gt—1)+)\t—10t—1
Nt—1 t—2
nvarian 0_07 0* _0* 0
Scale Invariance Ut t=1 _ ~ t—1 t—2 — P, 1VeL(0;_1) +X_10; 1
Ne—1 Tt—2
Rescaling Pt(et _atfl) Py 2(0t 1— 6 2) 'y ;1
PPy _ymi 7 P 1P an o 0L(8e-1) = A "Ry
implfying P;0; — 7167 - 0* 0 0. P01
Simplfying 169t — Ay Tt-1 :vat L T2 Ve L(0i-1) — i M ——
= Tt Ti—o Ne—1P—1 Py
im in PO, — _16— — 5— _5_ 0
Simplfying tt~04t tlz’yatlil t2—VeL(9t 1)—77t 1A= 17t1
Ni—1 M2 -1
Simplfying 40 — O‘t_l(IN_ m1di-1)0n 7%—101—1 — i _ VoL(;1)
MNt—1 Tt—2

To conclude that P,0; = gt, it suffices to show that the coefficients before 5,5,1 is the same to that
in (2). In other words, we need to show

o R B TP Y _ Y1 —ap-1)
N1 =

which is equivalent to the definition of o, (equation 6). O

Proof of Theorem 2.4. Assumlng 24 and 24(21 > 2z1) are the roots of Equation4 with n = 7 we
can rewrite the recursion in Theorem 2.5 as the following:

ap=—nA+1+y(1— o)) = —(2f +23) + z{ 250, 9)

In other words, we have

I
z
Oét—Z{: 2

(1 —2D),t>1, (10)
Q1

which means that if we enter each phase with a;, > z{ , we have oy > z{ for the whole phase.
Thus we conclude that o Will be larger than z{ for phase 1. It’s not hard to show that since nr >
ny, VI < J, 21 > 2! and zh < 2J. Now we will prove o is always larger than 21. If a; > 21, then
we have oy > z3 > z1. In each phase, due to the above 1nequa11ty, |y — 21| is decreasing, which
guarantees that if oy > 2{ when entering the phase, then oy > 27 for every iteration in this phase.

Note that the when entering a new phase, since n; < 77 r—1, o, will be larger than it would be
without changing phase, which is already larger than 2{. Thus for the whole process, a; will be
larger than z1.

I 1

Thus for a1 € [21,00), ay — 21 = Oj21 (a1 —2{) < B (-1 — 2{) = L (as—1 — z{), which
- 1 1

means «; geometrically converges to its stable fixed point z;. With small Ar, one could approximate

21 by 1 and thus % by 7.

Note that "%;1 = apay4 and "%‘1

(27)%. Since that 0.5 < 2} < ay < 1,0.5 < 2} < 1, we have
lar, — 2} < 0.5, and thus [, — 2} | < £

(Y 2)t Ti vTr <t <Tryq — 1. Thus we have
Mi—1 -1

77t Tt

3 v t—Tr
= aap1 — (21)? < 3lay — 27| < B ((z)) :
1

11

Under review as a conference paper at ICLR 2020

A.2 PROOF FOR THEOREM B.1

Proof. Let’s use Ry, Dy, Cy to denote ||0;|%,]|0:+1 — 64]|%, 0, (0;11 — ;) respectively.
The only property we will use about loss is VgL, 8; = 0.
Expanding the square of [|0;+1]|*> = ||(6¢+1 — 6;) + 0:]|?, we have

S(t) . Rt+1 — Rt = Dt + QCt,Vt.

We also have

C 0 -0 0, —0,_
JZQJLZQI(W;“_)%@): gl (Dy + Cy1) — MRy,
Mt ui Nt—1 Nt—1

namely,

G G _
Tt Nt—1 Nt—1

P(t) . Ct—l -)\th.

Simplify %f) - % + P(t), we have

R —R Ry — R;_ D D,_
t+1 t 7’7 t t—1 _ J‘i"‘}/ t—1 72)\th. (11)
M MNt—1 Mt Nt—1

When)\; = 0, we have

Riy1 — R Ro— R_ ‘ - D; D Ro— R_
t+1 t:7t+1 0 1_"_2716—1(72_"_7 7 1)Z t+1 10 1
Yo n-1 =0 i Ni—1 -1
Further if n; = 7 is a constant, we have
t .
1— ,yt—z-i-l 1— ,yt+1
Riyq1 = —(D; D, 1)—y——(Ro— R_
t4+1 ; = (Di +vDi—1) =~ 1 (Ro 1),

which covers the result without momentum in (Arora et al., 2019) as a special case:

¢
Ry = Z D;.
i=0

O
Proof of Theorem B.2. Take average of Equation 11 over ¢, when the limits R, =
limy o0 75 ZtT;Ol |w]|?, Doo = limp_, o0 %zf;} lwiy1 — wy||? exists, we have
1
D = 2R,
which is
Dy 2nA
VRe \ 147
O

12

Under review as a conference paper at ICLR 2020

A.3 OMITTED PROOFS IN SECTION 3

We will need the following lemma when lower bounding the norm of the stochastic gradient.

emma A. oncentration o i-Square). Suppose X1, ..., Xk . , 1), then
L A1 (C ion of Chi-Square). S X X, " N(0,1), th

k k
Pr [fo < kﬁ] < (BerP)7. (12)

i=1

Proof. This Chernoff-bound based proof is a special case of Dasgupta & Gupta (2003).

k . k
Pr lZXf < kﬁ] < (ﬁelfﬂ)f =Pr [exp (ktﬂ - tZXf) > 1]
i=1

i=1

b (13)
<E |exp <kztﬁ —t Z Xf)] (Markov Inequality)
i=1
=MP(142t)7 3.
The last equality uses the fact that E [tX?] = \/ﬁ for t < . The proof is completed by taking
t=1-2 O

28

T

Proof. Step 1: We will use w to denote ﬁ and Zuw to arccos(t ' w). Note that training error
1 I 32wryll*e

< e is equivalent to Zeyw; < . Let Ty = grxgmyIn = “— and T = 61n ;. Thus if we
assume the training error is smaller than e from iteration Ty to Ty + 77 + 7%, then by spherical
triangle inequality, Zw,wy < Zejwy + Zeyw, = 2¢, for Ty < t,t' < Ty + Ty + Ts.

Now let’s define w; = (1 — nA)w; and for any vector w, and we have the following two relation-
ships:

L fJwi]l = (1 = nA)[Jw]].

[l |l

2. ”wt"‘l” < cos2¢e”

The second property is because by Lemma 2.8, (w41 — w;) L w; and by assumption of small
error, Zw 1 w; < 2e.

Therefore

2T: 2T:
H'U"Y:’HJrTo”2 < <1 - 77)‘> ' < (1 - 77)‘) ! < (1 _ (nA _ 282))2T1 < 6—2T1(?7)\—282) — 77\/7/H

[|wr, |2 cos 2¢ 1 — 2¢2 T 32[jwr, |26
14
In other word, ||wz, 47, |* < "?:é?. Since ||wr,+¢|| is monotone decreasing, ||wr,+¢||? < "gé?

holds forany t =173, ..., 11 + 15.
Step 2: We show that the norm of the stochastic gradient is lower bounded with constant probability.

Note that x| H’w"—:ﬂ and Hf;,tmt are independent gaussian r.v., where thH“w"—:H ~ N(0,1) and
Mg, | ~ x*(m = 1).

1

Wy
7t 3

5)
[l

Pr [|w;r | < 1] >

and by Lemma A.1,

13

Under review as a conference paper at ICLR 2020

-1 1 m= 1 1
P [, 22 > 2] > br i 22 > Pt 0 - (P s (i s Lae)
¢ 16 ¢ Les Les 3
Thus w.p. at least %, eventsequation 15 and equation 16 happens together, which implies
L
wy Y Ly, @ n__Jm nm
IV In(1 + exp(—z 7))l = | w =l = >
| T+ oxp(@f 2ige) il |~ 1+ edfwi] 16]wi]
a7
Step 3. To stay in the cone {w|Zwe; < e}, the SGD update ||wi1 — wy|| = ||VIn(l +

exp(—, ptrye))|| has to be smaller than ||w,|

sin2¢ forany t = Ty + 11,...,To + 11 + 1s.
However, step 1 and 2 together show that ||V In(1 +exp(—a, ritrye)) || = 2||w]|e w.p. § per iter-
ation. Thus the probability that w; always stays in the cone forevery t = To+T11,...,To+ 11+ 1>
is less than (%)T2 < 6. O

B OTHER RESULTS

Now we rigorously analyze norm growth in this algorithm. This greatly extends previous analyses
of effect of normalization schemes (Wu et al., 2018; Arora et al., 2018) for vanilla SGD.

Theorem B.1. Under the update rule 1.2 with \; = 0, the norm of scale invariant parameter 6
satisfies the following property:

o Almost Monotone Increasing: |[0p+1[* — (104> = ="+ I ([|0o]1* — (|01]1?).

o Assuming 1, = 1 is a constant, then

t t—i+ t+1

11—~ ! 11—~
16:41]* = B (16 = i1 l|* +~116;—1 — 9iHz)—Wﬁ(H@oHLH&lH?)
=0

For general deep nets, we have the following result, suggesting that the mean square of the update
are constant compared to the mean square of the norm. The constant is mainly determined by nA,
explaining why the usage of weight decay prevents the parameters to converge in direction. 2

Theorem B.2. For SGD with constant LR 1), weight decay A and momentum y, when when the limits
. 1 T-1 . 1 T-1 .
Reo =limy 00 7 > g |lwy 2 Doo = limy_00 F2 o llwig1 — wy||? exists, we have

Doo _ [212
R 147"

C ADDITIONAL EXPERIMENTAL FIGURES

%(Page) had a similar argument for this phenomenon by connecting this to the LARS(You et al., 2017),
though it’s not rigorous in the way it deals with momentum and equilibrium of norm.

14

Under review as a conference paper at ICLR 2020

o
n

t, w_t+1

o
o
,

o
w

e
-

Angle between w
o
N

\r KNP

—— Decay LR only

v

Decay LR;Increase WD

| pnr AN A A s~

0 50

100

150 200 250 300
#epochs

95.0

92.54

90.0

Test Loss

85.0 1

82.5

80.0

87.51

e

ool W
i ._U-”ﬁ'i
i
“
" —— Decay LR only
f Decay LR;Increase WD
0 50 100 150 200 250 300

Figure 5: PreResNet32 trained with SGD with 0.9 momentum, 0.0005 WD and 0.1 LR. Here we
consider 2 schedules: the orange one divides LR by 10 and multiplies WD by 10 at epoch 80 and
120. The blue divides LR by 10 at epoch 80. Both setting suggest that the instant decay of LR
could allow network to stabilize shortly, but in the long run, the average angle between weights
in consecutive epochs converges to a value independent of LR, only depending on LR x W D, as
predicted by Theorem B.2.

15

	Introduction
	Related Work
	Preliminaries and Notations

	Deriving Exponential Learning Rate Schedule
	Replacing WD by Exponential Learning Rate: Case of Constant LR
	Replacing WD by Exponential LR: Case of multiple LR phases
	Proof Sketch

	Example illustrating interplay of WD and BN
	Experiments
	The benefit of instant LR decay
	Better Exponential LR Schedule with Cosine LR

	Conclusions
	Omitted Proofs
	Omitted Proof in Section 2
	Proof for Theorem B.1
	Omitted Proofs in Section 3

	Other Results
	Additional Experimental Figures

