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ABSTRACT

We introduce two approaches to topic modeling supervised by survival analysis.
Both approaches predict time-to-event outcomes while simultaneously learning
topics over features that help prediction. The high-level idea is to represent each
data point as a distribution over topics using some underlying topic model. Then
each data point’s distribution over topics is fed as input to a survival model. The
topic and survival models are jointly learned. The two approaches we propose dif-
fer in the generality of topic models they can learn. The first approach finds topics
via archetypal analysis, a nonnegative matrix factorization method that optimizes
over a wide class of topic models encompassing latent Dirichlet allocation (LDA),
correlated topic models, and topic models based on the “anchor word” assump-
tion; the resulting survival-supervised variant solves an alternating minimization
problem. Our second approach builds on recent work that approximates LDA in a
neural net framework. We add a survival loss layer to this neural net to form an ap-
proximation to survival-supervised LDA. Both of our approaches can be combined
with a variety of survival models. We demonstrate our approach on two survival
datasets, showing that survival-supervised topic models can achieve competitive
time-to-event prediction accuracy while outputting clinically interpretable topics.

1 INTRODUCTION

Predicting time-to-event outcomes arises in a variety of applications. For example, in healthcare,
we may be interested in predicting how much time a patient has to live. In criminology, we may be
interested in predicting when a convicted criminal might reoffend. In e-commerce and on streaming
platforms, companies with subscription services like Amazon and Netflix may be interested in pre-
dicting when users might cancel their subscriptions. In many such applications, we can now collect
an enormous number of measurements per person/subject. However, how all of these measurements
relate is typically unknown. In this paper, we aim to address the twin objectives of learning how
measurements relate in the form of a topic model, and learning how topics can assist in predicting
time-to-event outcomes via a survival analysis model.

For ease of exposition, we phrase the problem we consider in the classical survival analysis context
of predicting time until death. We assume that we have access to a training dataset of n subjects.
For each subject, we know how many times each of d “words” appears, where the dictionary of
words is pre-specified. As an example, in a clinical context, one word might correspond to “low
blood pressure reading”; for a given subject, we can count how many such readings the subject has
had recorded in the past. We denote Xi,u to be the number of times word u ∈ {1, . . . , d} appears
for subject i ∈ {1, . . . ,n}. Viewing X as an n-by-d matrix, the i-th row of X can be thought of
as the feature vector for the i-th subject. As for the training label for the i-th subject, we have two
recordings: event indicator δi ∈ {0, 1} specifies whether the i-th subject died, and observed time
Yi ∈ R+ is the i-th subject’s “survival time” (time until death) if δi = 1 or the “censoring time”
if δi = 0. The censoring time gives a lower bound on the survival time for the i-th subject. For
example, when we stop collecting data, some subjects will still be alive, so we know they live at
least as long as when we stopped collecting training data.

Our goal is to discover topics for the d words that help predict survival times of unseen test subjects.
Note that an unsupervised topic model like latent Dirichlet allocation (LDA) (Blei et al., 2013)
would not use any of the training labels (the event indicators δi’s and observed times Yi’s), learning
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topics using only the word counts matrix X . Meanwhile, in survival analysis, a standard approach
would involve learning a survival model using all the patients’ feature vectors and labels but the
model would not learn thematic structure in the different features, e.g., topics. Jointly learning both
a topic model and a survival model was first done by Dawson & Kendziorski (2012), who combined
LDA with a Cox proportional hazards model (Cox, 1972). Using LDA with r topics, Dawson and
Kendziorski represent the i-th subject as a probability vector Wi ∈ [0, 1]r specifying the subject’s
membership in each of the r topics; then Wi’s are treated as the input covariates to the Cox model.
Dawson and Kendziorski called this joint model SURVLDA and derived a variational EM algorithm
to estimate its parameters.

In this paper, we build on SURVLDA by proposing two new survival-supervised topic modeling
approaches, both of which allow for either the topic or the survival model to be replaced. Our
contributions are as follows:

• (Section 3) We show how to take a discriminative approach to jointly learning topic and sur-
vival models, where topics are estimated via archetypal analysis (Cutler & Breiman, 1994; Javadi
& Montanari, 2019). Archetypal analysis represents each subject as a convex combination of
“archetypes”, which are optimized to be diverse yet still be close to the convex hull of the subjects’
feature vectors. Applied to topic modeling, the archetypes are the topics, with each archetype
specifying a particular topic’s word distribution. Archetypal analysis does not assume a paramet-
ric model and can learn a wide class of topic models. We describe how to combine archetypal
analysis with any survival analysis model for which we can take a specific partial derivative.

• (Section 4) We approximate Dawson and Kendziorski’s SURVLDA model in a neural net frame-
work, which allows for different choices of topic and survival models to be combined. This
approach requires that the topic and survival models already have neural net approximations or
formulations. For example, LDA and some variants of it can already be approximated using varia-
tional autoencoders (Srivastava & Sutton, 2017; Card et al., 2018). In particular, Card et al. (2018)
show how to approximate supervised LDA (McAuliffe & Blei, 2008) in a neural net framework
that they call SCHOLAR; they specifically consider classification as the supervised task although
they mention that their framework could be used to predict other real-valued outputs. We specifi-
cally combine their approach with that of Katzman et al. (2018) to handle survival supervision.

• (Section 5) We apply our two proposed approaches to two survival analysis datasets (predicting
how long pancreatitis patients stay in an intensive care unit, and time until death for breast cancer
subjects), comparing against a number of classical and recently developed deep survival analysis
baselines. Survival-supervised topic models have time-to-event prediction accuracy that is com-
petitive with top-performing existing baselines while producing clinically interpretable topics.

2 BACKGROUND

We begin with some background on archetypal analysis, topic modeling, and survival analysis.
Along the way, we introduce notation that recurs throughout the paper. As a reminder, we as-
sume that we have access to training data (X1,Y1, δ1), (X2,Y2, δ2), . . . , (Xn,Yn, δn), where the
i-th training subject has feature vector Xi ∈ Rd, observed time Yi ∈ R+, and event indicator
δi ∈ {0, 1}. Throughout this paper, we generally take Xi,u (for u ∈ {1, 2, . . . , d}) to be the number
of times word d appears, for some user-specified dictionary of d words. We let Xi,u denote the
fraction of times a word appears for a specific subject, meaning that

Xi,u =
Xi,u∑d
v=1Xi,v

.

Note that X is an n-by-d matrix, and we use Xi to denote the i-th row of X . We use this indexing
notation for other matrices as well.

2.1 ARCHETYPAL ANALYSIS AND TOPIC MODELING

Archetypal analysis (Cutler & Breiman, 1994; Javadi & Montanari, 2019) posits that each training
vector Xi can be well-approximated by a convex combination of r different unknown “archetypes”
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H1,H2, . . . ,Hr ∈ Rd:

Xi ≈
r∑
g=1

Wi,gHg (2.1)

for some weights Wi,1, . . . ,Wi,r ∈ [0, 1] that sum to 1, i.e., the vector Wi := (Wi,1, . . . ,Wi,r)
resides in the probability simplex ∆r := {w ∈ [0, 1]r :

∑r
g=1 wg = 1}. By stacking the archetypes

H1, . . . ,Hr as rows to form the matrixH , equation (2.1) can be expressed asX ≈WH . Archetypal
analysis aims to estimate W and H given X .

If the archetypes H1, . . . ,Hr are constrained to be in the probability simplex ∆d, then we get a
topic model, and each archetype corresponds to a word distribution. For example, if rows of W
are generated i.i.d. from a Dirichlet distribution, and rows of H are generated i.i.d. from another
Dirichlet distribution, then we get LDA (Blei et al., 2013). As a slight modification of this setup,
if the rows of W are instead generated from a logistic normal distribution that allows correlation
between topics, we get the correlated topic model (Lafferty & Blei, 2006). For an example that is
not generative, if the archetypes are on a probability simplex, and for each archetype g ∈ {1, . . . , r},
there exists a word w that only appears in archetype g (i.e., Hg,w > 0 and Hh,w = 0 for all h 6= g),
then we have a topic model satisfying the separability or “anchor word” assumption (Donoho &
Stodden, 2004; Arora et al., 2012a;b; 2013). Archetypal analysis optimizes over matrices W and
H that include all of the aforementioned topic models above as special cases. In fact, archetypal
analysis does not require that archetypes be on a probability simplex or that they be nonnegative; the
input matrix X need not consist of word frequencies and could be positive or negative real-valued
measurements. Crucially, the error in approximation (2.1) should be small; precise details including
identifiability and degeneracy issues can be found in Section 3 of Javadi & Montanari (2019).

To estimate weights W and archetypes H , Javadi and Montanari proposed the following approach.
First, for a point u ∈ Rd and a matrix V ∈ Rm×d, we define the distance from u to the convex hull
of the rows of V as

D(u,V ) := min
w∈∆m

‖u− V >w‖2.

The vector w ∈ ∆m that achieves the minimum consists of the convex combination weights that
best combine rows of V to approximate the point u. Then Javadi and Montanari (approximately)
minimize the nonconvex loss

Larch(W ,H;λ) :=

n∑
i=1

‖Xi −H>Wi‖22︸ ︷︷ ︸
♠

+λ

r∑
g=1

D2(Hg,X)︸ ︷︷ ︸
♥

(2.2)

subject to the constraint thatWi ∈ ∆r for i = 1, . . . ,n; constant λ ≥ 0 is a user-specified regulariza-
tion parameter. Minimizing term ♠ (error of approximating input data Xi’s as convex combination
of archetypes) encourages the archetypes to be far apart and have a convex hull that contains the
input data. However, this term does not prevent the archetypes from taking on extreme values; for
example, if the archetypes already have a convex hull that contains the Xi’s (so that ♠ = 0), we can
move the archetypes even farther apart and still have their convex hull contain the Xi’s (so we still
have ♠ = 0). We prevent this behavior by minimizing term ♥, which encourages each archetype to
be close to the convex hull of the input data.

To learn a topic model, we enforce that the archetypes correspond to distributions over words by
requiring each row of H to be in probability simplex ∆d. The resulting optimization problem is

(Ŵ , Ĥ) ∈ argmin
W∈Rn×r, H∈Rr×d

s.t.Wi∈∆r for all i, Hg∈∆d for all g

Larch(W ,H;λ). (2.3)

A local minimum can be found by alternating between minimizing W with H fixed, and vice versa.

2.2 SURVIVAL ANALYSIS

Archetypal analysis and topic models are unsupervised methods. To predict time-to-event outcomes,
we turn toward survival analysis models. Suppose we take the i-th subject’s feature vector to be
Wi ∈ Rr instead of Xi. As this notation suggests, when we combine topic and survival models,
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Wi corresponds to the i-th subject’s archetype/topic combination weights; this strategy for combin-
ing topic and survival models was also done by Dawson & Kendziorski (2012), which in turn is
based on the supervised LDA formulation (McAuliffe & Blei, 2008). We treat the training data as
(W1,Y1, δ1), . . . , (Wn,Yn, δn), disregarding the Xi and Xi values from earlier.

We aim to reason about the survival time of an unseen test feature vector W0 ∈ Rr. Specifically,
let random variable T0 denote the survival time corresponding to feature vector W0 (treated as a
random variable). Then our goal is to produce an estimate Ŝ of the (conditional) survival function

S(t|w) := P(T0 > t |W0 = w) for t ≥ 0 and w ∈ Rr.
Importantly, for a given feature vector w ∈ Rd, note that S(·|w) is a function. If we have an estimate
Ŝ(·|w) for S(·|w), we can compute a single number for the predicted survival time for feature
vector w. The basic idea is to find a time t such that Ŝ(t|w) ≈ 1/2; such a time corresponds to a
median survival time. Details for computing this median survival time estimate is in Appendix A.

Different survival models place different assumptions on S, where we typically assume that the
training and test data points are i.i.d. samples from the same underlying distribution. The technical
challenge is that in general, we do not see the survival times for all of the training subjects: the
observed times Yi’s are equal to survival times only for subjects who have δi = 1; all other Yi values
are censoring times. Different censoring models are used. A standard approach is to assume that the
i-th training subject has survival time Ti and censoring time Ci that are conditionally independent
given feature vector Wi, and if the survival time occurs before censoring (Ti ≤ Ci), then Yi = Ti
and δi = 1; otherwise Yi = Ci and δi = 0. This setup is referred to as random censoring. Details
can be found in a survival analysis textbook (e.g., Kalbfleisch & Prentice, 2002).

As a concrete example of how survival function S can be computed via minimizing a loss function,
we next present the classical Cox proportional hazards model (Cox, 1972). As we discuss shortly,
this is just one example of a survival model that can be combined with our proposed survival-
supervised archetyptal analysis or neural topic modeling approaches.

Example 1 (Cox proportional hazards) Recall that survival function S is 1 minus the CDF of the
distribution of survival time T0 given feature vectorW0 = w. We denote the CDF of this distribution
as F (t|w) and assume it has a probability density function f(t|w) = ∂

∂tF (t|w). Then the Cox model
constrains S through the so-called hazard function h of S, given by

h(t|w) := − ∂

∂t
logS(t|w) =

− ∂
∂t [1− F (t|w)]

S(t|w)
=
f(t|w)

S(t|w)
, (2.4)

which is the instantaneous rate of death at time t divided by the probability of surviving up to time t,
all conditioned on the feature vector being w. Specifically, the Cox model assumes that hazard
function h factors as

h(t|w) = h0(t)eβ
>w,

where the two parameters are the baseline hazard function h0 : R+ → R+, and the vector of regres-
sion coefficients β ∈ Rr. Under random censoring (and actually more general censoring models),
we can estimate β without knowing h0 via maximizing a profile likelihood, which is equivalent to
minimizing the loss

LCox(β|W ) :=

n∑
i=1

δi

[
−β>Wi+log

n∑
j=1 s.t. Yj≥Yi

exp(β>Wj)
]
. (2.5)

Given an estimate of β, we can deterministically compute a nonparametric estimate for baseline
hazard function h0; this estimation procedure is standard and can be found in Section 7.8 of Cox
& Oakes (1984). Once we have estimates ĥ0 and β̂ for h0 and β, then for any test feature vector
w ∈ Rr, we can estimate this test feature vector’s corresponding hazard function via

ĥ(t|w) = ĥ0(t)eβ̂
>w.

Using the first equality of equation (2.4), note that S(t|w) = exp
(
−
∫ t

0
h(τ |w)dτ

)
. We can plug

estimate ĥ for h into this equation to get an estimate of S:

Ŝ(t|w) = exp
(
−
∫ t

0

ĥ(τ |w)dτ
)

. (2.6)

In practice, the integral is computed via a summation.
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Other survival losses are possible aside from LCox(β|W ). As a second example, we provide the
survival loss function for the Weibull accelerated failure time (AFT) model in Appendix B. The
critical requirement of our proposed methods to follow is that the survival loss used is differentiable
with respect toW . For example, the elastic-net-regularized Cox proportional hazards model by Park
& Hastie (2007) also satisfies this condition.

3 SURVIVAL-SUPERVISED ARCHETYPAL ANALYSIS

Survival supervision can readily be incorporated into the archetypal analysis optimization prob-
lem (2.3) by adding a survival loss Lsurv(W , θ) to the objective function, where θ here is the col-
lection of all parameters specifying the survival model. For example, we could have Lsurv(W , θ) =
LCox(β|W ) as defined in equation (2.5) with parameters θ = β.1 Specifically, letting Θ denote the
set of possible values that parameter θ can take on, and η > 0 denote a user-specified importance
weight of the survival loss, we now instead solve

(Ŵ , Ĥ) ∈ argmin
W∈Rn×r, H∈Rr×d, θ∈Θ

s.t.Wi∈∆r for all i, Hg∈∆d for all g

Larch(W ,H;λ) + ηLsurv(W , θ), (3.1)

where Larch is given in equation (2.2). Javadi & Montanari (2019) solve the unsupervised archety-
pal analysis optimization problem (2.3) using the Proximal Alternating Linearized Minimization
(PALM) algorithm by Bolte et al. (2014). We augment this algorithm to handle survival supervi-
sion, resulting in an algorithm we call SURVIVAL-ARCHETYPES. We first state what SURVIVAL-
ARCHETYPES is before explaining our algorithmic modifications to the unsupervised variant.

3.1 THE SURVIVAL-ARCHETYPES ALGORITHM

In what follows, we let ΠU (V ) denote the version of V where each of its rows has been projected
onto the set U . Formally, the i-th row of ΠU (V ) is given by

[ΠU (V )]i = min
u∈U
‖u− Vi‖2.

For example, if V ∈ Rn×r consists of nonnegative entries where each row’s sum is strictly greater
than 0, then [Π∆r (V )]i = Vi/

∑r
j=1 Vi,j . Next, we denote the convex hull of the rows of a matrix

V ∈ Rm×d by

conv(V ) :=
{ m∑
i=1

wiVi : w ∈ ∆m
}

.

Then the SURVIVAL-ARCHETYPES algorithm repeats the following steps until convergence:

1. Update archetypes: with step size parameter γ1 = 2‖W>W‖F , where ‖ · ‖F denotes the
Frobenius norm, set

H̃ ← H − 1

γ1
W>(WH −X),

H ← Π∆d

(
H̃ − λ

λ+ γ1
(H̃ −Πconv(X)(H̃))

)
.

2. Update convex combination weights: with step size parameter γ2 found using backtracking
line search (Parikh & Boyd, 2014, Section 4.3), set

W ← Π∆r

(
W − 1

γ2

[
(WH −X)H> + η

∂Lsurv(W , θ)

∂W

])
.

3. Update survival model:
θ ← argminθ̃∈ΘLsurv(W , θ̃).

This step amounts to fitting the survival model with rows ofW treated as the feature vectors
and can just use the model’s existing fitting code as a black box.

1For the Weibull AFT loss given in Appendix B that has parameters β ∈ Rr , µ ∈ R, and σ > 0, we would
set Lsurv(W , θ) = LAFT(β,µ,σ|W ) as defined in equation (B.1) with parameters θ = (β,µ,σ).
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Initialization. Following Javadi & Montanari (2019), we use the successive projections algorithm
by Araújo et al. (2001) to initialize archetypes H . We can initialize each row of W by setting

Wi ← argmin
w∈∆r

‖Xi −H>w‖2.

Lastly, how the survival model parameters θ is initialized depends on the survival model. For exam-
ple, for the Cox proportional hazards model, we can initialize β to be the all zeros vector. For the
Weibull AFT model, we can initialize µ and β to be all zeros, and σ to be 1.

A key technical requirement of SURVIVAL-ARCHETYPES is that we need to be able to compute the
gradient ∂Lsurv(W ,θ)

∂W . As illustrative examples, we show what this gradient is equal to for the Cox
and Weibull AFT models in Appendix C.

3.2 RELATING TO THE UNSUPERVISED ARCHETYPAL ANALYSIS PALM ALGORITHM

The original PALM algorithm for unsupervised archetypal analysis can be recovered by setting
η = 0 and removing step 3. Moreover, the step size in step 2 need not be found using backtracking
line search. In particular, when η = 0, step 2 takes a proximal gradient step, where the gradient is

(WH −X)H>,

which has Lipschitz modulus 2‖HH>‖F ; hence, we can set step size parameter γ2 = 2‖HH>‖F
(Bolte et al., 2014, Remark 7(ii)). When η > 0, the Lipschitz modulus can vary by the survival
model used and in general does not have a closed-form expression, so we use a line search. Lastly, if
we are not constraining the archetypes to correspond to word distributions, then the projection onto
∆d in step 1 can be removed.

4 NEURAL SURVIVAL-SUPERVISED TOPIC MODELS

Our proposed approach to a neural survival-supervised topic modeling builds on the SCHOLAR
framework by Card et al. (2018). Card et al. do not explicitly consider survival analysis in their
setup although they mention that predicting different kinds of real-valued outputs can be incorpo-
rated by using different label networks. We use their same setup and have the final label network
perform survival analysis via the same approach as Katzman et al. (2018); note that Katzman et
al. specifically consider the Cox proportional hazards model but their neural net approach works
with some other survival models as well such as the Weibull AFT model. We first give an overview
of SCHOLAR and then explain how to implement the final survival analysis label network.

For ease of exposition, we present the SCHOLAR framework without what Card et al. refer to as
“covariates” (auxiliary information known about subjects in addition to the word count matrix X).
The SCHOLAR framework specifies a generative model for the data, including how each individual
word in each subject is generated. In particular, recall that Xi,u denotes the number of times the
word u ∈ {1, 2, . . . , d} appears for the i-th subject. Let ni denote the number of words for the i-th
subject, i.e., ni =

∑d
u=1Xi,u. We now define the random variable ψi,` ∈ {1, 2, . . . , d} to be what

the `-th word for the i-th subject is (for i = 1, 2, . . . ,n and ` = 1, 2, . . . ,ni). Then the generative
process for SCHOLAR with r topics is as follows, stated for the i-th subject:

1. Generate the i-th subject’s topic distribution:

(a) Sample W̃i from a logistic normal distribution with mean vector µ ∈ Rr and covari-
ance matrix Σ ∈ Rr×r.

(b) Set the topic weights vector for the i-th subject to be Wi = softmax(W̃i).

2. Generate the i-th subject’s words:

(a) Set word parameter ηi = fword(Wi), where fword is a generator network.
(b) For word ` = 1, 2, . . . ,ni:

Sample ψi,` ∼ Multinomial(softmax(ηi)).

3. Generate the i-th subject’s output label:
Sample Yi from a distribution parameterized by label network flabel(Wi).
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There are a wide variety of choices for the parameters µ,Σ, fword, and flabel. For example, to
approximate supervised LDA (McAuliffe & Blei, 2008) where the topic distributions are sampled
from a symmetric Dirichlet distribution with parameter α > 0 and the output label is continuous and
has unit variance, we set µ to be the all zeros vector, Σ = diag((r − 1)/(αr)), fword(w) = w>H
where H ∈ Rr×d has a Dirichlet prior per row, flabel(w) = w>φ for a parameter vector φ ∈ Rr,
and set Yi to be generated from a Gaussian with mean flabel(w) and variance 1. Card et al. (2018)
also explain how to approximate the correlated topic model by Lafferty & Blei (2006). To estimate
the model parameters, Card et al. use a sampling-based variational autoencoder framework (Kingma
& Welling, 2014; Rezende et al., 2014).

Survival supervision. To incorporate survival analysis, we follow the same approach as Katzman
et al. (2018) and change step 3 of the generative process above to be deterministic and instead
output the variable Ξi = flabel(Wi) := β>Wi for parameter vector β ∈ Rr. In particular, we do
not actually model how observed times Yi’s are generated; modeling Ξi’s is sufficient. Then we can
minimize the Cox proportional hazards loss:

LCox(β|W ) =

n∑
i=1

δi

[
− Ξi + log

n∑
j=1 s.t. Yj≥Yi

exp(Ξi)
]
,

where zi = log Yi−µ−Ξi

σ . Regularization on β can easily be added (e.g., lasso, elastic net). Other
losses are also possible. The Weibull AFT loss given in Appendix B uses the same label network as
the Cox example above, namely flabel(Wi) = β>Wi. For both the Cox and Weibull AFT examples,
the label network could instead be a multilayer perceptron or a more complex neural net rather than
a simple inner product. We refer to SCHOLAR with a survival loss as SURVIVAL-SCHOLAR.

5 EXPERIMENTS

We apply SURVIVAL-ARCHETYPES and SURVIVAL-SCHOLAR to two survival analysis datasets fo-
cusing on two diseases: pancreatitis and breast cancer. For pancreatitis, we use the MIMIC III
electronic health records dataset (Johnson et al., 2016), looking only at the pancreatitis patients ad-
mitted to the intensive care unit (ICU) and who did not die while in the ICU; this amounted to 371
patients where we extracted 2557 features (preprocessing details are in Appendix D.1). We predict
how long each patient will stay in the ICU. For breast cancer, we use the METABRIC dataset (Cur-
tis et al., 2012), which consists of 1981 patients. We use the same 79 one-hot encoded features as
Lee et al. (2018) to predict time until death per subject. Some features are continuous and need to
be discretized for use with our topic models (resulting in 100 total features; see Appendix D.2 for
details). For both datasets, we randomly divide the dataset into a 75%-25% train-test split.

We benchmark our approaches against a total of 10 baselines: 7 classical methods (lasso-regularized
Cox proportional hazards with and without PCA preprocessing, Weibull AFT with and without PCA,
k-nearest neighbor survival analysis (Beran, 1981; Lowsky et al., 2013) with and without PCA, and
random survival forests (Ishwaran et al., 2008)), 2 deep learning methods (DEEPSURV (Katzman
et al., 2018) and DEEPHIT (Lee et al., 2018)), and Dawson and Kendziorski’s SURVLDA (Dawson
& Kendziorski, 2012). For lasso-regularized Cox, our hyperparameter sweep does include an ap-
proximation to the standard unregularized Cox model. For simplicity, for our archetypal analysis
and neural approaches, we use the standard Cox model as the survival model. For all methods, if the
method does not already have a hyperparameter selection procedure, we use 5-fold cross-validation
on the training data to select hyperparameters prior to training on the complete training data us-
ing the best parameters found; hyperparameter search grids are in Appendix E. For the pancreatitis
dataset, due to the number of subjects being small, we use repeated 5-fold cross-validation with 10
repeats. Repeated k-fold cross validation has been found to be useful in such small dataset regimes
(Braga-Neto & Dougherty, 2004). For both cross-validation and for evaluating test set accuracy, we
use the standard survival analysis metric of concordance index (Harrell Jr et al., 1982), which is the
fraction of pairs of validation/test subjects correctly ordered by the prediction algorithm in terms of
which subject has a longer survival time (amongst pairs that can be ordered).

Test set concordances are reported in Table 1. On the pancreatitis dataset, SURVLDA followed by
SURVIVAL-ARCHETYPES outperform all the other methods, and the two deep learning baselines
(DEEPSURV and DEEPHIT) perform worse than standard Cox proportional hazards as well as many
of the other classical baselines. Meanwhile, on the breast cancer dataset, DEEPSURV achieves the
best performance although Weibull AFT, k-nearest neighbors with PCA preprocessing, DEEPHIT,
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Model Dataset
Pancreatitis Breast Cancer

Lasso Cox 0.56 0.65
Lasso Cox + PCA 0.53 0.64

Weibull AFT 0.50 0.66
Weibull AFT + PCA 0.60 0.65
k-nearest neighbors 0.59 0.58

k-nearest neighbors + PCA 0.53 0.66
Random Survival Forest 0.56 0.60

DEEPSURV 0.55 0.67
DEEPHIT 0.53 0.66

SURVLDA 0.64 0.64
SURVIVAL-ARCHETYPES 0.63 0.63

SURVIVAL-SCHOLAR 0.59 0.66

Table 1: Test set concordance indices for various methods on the pancreatitis and metabric datasets.
Per dataset, we use bold for the highest and italics for the second highest concordance indices.

and SURVIVAL-SCHOLAR all do nearly as well. Also, note that despite SURVIVAL-SCHOLAR being
a neural approximation of SURVLDA, the two methods’ accuracies are different; this phenomenon
has also been reported for SCHOLAR and the various topic models it approximates (Card et al., 2018).
Overall, there is no single best survival estimator. The three survival-supervised topic models also
jointly estimate topics, and per topic, tells us whether presence of that topic leads to greater or lower
probability of survival. As we discuss next, despite SURVIVAL-SCHOLAR having only a concordance
index of 0.59 on the pancreatitis dataset, it still manages to produce clinically interpretable topics
predictive of whether pancreatitis patients will stay longer in the ICU.

We now give a brief summary of learned topics. Note that for both datasets, the vast majority of
words we used require clinical expertise to interpret. For ease of exposition, we defer examples of
actual topics learned to Appendix F, where per topic, we list its top 20 most probable words along
with the topic’s Cox β coefficient—a higher coefficient corresponds to predicting a shorter ICU
length of stay in the pancreatitis dataset and a shorter time until death in the breast cancer dataset.
A topic with β coefficient 0 gets ignored for prediction.

Pancreatitis. SURVIVAL-ARCHETYPES identified one archetype with a nonzero Cox β coefficient
(4.5) corresponding to a healthy group with lower-risk interventions (e.g., smaller-bore IV, normal
MCV and HCT, top words do not have data elements related to severe illness). All other archetypes
have β coefficient 0 and correspond to sicker patient characteristics (e.g., atypical lab tests and
toxicology panels). SURVIVAL-SCHOLAR separated clinical events into 3 meaningful topics: one
for laboratory tests, one for patient presentation characteristics, and one for procedures, precautions,
monitoring, and vitals (this last topic has the smallest β coefficient associated with longer ICU length
of stay). SURVLDA also produced interpretable topics such as critical illness, normal health state,
and acid base disorders and liver involvement.

Breast cancer. SURVIVAL-SCHOLAR found topics that distinguish elderly, advanced cancers (β co-
efficient 0.71) from ones with early and younger hormone positive characteristics (β coefficients
−0.74 and −0.79). SURVLDA also produced topics with identifiable characteristics; however more
topics were found (7 topics) with two overlapping topics indicative of elderly stage 2 breast cancer,
and three other overlapping topics (all indicative of hormone positive, cellular, and proliferative fea-
tures). SURVIVAL-ARCHETYPES has noticeably lower prediction accuracy on this dataset, which is
reflected in the topics it learns: the two topics with nonzero β coefficients have opposite β coefficient
signs yet have mostly the same top words, suggesting too much topic overlap.

6 CONCLUSIONS
Many methodological advances have been made in survival analysis especially with the help of deep
learning. The advances have largely focused on prediction accuracy and less on interpreting time-
to-event predictions in the application domains of interest. This interpretation can be challenging
when the number of features is large and how features relate is not obvious. In this paper, we show
that survival-supervised topic modeling can address this challenge: the topics learned reveal feature
co-occurrences and have relative weights indicating their impact on predicting longer or shorter
survival times. These topics can be used by practitioners to check if the models agree with existing
domain knowledge and to help with model debugging. These survival-supervised topic models are
flexible and can be used with a variety of topic and survival models.
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A ESTIMATING POINT ESTIMATES FOR SURVIVAL TIMES

We now explain how an estimate Ŝ(·|w) of the survival function S(·|w) can be used to construct
an estimated survival time for feature vector w. Recall that random variable W0 denotes a feature
vector with survival time T0, another random variable. Note that the survival function S can be
written as

S(t|w) = 1− P(T0 ≤ t |W0 = w),

which is 1 minus the CDF of T0 conditioned on W0 = w; we denote this CDF as F (·|w).

Once we have an estimate Ŝ for S, to predict a single value for the survival time corresponding to
test feature vector w, the most common approach is to look at where the survival function Ŝ(·|w)
crosses 1/2 (this is also where CDF F (·|w) crosses 1/2, which is a median of the distribution).
Specifically, for feature vector w, we find a median survival time estimate T̂0(w) to be a time τ such
that Ŝ(τ |w) ≈ 1/2. For example, we can compute T̂0(w) using the equation

T̂0(w) =
1

2

[
inf
{
t : Ŝ(t|w) ≤ 1

2

}
+ sup

{
t : Ŝ(t|w) ≥ 1

2

}]
, (A.1)

where in practice the infimum and supremum are taken over the observed times in the training data.
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B THE SURVIVAL LOSS FUNCTION OF THE WEIBULL ACCELERATED
FAILURE TIME (AFT) MODEL

As a second example of a survival model that can be combined with either of our proposed survival-
supervised topic modeling approaches, we present the Weibull AFT model.

Example 2 (Weibull AFT) The Weibull AFT model assumes each subject’s (possibly unobserved)
survival time Ti satisfies

log Ti = µ+ β>W + σεi,

where µ ∈ R, β ∈ Rr, and σ > 0 are model parameters, and noise variable ε has probability
density function fε(z) = exp(z−exp(z)) for z ∈ R. Under random censoring, maximum likelihood
estimation for µ, β, and σ amounts to minimizing the loss

LAFT(β,µ,σ|W ) := −
n∑
i=1

{
δi log fε(zi)− δi log σ + (1− δi) logSε(zi)

}
, (B.1)

where

zi=
log Yi − µ− β>Wi

σ
, Sε(t)=

∫ ∞
t

fε(u)du=e−e
t

.

Note that the AFT model is actually a proportional hazards model with hazard function

h(t|w) =
exp(−µ/σ)t1/σ−1

σ
exp(β>w).

Hence, after minimizing the loss function LAFT(β,µ,σ|W ) to estimate β, µ, and σ, we can plug in
their estimates into the hazard formula above and compute an estimate for survival function S using
equation (2.6).

To use the Weibull AFT survival model with our survival-supervised neural topic modeling approach
in Section 4, we would minimize loss (B.1), where we redefine

zi =
log Yi − µ− Ξi

σ
.

As a reminder, Ξi here is the output of the label network for subject i. In the simplest case, we
would set Ξi = β>Wi. However, we could replace this inner product with a neural net.

C COX AND WEIBULL AFT SURVIVAL LOSS GRADIENTS

For archetypal analysis, Cox and Weibull AFT survival models could both be readily used by using
the gradients given below.

Example 3 (Cox survival loss gradient) When Lsurv(W , θ) = LCox(β|W ) as given in equa-
tion (2.5) with θ = β, we have

∂Lsurv(W , θ)

∂W`,g
=

( n∑
i=1 s.t. Yi≤Y`

δi exp(β>W`)∑n
j=1 s.t. Yi≤Yj

exp(β>Wj)
− δ`

)
βg.

Example 4 (Weibull AFT survival loss gradient) When Lsurv(W , θ) = LAFT(β,µ,σ|W ) as
given in equation (B.1) with θ = (β,µ,σ), we have

∂Lsurv(W , θ)

∂W`,g
= − 1

σ
βg

[
exp

(Y` − β>W` − µ
σ

)
− δ`

]
.

D DATASET PREPROCESSING

D.1 PANCREATITIS

The pancreatitis dataset we evaluated on is created from MIMIC III, a critical care health records
database containing 52 thousand individuals and their hospital encounters involving admission to
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the ICU at Beth Israel Deaconess center between 2001 and 2012 (Johnson et al., 2016). Experi-
ments were conducted using a subset of MIMIC III version 1.4 dataset consisting of patients having
pancreatitis requiring admission to the ICU. Patients were included in the study if they have an ICU
admission with a primary billing code of pancreatitis, resulting in a cohort of 371 individuals. For
patients who are admitted to the ICU multiple times, we only consider their first visit to the ICU.
This subset of the data has no right-censoring.

Features extracted include demographics, medications, billing codes, procedures, laboratory mea-
surements, events recorded into charts, and vitals. Features were extracted from the relational
database into a 4-column format for patient id, time, event, and event value. To prevent erroneous
merging of different events into a single event, and to provide more informative events, event strings
are concatenations of the event descriptor prefixed with the table from which they are derived and
additional relevant information such as measurement type, measurement units, etc. Because events
recorded in charts are sometimes automated and sometimes manually entered, a physician-developed
mapping and lower-casing all fields were used to resolve duplicate entries. As we aim to predict the
patient length of stay in ICU, we extract clinical events from the subjects’ electronic health records
strictly before ICU admission. Our definitions of clinical events mean that a subject can have multi-
ple instances of one event; for example, one patient might have multiple results for a particular lab
test on file.

Single-occurrence categorical events (e.g., gender) are one-hot encoded, with one category removed
as the reference category. Multiple-occurrence categorical events (e.g., urine color) are encoded by
counting each categorys occurrences in a single subjects records. Numeric clinical events are treated
as categorical by mapping observed values to equally spaced ranges by quantile (5 bins of roughly
equal number of subjects per bin). Missing records are not imputed as missing certain events can
have clinical significance. Therefore, for features with incomplete records, an additional feature is
added solely to indicate whether missingness is observed for each subject; this approach to handling
missing data is motivated by the work of Lipton et al. (2016). After preprocessing, the total number
of features used for prediction is 2557.

D.2 BREAST CANCER

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset contains
genetic and clinical information for 1981 subjects with primary breast tumors Curtis et al. (2012).
We use the preprocessed version by Lee et al. (2018), who one-hot encoded 21 clinical features to
obtain 79 features.2 Of the 1981 subjects, 55% (1093) are right-censored. After one-hot encoding the
categorical features, a total of 79 features are used for prediction in experiments that do not involve
topic modeling. As the survival-supervised topic models we use do not handle continuous features,
we discretize each continuous feature into 5 equal-sized bins based on feature value quantiles, the
same way we did for the pancreatitis dataset. This results in a total of 100 features.

E HYPERPARAMETER SEARCH GRIDS

We perform grid search for all models except for DEEPSURV and DEEPHIT, which use their own
hyperparameter selection. We specify the search grid per method below.

Lasso-regularized Cox: lasso regularization parameter: {0.0001, 0.025, 0.05, 0.075, 0.1, 0.15, 0.25, 0.5}
Lasso-regularized Cox + PCA: lasso regularization parameter:
{0.0001, 0.025, 0.05, 0.075, 0.1, 0.15, 0.25, 0.5}; number of PCA components: {3, 5, 7, 10, 25}
Weibull AFT: no hyperparameter tuned

Weibull AFT + PCA: number of PCA components: {3, 5, 7, 10, 25}
k-nearest neighbor survival analysis: number of nearest neighbors k:
{4, 8, 16, 32, 64, 128, 256, 512}
k-nearest neighbor survival analysis + PCA: number of nearest neighbors k:
{4, 8, 16, 32, 64, 128, 256, 512}; number of PCA components: {3, 5, 7, 10, 25}

2https://github.com/chl8856/DeepHit
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Random survival forest: number of trees: {16, 32, 64, 128, 256, 512}
SURVLDA: number of topics r: {3, 5, 7, 10}; Dirichlet α: {0.1, 10}
SURVIVAL-ARCHETYPES: number of archetypes r: {3, 5, 7, 10}; archetypal analysis regularization
parameter λ: {10, 100, 1000}; survival loss weight η: {104, 105, 106, 107}
SURVIVAL-SCHOLAR: number of topics: {3, 5, 7, 10}; survival loss weight η:
{101, 102, 103, 104, 105, 106}

F EXAMPLES OF TOPICS LEARNED

Note that for each survival-supervised topic model learned, what matters in terms of how topics
predict survival time is the relative values of the Cox β coefficients for that specific model. A β
coefficient of 0 corresponds to a topic that gets ignored by prediction. Below, we present the topics
with nonzero β coefficient learned using all training data (with hyperparameters chosen via cross-
validation) for SURVIVAL-ARCHETYPES and SURVIVAL-SCHOLAR. Per topic, we indicate the β
coefficient and list the top 20 most probable words for that topic.

F.1 PANCREATITIS

SURVIVAL-ARCHETYPES finds 10 topics but only one that has a nonzero Cox β coefficient:

Topic 1 – Cox β coefficient 4.54308798
Word Probability within topic

20 gauge insertion date:::1 0.00259127
lab:blood:chemistry:sodium:::˜q4(139.0-142.0) count 0.00154494

lab:blood:chemistry:urea nitrogen:::˜q1(2.0-12.0) count 0.00153877
lab:blood:hematology:mcv:::˜q4(90.0-94.0) count 0.00152838

lab:blood:hematology:hematocrit:::˜q5(36.5-51.8) count 0.00147893
lab:blood:chemistry:gamma glutamyltransferase:::˜missing flag 0.00147567

lab:blood:chemistry:ntprobnp:::˜missing flag 0.00147308
lab:blood:chemistry:immunoglobulin g:::˜missing flag 0.00147301

chart:cvp alarm low:mmhg:::˜missing flag 0.00147280
chart:cvp alarm high:mmhg:::˜missing flag 0.00147280

chart:alt:iu/l:::˜missing flag 0.00147145
chart:ast:iu/l:::˜missing flag 0.00147145

lab:blood:hematology:nucleated red cells:::˜missing flag 0.00147084
lab:blood:hematology:granulocyte count:::˜missing flag 0.00147082

lab:blood:chemistry:protein electrophoresis:::˜missing flag 0.00147058
lab:blood:chemistry:cholesterol, ldl, measured:::˜missing flag 0.00146990

chart:troponin-t:ng/ml:::˜missing flag 0.00146951
prescribed:sodium phosphate via iv:mmol:::˜missing flag 0.00146929

chart:tank b psi.:na:::˜missing flag 0.00146928
chart:tank a psi.:na:::˜missing flag 0.00146928

SURVIVAL-SCHOLAR finds three topics, all with nonzero Cox β coefficients:

Topic 1 – Cox β coefficient 0.30225980
Word Probability within topic

lab:blood:chemistry:glucose:::˜q2(95.0-112.0) count 0.28912985
lab:blood:chemistry:anion gap:::˜q3(13.0-15.0) count 0.28761890

lab:blood:chemistry:urea nitrogen:::˜q1(2.0-12.0) count 0.28706142
lab:blood:hematology:rdw:::˜q4(15.8-17.4) count 0.28468764

lab:blood:hematology:hematocrit:::˜q3(30.4-33.3) count 0.28418380
lab:blood:hematology:platelet count:::˜q2(114.0-184.0) count 0.28227943

lab:blood:hematology:mcv:::˜q3(87.0-90.0) count 0.28181386
lab:blood:chemistry:sodium:::˜q3(137.0-139.0) count 0.28117300
lab:blood:chemistry:glucose:::˜q3(112.0-134.0) count 0.28062224
lab:blood:chemistry:potassium:::˜q4(4.3-4.8) count 0.27537790
lab:blood:chemistry:potassium:::˜q3(4.0-4.3) count 0.27388600
lab:blood:chemistry:magnesium:::˜q4(2.0-2.2) count 0.27342620
lab:blood:hematology:mch:::˜q4(30.5-31.7) count 0.27324143
lab:blood:hematology:rdw:::˜q3(14.7-15.8) count 0.27201820

lab:blood:hematology:hematocrit:::˜q2(27.7-30.4) count 0.27129397
lab:blood:chemistry:chloride:::˜q3(102.0-105.0) count 0.26823607
lab:blood:hematology:hemoglobin:::˜q3(10.2-11.2) count 0.26770705

lab:blood:hematology:mch:::˜q2(28.1-29.3) count 0.26591137
lab:blood:chemistry:urea nitrogen:::˜q5(34.0-128.0) count 0.26530087
lab:blood:hematology:red blood cells:::˜q3(3.4-3.8) count 0.26439255
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Topic 2 – Cox β coefficient−0.77905321
Word Probability within topic

chart:admit wt:kg:::˜missing flag 0.37567450
chart:head of bed:na:::˜missing flag 0.35496010

lab:blood:chemistry:digoxin:::˜missing flag 0.35346085
chart:nares r:na:::˜missing flag 0.35066888

prescribed:potassium phosphate via iv:mmol:::˜missing flag 0.35065705
chart:radiologic study:na:::˜missing flag 0.34568897

prescribed:atorvastatin via po:mg:::˜missing flag 0.34543383
prescribed:metronidazole via iv:mg:::˜missing flag 0.34471878
prescribed:dextrose 5% via iv:ml:::˜missing flag 0.34357762
prescribed:dextrose 50% via iv:g:::˜missing flag 0.34312600
chart:cough/deep breath:na:+/-:::˜missing flag 0.34219468
chart:chloride (serum):meq/l:::˜missing flag 0.34123975

chart:pain management route/status #1:na:::˜missing flag 0.34082162
chart:inv#2 waveformappear:na:::˜missing flag 0.34081900

chart:edema location:na:::˜missing flag 0.34070030
prescribed:heparin sodium via iv:unit:::˜missing flag 0.33888385

chart:pain level acceptable:na:::˜missing flag 0.33872578
chart:paw high:cmh2o:::˜missing flag 0.33695692

chart:resp alarm low:bpm:::˜missing flag 0.33690770
chart:alt:iu/l:::˜missing flag 0.33685216

Topic 3 – Cox β coefficient−1.06347895
Word Probability within topic

arterial line insertion date:::1 0.27548000
chart:resp alarm low:bpm:::˜q5(8.0-93.0) count 0.26509485

microbiology:blood culture:::na 0.25576746
20 gauge insertion date:::1 0.25267342

chart:nbp alarm high:mmhg:::˜q5(160.0-180.0) count 0.24518475
chart:head of bed:na:::˜missing flag 0.23182970

multi lumen insertion date:::1 0.22956896
lab:blood:blood gas:base excess:::˜q4(0.0-3.0) count 0.22251068

chart:nares r:na:::˜missing flag 0.22050865
lab:blood:chemistry:anti-nuclear antibody:::˜missing flag 0.21709190

chart:nares l:na:::˜missing flag 0.21417704
gu catheter insertion date:::1 0.21182594

chart:resp alarm - high:insp/min:::˜missing flag 0.21160777
chart:temperature fahrenheit:?f:::˜missing flag 0.20904190
prescribed:vancomycin via iv:mg:::˜missing flag 0.20473634

lab:blood:chemistry:acetaminophen:::˜missing flag 0.20447205
chart:pain level acceptable:na:::˜missing flag 0.20438956

chart:o2 saturation pulseoxymetry alarm - low:%:::˜missing flag 0.20393686
chart:cough type:na:::˜missing flag 0.20348457

chart:non-invasive blood pressure alarm - high:mmhg:::˜missing flag 0.20335248

F.2 BREAST CANCER

SURVIVAL-ARCHETYPES finds 3 topics; only 2 have nonzero Cox β coefficients:

Topic 1 – Cox β coefficient 102.32197794
Word Probability within topic

HER2 IHC status.1 0.04181057
Her2 Expr.1 0.03842817

histological.1 0.03764347
inf men status 0.03623912
ER IHC status.1 0.03445554

ER Expr 0.03336668
Genefu 0.03303586

HER2 SNP6 state.2 0.03154653
int clust memb.3 0.02787247

grade.2 0.02684169
cellularity 0.02388820
PR Expz.1 0.02362706
PR Expz 0.02182748

lymph nodes positive:0.0-1.0 0.02049815
site.2 0.02015589

cellularity.2 0.01693353
grade.1 0.01609865
group 0.01588346

Pam50 Subtype.2 0.01506807
stage:2.0-4.0 0.01466086
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Topic 3 – Cox β coefficient−44.67700060
Word Probability within topic

HER2 IHC status.1 0.04247266
Her2 Expr.1 0.04042959

ER IHC status.1 0.03680399
ER Expr 0.03587382

histological.1 0.03482885
HER2 SNP6 state.2 0.03436751
inf men status 0.03308938

Genefu 0.03169076
int clust memb.3 0.02775788

lymph nodes positive:0.0-1.0 0.02760196
PR Expz 0.02661263

cellularity 0.02389579
grade.2 0.02212554

Pam50 Subtype.2 0.01950571
group 0.01930659

PR Expz.1 0.01884195
grade.1 0.01851070

cellularity.2 0.01631843
Treatment.5 0.01531958
stage:2.0-4.0 0.01528393

SURVIVAL-SCHOLAR finds 5 topics all with nonzero Cox β coefficients:

Topic 1 – Cox β coefficient 0.71125180
Word Probability within topic

NPI:5.05-6.3 0.29416186
grade.2 0.26243737

Treatment.3 0.23528770
PR Expz.1 0.22858755

ER IHC status 0.22115701
age at diagnosis:72.44-92.14 0.19971548

group.2 0.18821794
ER Expr.1 0.18029946
group.1 0.16401250

lymph nodes positive:3.0-45.0 0.14714028
histological.1 0.14465626
int clust memb.4 0.13438721

Her2 Expr 0.12702571
size:32.0-182.0 0.12109776

site.4 0.11865168
size:25.0-32.0 0.10704651

Genefu.3 0.10639679
Pam50 Subtype 0.10231068

stage:1.1903520209-2.0 0.09872285
NPI:4.05-5.05 0.09574302

Topic 2 – Cox β coefficient−0.21598756
Word Probability within topic

stage:0.0-1.0 0.40788037
Treatment 0.31841293

histological.1 0.31109884
HER2 SNP6 state.1 0.28868553
int clust memb.3 0.28224890

PR Expz 0.26736894
stage:1.1903520209-2.0 0.25793970

Treatment.4 0.25260258
PR Expz.1 0.25148767

histological.7 0.24185723
Her2 Expr.1 0.23500897

int clust memb.6 0.22067617
ER Expr.1 0.21519190
Genefu 0.21518746
group.1 0.21012034
grade.2 0.21007878
site.2 0.20887140

age at diagnosis:72.44-92.14 0.20778224
HER2 IHC status 0.20411228
size:32.0-182.0 0.20289177
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Topic 3 – Cox β coefficient−0.65637207
Word Probability within topic

HER2 IHC status.1 0.37488750
HER2 SNP6 state.2 0.30100745
int clust memb.3 0.25848496
HER2 SNP6 state.1 0.24172206

Treatment 0.22806108
ER Expr 0.22049715

inf men status.1 0.21472536
lymph nodes positive:0.0-1.0 0.21002777

grade.1 0.17921847
histological.7 0.17481270
NPI:3.04-4.03 0.17427845
histological.3 0.16505045

PR Expz 0.16391344
inf men status 0.15946893
Her2 Expr.1 0.15669954

group 0.15509687
int clust memb.5 0.15460853

grade 0.15454559
cellularity.1 0.15221779

site.2 0.15143663

Topic 4 – Cox β coefficient−0.74412441
Word Probability within topic

Her2 Expr.1 0.24829830
lymph nodes positive:0.0-1.0 0.24766846

HER2 SNP6 state.2 0.21669297
cellularity 0.20731404

histological.5 0.19091570
histological.1 0.18400107
ER IHC status.1 0.18253753
Treatment.3 0.17659634
Pam50 Subtype 0.17532045

PR Expz.1 0.16891813
Genefu 0.15879555
ER Expr 0.15030436

HER2 IHC status.1 0.12956520
histological.7 0.12452137

HER2 IHC status.2 0.12290693
size:0.0-15.0 0.12223840

site.2 0.12201823
int clust memb.3 0.11608906

site.1 0.11278336
NPI:3.04-4.03 0.10929855

Topic 5 – Cox β coefficient−0.78542084
Word Probability within topic

PR Expz 0.35541302
Her2 Expr.1 0.31779182

HER2 IHC status.1 0.30835040
ER Expr 0.30589350

lymph nodes positive:0.0-1.0 0.29850137
HER2 SNP6 state.2 0.27557123

grade.1 0.26845238
group 0.26098454

age at diagnosis:48.07-57.87 0.24533404
grade 0.24168900

ER IHC status.1 0.22550695
stage:1.0-1.1903520209 0.21476460

NPI:1.0-3.04 0.21265814
NPI:4.03-4.05 0.20501652

site 0.19819605
histological.5 0.19405621
Pam50 Subtype.2 0.18937051

group.3 0.16390443
histological.9 0.14986861

Genefu.1 0.14619182
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