Under review as a conference paper at ICLR 2020

FUNCTION FEATURE LEARNING OF NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a Function Feature Learning (FFL) method that can measure the sim-
ilarity of non-convex neural networks. The function feature representation pro-
vides crucial insights into the understanding of the relations between different
local solutions of identical neural networks. Unlike existing methods that use
neuron activation vectors over a given dataset as neural network representation,
FFL aligns weights of neural networks and projects them into a common function
feature space by introducing a chain alignment rule. We investigate the function
feature representation on Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN), finding that identical
neural networks trained with different random initializations on different learn-
ing tasks by the Stochastic Gradient Descent (SGD) algorithm can be projected
into different fixed points. This finding demonstrates the strong connection be-
tween different local solutions of identical neural networks and the equivalence of
projected local solutions. With FFL, we also find that the semantics are often pre-
sented in a bottom-up way. Besides, FFL provides more insights into the structure
of local solutions. Experiments on CIFAR-100, NameData, and tiny ImageNet
datasets validate the effectiveness of the proposed method.

1 INTRODUCTION

Neural networks have achieved remarkable empirical success in a wide range of machine learning
tasks (LeCun et al., [1989; Krizhevsky et al., [2012; |He et al.,2016) by finding a good local solution.
How to better understand the characteristics of local solutions of neural networks remains an open
problem. Recent evidence shows that identical neural networks trained with different initializations
achieve nearly the same classification accuracy. Are these trained models (local solutions) equiva-
lent? (Li et al.l[2016) claimed that neural networks converge to apparently distinct solutions in which
it is difficult to find one-to-one mappings of neuron units. (Raghu et al., 2017; Morcos et al., 2018;
Kornblith et al.l 2019) concentrated on comparing representations of neural networks using the in-
termediate output of neural networks over a given dataset. These studies provide important insights
into the understanding of similarity of neurons by probing and aligning the intermediate output (or
neuron activation) representation of data points, but they do not focus on how to directly measure
the similarity of function feature representations of neural networks using weights of networks.

In this paper, we propose a Function Feature Learning (FFL) method to measure the similarity be-
tween different trained neural networks. Instead of using intermediate activation/response values of
neural networks over a bunch of data points, FFL directly learns an effective weight feature represen-
tation from trained neural networks. To address the problem of random permutated weights (Figure
[Ip, a chain alignment rule is introduced to eliminate permutation variables. The aligned weights are
then learned to project into a function feature representation space by classifying different classes
of local solutions. The learned function features can be used to describe the characteristics of local
solutions.

Function feature learning is built upon data feature learning. Given a set of data points, data feature
learning is to learn a function f; that can describe the underlying representations to measure data
similarity. Similarly, given a set of data representation functions { f; }, function feature learning is to
learn a function F' that can measure the similarity of { f;}. Specifically, an identical neural network
with different weights forms a family of functions { f;} that could cover different function types (an

Under review as a conference paper at ICLR 2020

identical neural network with different weights can be used as different function types for different
learning tasks in practice). Function feature learning attempts to discover characteristics of functions
and thus provides an effective metric for function similarity measure. In this paper, we propose to
describe the function feature representation by using weights of neural networks instead of network
structures because neural networks often share a common set of functional building blocks, e.g.,
global/local linear units, activation units, and normalization units.

Overall, we make four main contributions as follows.

e We propose a Function Feature Learning (FFL) method to measure the similarity of iden-
tical neural networks trained from different initializations. FFL first addresses the random
permutation of weights of neural networks by using a chain alignment rule and then projects
the aligned weights into a common space. We find that there exist strong relations between
different local solutions optimized by the Stochastic Gradient Descent (SGD) algorithm.

e We investigate function feature representations of Multi-Layer Perceptron (MLP), Convo-
lutional Neural Network (CNN), and Recurrent Neural Network (RNN) on the CIFAR-100,
NameData, and tiny ImageNet datasets. With the chain alignment rule, the proposed FFL
approach achieves consistent accuracy gains for three types of neural networks.

e We investigate the chain based semantics and the results suggest that the semantics are
hierarchical. The projection directions of all layers are arranged in order along with the
depth of neural networks. In short, the semantics are presented in a bottom-up way.

e We analyze several factors of neural networks and find that 1) adding more layers or chang-
ing the ReLU activation function into leaky ReLLU has little impact on the structure of local
solutions; 2) changing plain networks into residual networks has some impact on local so-
lutions; 3) SGD often converges to a stable structure of local solutions while the Adam
optimizer does not.

Related Work. Neural networks are often regarded as black-boxes due to the non-convexity. To bet-
ter understand these black-boxes, various approaches provide effective tools for visual interpretabil-
ity of neural networks (Simonyan et al., 2013; |Dosovitskiy & Broxl [2016; [Zeiler & Fergus, 2014;
Zhou et al.| 2015} Selvaraju et al., 2016). These approaches utilized gradient of the class scores
with respect to input or de-convolution operations to visualize the attention activations at high-level
semantics.

Instead of building visual interpretability foundations between input and output, recent research
(Raghu et al.| [2017;|Morcos et al.,2018];|[Kornblith et al.| |2019) focused on representations of neural
networks by exploiting intermediate activations/features to describe the similarity of neural net-
works. For example, SVCCA (Raghu et al., 2017) used singular value decomposition and canonical
correlation analysis tools for network representations and similarity comparison of neural networks.
After that, a projection weighted CCA approach was developed for better understanding similarity
of neural networks. In (Kornblith et al.,2019), a centered kernel alignment method was proposed to
measure the relation between data representational similarity matrices. Our approach concentrates
on the function/weight feature representation but not intermediate representations of data points,
which is greatly different from these works.

2 PRELIMINARIES

In this section, we first introduce related notations and then describe the permutation problem of
neural networks.

2.1 NOTATION

Let a L-layer neural network contain a series of stacked units {g;(x; W;)}¥ with global/local lin-
ear operations, where z € R™ is input and W; € R™-1*™ denotes the weights of the [-th
unit. n; denotes the number of neurons in the [-th layer. We formulate the stacked units as
Fr = o(gr(o(9r—1(...o(g1(x; W1))...; Wr_1)); Wr)). Fp is a family of functions that share an
identical network structure and o is an activation function. (W7, Wa, ..., W _1, W) determines the
function representation of the neural network. We denote h; = o(g;(...0(g1(x; W1))...; W;)) as the

Under review as a conference paper at ICLR 2020

permutate

Figure 1: Permutation of neural networks.

[-th hidden vector, h; € R™. When g; is a local linear/convolutional operation, F, represents a CN-
N. When g; is a global linear operation, F, represents an MLP. When {g;(x; W;)}¥ share weights,
F, represents an RNN. Because a CNN can be regarded as a patch-based MLP and an RNN can be
regarded as a variant version of MLP, we consider MLP for formulation. Besides, the term function,
local solution, and trained model will be used synonymously for better understanding.

2.2 RANDOM PERMUTATION OF NEURAL NETWORKS

Neurons in the intermediate layers of neural networks (termed intermediate neurons) are often sym-
metric without any constraint. Neurons in the first and last layers (side neurons) are manually con-
strained by data and label structures, respectively. Under such constraints, permutating intermediate
neurons and their corresponding weights could produce the same output, as mentioned in (Li et al.,
2016). We refer to them as neuron permutation and weight permutation.

Permuting neurons and weights according to a certain rule could produce the same output. Because
activation functions are often element based operations and do not have any impact on the permuta-
tion of neural networks, we consider a 4-layer linear MLP for simplification, as shown in Figure I]
(a). The neural network takes x = (x1,22)" as input and outputs y = (y1,%2)”. The network con-
tains two intermediate hidden layers, denoted as k1 = (0.2,0.7,0.5)7 and hy = (hi, h3, h3)T. The
weights W; and Ws are [0.8,0.9;0.1,0.7;0.8,0.2]7 and [0.5,0.9,0.5;0.3,0.1,0.4;0.4,0.3,0.2] 7
(MATLAB-like notation), respectively. Now we permutate the first and second neurons of h; and
permutate the corresponding columns of W; and rows of W,. We obtain h/1 = (0.7,0.2,0.5)T and
Wl, = [0.1,0.7;0.8,0.9;0.8,0.2]7 and W2/ = [0.9,0.5,0.5;0.1,0.3,0.4;0.3,0.4,0.2]7, as shown
in Figure |I| (b). Given any input z, the output of these two functions (a) and (b) are equivalent be-
cause W Wz = (W,)T(W,)T 2. Neurons and weights are just like flexible nodes and wires that
can be easily exchanged. Weight permutation (blue and green wires are exchanged) is exchanged
in accord with neuron permutation. Due to neuron permutation and weight permutation, repeating
the optimization procedure of identical neural networks would generate different permutations of
equivalent local solutions even if we assume neural networks are convex. Therefore, it is important
to align the weight permutation of neural networks before analyzing the similarity of local solutions
of neural networks.

3 METHOD

In this section, we first provide a principle for validation foundation. We then introduce a rule for the
alignment of neural networks. Finally, we propose to learn a function feature representation based
on the aligned weights.

3.1 LEARNING TELLS THE TRUTH PRINCIPLE

In machine learning, an effective way to learn underlying patterns or rules is to exploit labeled data
points to perform supervised learning. However, in some cases, it is difficult to know if a rule is true

Under review as a conference paper at ICLR 2020

or an annotation approach is correct. To this, we introduce a Learning tells the truth (LTT) principle.
Suppose there exists a learning algorithm such that an assumption rule learned from a training set
can be also well-validated on a test set, then the rule holds.

In this paper, we do not know the ground truth labels of local solutions of neural networks. We first
assume that an identical neural network with different initializations can produce local solutions with
the same solution label by repeating a similar training procedure on the same data set. Under such
an assumption, we can create a solution set that contains different solution classes by using different
data sets. We try to find an effective learning algorithm such that the assumption rule learned from
the training set can be well-validated on the test set.

3.2 CHAIN ALIGNMENT RULE OF NEURAL NETWORKS

The common approach of aligning weights of neural networks is to transform
(Wi, Wy, ... Wr_1,Wr) into a standard form (W Wy, .., W}_,, W) that is invariant to
weight permutation. However, it is difficult to define such an ideal standard form or directly match
two solutions because the structure of local solutions is not only affected by the symmetry of
neurons but also determined by the non-convex optimization algorithm. To achieve this, we attempt
to eliminate the permutation factors by considering the relations between variables of different
layers.

We first consider the weight W;. W is a ng X n; matrix. If we want to permutate neurons of
h1 and keep the output unchangeable, we have to permute the columns of W and the rows of W5
correspondingly, as illustrated in Figure [I] Given any non-standard W7, suppose there is a column
permutation matrix)1 € R™*™ such that W; can be transformed into W7* . We have

WiQ, = Wr. (D

In Eq. |1} we cannot directly solve W7, because both W;* and); are unknown. Instead, we eliminate
the permutation factor ()1 by

(W1Q1)(W1Q1)" = Wiy, 2)

Because ()7 is the permutation of the identity matrix I and thus a normalized orthogonal matrix.
Hence, Q1 Q¥ = I™1*™1, We obtain

wiwl =wrw;T, 3)
which is invariant to random permutation).

We then consider W5. W5 could be affected by the column permutation of W} and the row permuta-
tion of W3. Given any non-standard W, suppose there are a row permutation matrix P, € R™ *™
and a column permutation matrix Q2 € R"™2*"2 such that W5 can be transformed into 5. We have

PW2Qs = W3, 4)

where Q; = PJ, because the standardization of W5 is jointly affected by W7, as illustrated in
Figure|ll Q» and P, are orthogonal matrixes. Hence, Q1 Py = PJ Py = I™ X" (Q,QF = 2%z,
In Eq. 4] it is difficult to eliminate both P, and Q2. Combining Eqgs. [Tjand A} we obtain
W1iQ1PoWoQo = WiWoQo = WiWy &)
Similar to Eq. [2] we eliminate the permutation factor Q2 by
(WaWaQa2) (Wi WaQa)" = (Wi W5) (Wi W)™ (©6)
Hence, we obtain
WAWL W Wi = Wi W5 Wy Wi, (7)

In this way, we can easily generalize Eq. [7|to the case of the [-th layer
WiWy. WWE . WIwE =wrws. . wirwrt. o wiwl=. 8)

It is observed that the left of Eq. [§]is independent of permutation factors. We term Eq. [§] as the
chain alignment rule of neural networks. Here, a chain is defined as a sequence of layers of a
neural network that begins with the first layer. The [-th chain is from the 1-st layer to the [-th layer.

Under review as a conference paper at ICLR 2020

3.3 FUNCTION FEATURE LEARNING OF NEURAL NETWORKS

Data feature learning is often achieved by minimizing the distance between intra-class data points
and maximizing the distance between inter-class data points. Similar to data feature learning, func-
tion feature learning can be also achieved by minimizing the distance between intra-class local
solutions and maximizing the distance between inter-class functions. Here, intra-class functions are
a family of local solutions trained by similar procedures on the same dataset. Inter-class functions
are those who are trained on different datasets. For each function (local solution) class, we repeat
the training procedure m; times and thus obtain M = Zfil m; trained models, where N is the
number of solution classes. We then use these local solutions as metadata points to perform function
feature learning to measure the function similarity of neural networks.

We investigate the function feature representation based on chains. For the [-th chain, the aligned
weight Wi Wo... W, WL . WL W with size of (n1,n1) is reshaped into a (n1 x nq, 1) vector and
then projected into a common function feature space by learning a projection matrix ©;. We use the
cross-entropy loss for function classification

N
Ly== YVilog(q}))
i=1

where) is the i-dimensional value of the one-hot label). ¢! represents the probability of the i-th
function class of the /-th chain. We train L function classifiers for L types of chains. Note that we
normalize the weights of each layer in MLP during the function feature learning. When measuring
the local solution similarity of two neural networks, we extract function feature representation by
using projected vectors. We normalize projected vectors and use the cosine similarity to compute
the function similarity. We evaluate the chains from [= 1 to L and find that the isometric chains
of local solutions are strongly related by the SGD optimization algorithm. We empirically evaluate
that local solution classification can achieve about 99% top-1 accuracy.

4 EXPERIMENT

In this section, we study the effectiveness of the proposed function feature representation of MLP,
CNN, and RNN on on three datasets, i.e., CIFAR-100 (Krizhevsky & Hintonl 2009)), tiny ImageNet
(Russakovsky et al.,[2015)), and NameData (Paszke et al.|[2017)).

4.1 EVALUATIONS ON THE TINY IMAGENET DATASET

The tiny ImageNet dataset, which is drawn from the ImageNet (Russakovsky et al., 2015}, has 200
classes, 64 x 64 in size. Each class has 500 training images, 50 validation images, and 50 test
images. We evaluate the function features of MLP and CNN on the tiny ImageNet dataset.

Local solution sets. We train a 5-layer convolutional network (PlainNet-5) and a 4-layer MLP
(MLP-4) to create two local solution sets for evaluation. The PlainNet-5 network consists of 4 con-
volutional units and one fully-connected layer. Each convolutional unit contains one convolutional
layer with a kernel size of 3 x 3, one ReLU function, one BatchNorm layer and one pooling layer.
The MLP-4 consists of 4 fully connected layers (followed by one ReLU functions), among which
three layers have 500 hidden neurons and one has N neurons. We split 200 classes into 50 groups as
50 data subsets with solution labels 0~49. Each data subset contains 4 classes. For both MLP and
CNN, we repeat the training procedure 100 times to obtain 100 local solutions for each data subset.
We generate 5,000 local solutions (weights) for MLP-4 and PlainNet-35, respectively.

Implementation. When generating local solution sets, we use SGD with a batch size of 128. For
PlainNet-5, the learning rate starts from 0.1 and is divided by 10 after 30 epochs and we train for 50
epochs. For MLP-4, the learning rate starts from 0.1 and is divided by 10 after 70 epochs and we
train for 100 epochs. For saving memory, we resize images into 32 x 32 as input and only analyze
the first three chains in function feature learning (the fourth chain of CNN takes 72G GPU memory
even through the batch size is 1).

Under review as a conference paper at ICLR 2020

— 7 —~ 5 B . I R X <
< 100 99.4 99 99.1 < 100 99.6 99.3 995 100 99.3 98.8 98.0 100 X
& g & oy & I unaligned
< s g g I aligned
3 50 3 50 g 50 g 50
Q Q
P S IS IS
- -
y 24 280 | T [ZM 44l 4ol | X 95 0
8 0 8 0 g 0 g 0
1 2 3 1 2 3 = 1 2 3 = 1 2 3
layer/chain layer/chain layer/chain layer/chain
(a) MLP classification (b) CNN classification (c) MLP retrieval (d) CNN retrieval

Figure 2: Evaluations on the tiny ImageNet Dataset. “layer” is the x-axis of the unaligned method
and “chain” is the x-axis of the aligned method. The following figures are the same.

S S S 100 & 100
> > i
oy Iy g g I urphgned
IS I g g I aligned
3 3 g 50 3 50
Ia) Ia) Q Q
3 3 IS IS
— — 0! !
L L X X
g g § 0 § 0
1 2 3 = =
layer/chain layer/chain layer/chain layer/chain
(a) MLP classification (b) CNN classification (c) MLP retrieval (d) CNN retrieval

Figure 3: Evaluations on the CIFAR-100 Dataset.

When training the function feature representation, we use SGD with a batch size 1. The learning
rate is 0.001 and is divided by 10 after 6 epochs. We also set a baseline without weight alignment.
For each layer, we directly learn to classify its weights.

Local solution classification. We first evaluate the performance of local solution classification on
MLP and CNN. Similar to image classification, we predict the solutions labels of trained models
by using the chain alignment rule and the vector projection. For each solution class, we sample
60 local solutions for training while the other 40 for test. The training set contains 3,000 trained
local solutions while the test set contains 2,000 local solutions. We train the function features by
classifying 50 solution classes.

The experimental results are shown in Figure [2] (a) and (b). In local solution classification, our
proposed method achieves 99.4%, 99.7% and 99.1% top-1 accuracy using MLP and 99.6%, 99.3%
and 99.5% using CNN. The high performance validates the function feature representation of local
solutions with different solutions labels can be closely projected into different fixed points. Without
using the chain alignment rule, the performance drops significantly, e.g., 62.9%, 2.4% and 2.8%
using MLP, 9.7%, 4.4% and 4.0% using CNN. Besides, for the baseline without alignment, the
first layer also obtains good performance, because the first layer only has one column permutation
variable and thus the row of the matrix contains discriminative information. We also observed that
all types of chains can achieve higher performance. This suggests that semantics of neural networks
are hierarchical in a bottom-up way. In other words, the projection directions of neural networks
are arranged in order. Otherwise, the out-of-order projection directions confuse the system and thus
lead to poor performance.

Local solution retrieval. In local solution retrieval, we use the image retrieval metric for local solu-
tion retrieval evaluation, i.e., cumulative matching characteristic (2007). Local solution
retrieval shows the generalization of a feature representation because the classes of training and test
set are non-overlapping. As shown in Figure [2] (c) and (d), our method achieves 99.3%, 98.8% and
98.0% rank-1 accuracy using MLP. For the function feature representation of CNN, the proposed
model achieves 98.5%, 96.3%, and 97.0%. Without using the chain alignment rule, the performance
drops to 85.3%, 9.5%, and 5.3% on MLP, 15.3%, 8.8%, and 11.0% on CNN. The local solution
retrieval results show the robustness of the function representation learning.

Under review as a conference paper at ICLR 2020

Table 1: Evaluations on the NameData Dataset using RNN.

unaligned aligned
local solution classification | 17.2% top-1 | 100.0% top-1
local solution retrieval 21.3% rank-1 | 95.7% rank-1

4.2 EVALUATIONS ON THE CIFAR-100 DATASET

The CIFAR-100 dataset (Krizhevsky & Hinton, |2009), 32 x 32 in size, has 100 classes containing
600 images each. There are 500 training images and 100 testing images per class.

Local solution sets. We train PlainNet-5 and MLP-4 to form two local solution sets on CIFAR-100.
The 100 classes of CIFAR-100 is split into 50 groups as 50 data subsets with solution labels 0~49.
Each data subset has 2 image classes. For each data subsets, we repeat the training procedure 100
times to obtain 100 local solutions. Finally, we obtain 5,000 local solutions for MLP and CNN,
respectively.

Implementation. The implementation of CIFAR-100 is similar to that of tiny ImageNet. The
structure of PlainNet-5 and MLP-4 slightly differs from previous ones because each data subset
of CIFAR-100 contains 2 classes and the dimension of the last fully connected layer is 2.

Local solution classification and retrieval. In both local solution classification and retrieval, our
method obtains about 98.0% top-1 accuracy and 98.0% rank-1 accuracy, as shown in Figure[3] These
results demonstrate the effectiveness of our proposed model once again.

4.3 EVALUATIONS ON THE NAMEDATA DATASET

The NameData dataset (Paszke et al.,[2017) contains a few thousand surnames from 18 languages
of origin. It is used to train a character-level RNN that can predict which language a name is from
based on the spelling.

Local solution sets. We train a GRU (Chung et al.,|2014) based Recurrent Neural Network (RNN)
with two GRU cells (GRU-2) on NameData. A fully connected layer is added after the GRU module
for classification. We do not use LSTM (Sundermeyer et al., [2012) because we find that GRU is
better than LSTM in our setting. We split 18 classes into 9 groups as 9 data subsets with solution
labels 0~8. Each data subset contains 2 classes. We repeat the training procedure 100 times to
obtain 100 local solutions for each class. Finally, we generate 900 local solutions.

Implementation. When generating the local solution set, we use SGD with a mini-batch size of 1.
The learning rate starts from 0.1 and is divided by 10 after 7,000 batches and we train for 10,000
batches. When training the function representation, we use SGD with a mini-batch size 1. The
learning rate is 0.001 and is divided by 10 after 6 epochs.

Local solution classification and retrieval. We evaluate the function feature representation of RNN
with solution classification and retrieval metrics as discussed in Section With the chain rule
alignment, the proposed method obtains 100.0% top-1 accuracy in the classification setting and
95.7% rank-1 in retrieval setting. Without the alignment approach, the accuracy is 17.2% in classi-
fication and 21.3% in retrieval.

4.4 EFFECT OF DIFFERENT FACTORS

We then study four potential factors on the CIFAR-100 dataset, as described as follows. 1) Baseline.
The baseline is implemented by PlainNet-5 with the ReLU activation function and is optimized
by SGD. 2) Network depth (“Depth”). Depth is implemented by adding a convolutional unit to
PlainNet-5, referred to as PlainNet-6. 3) Network structure (“Res5”). Res5 is designed as a 5-
layer residual network (ResNet-5). Note that weight size is kept the same. 4) Optimizer (“Adam”).
Adam is implemented by replacing the SGD optimizer with an Adam optimizer. The initial learning
rate is 0.001. 5) Activation function (“Leaky”). Leaky is implemented by replacing all of the ReLU
activation functions with the leaky ReL.U functions.

Under review as a conference paper at ICLR 2020

100 100
2 I Gascline) I Gascline
g I Res5 5 I Res5
8 5 [Leaky S 5o [Leaky
g I Depth - I Depth
& [Adam x [Adam
i<l IS
0 = 0
1 2 3 1 2 3
layer/chain layer/chain
(a) Performance of different settings in classification (b) Performance of different settings in retrieval
Figure 4: Performance of different settings.
100 100
Z I saseline g I saseline
g [Res5 5 I Res5
g o [Leaky g8 5o [Leaky
ﬁ I Depth — I Depth
a [Adam = [Adam
k=] S
0 =0
1 2 3 1 2 3
layer/chain layer/chain
(a) Effect of 4 factors on local solution in classification (b) Effect of 4 factors on local solution in retrieval

Figure 5: Effect of four factors on the structure of local solution.

We implement four settings by changing one of four factors For each factor, we replace the factor
of the baseline by a new one while keeping the other settings unchanged. For each factor, we train
5,000 local solutions (models) and the solution set is split into the training and test sets as mentioned
in[d.2] We study two points. First, we analyze the performance of the proposed method in different
settings. Second, we analyze the effect of four factors on the structure of local solutions.

Performance of different settings. We evaluate the performance of the proposed method on four
new solution sets. As shown in Figure[d] we can observe two key points. First, in both local solution
classification and retrieval, using the residual network structure, leaky ReLLU activation function or
adding one more layer can also obtain higher performance of solution classification and retrieval.
Second, the Adam optimizer cannot achieve good performance, the reason could be that the Adam
optimizer converges to unstable structures of local solutions.

Effect of four factors on the structure of local solutions. Previous discussions focus on the evalua-
tion in a certain setting. In this experiment, we want to find out the effect of changing one of these
factors on the structure of local solutions. We train models by using the baseline setting and test by
another setting. As shown in Figure[5] we find several key points. First, when applying the function
features of PlainNet-5 to that of ResNet-5, the performance drops in the solution classification set-
ting. That means the structure of local solutions of ResNet-5 is changed to some extent compared
with PlainNet-5. Second, replacing ReLLU by Leaky ReL.U or adding one layer to PlainNet-5 nearly
do not change the structure of local solutions due to the higher performance in solution classifica-
tion. Third, the structure of local solutions of Adam is quite different from that of SGD, the reason
could be the unstable adaptive convergence against the convexity of neural networks.

5 CONCLUSION

In this paper, we present a Function Feature Learning (FFL) method that can measure the similarity
of non-linear neural networks and thus provides crucial insights into the understanding of the relation
between different local solutions of identical neural networks. FFL introduces a novel chain align-
ment rule for parameter alignment. FFL is used for Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), and Recurrent Neural Network (RNN) and evaluated on three datasets. The
promising results demonstrate the strong connection between different local solutions of identical
neural networks and the equivalence of projected local solutions by SGD. Besides, the semantics are
often presented in a bottom-up way. Finally, FFL provides more insights into the structure of local
solutions.

Under review as a conference paper at ICLR 2020

REFERENCES

Junyoung Chung, Caglar Giil¢cehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In CVPR, pp. 48294837, 2016.

Doug Gray, Shane Brennan, and Tao Hai. Evaluating appearance models for recognition, reacquisi-
tion, and tracking. 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. arXiv preprint arXiv:1905.00414, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Iclr, 2016.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems, pp.
5727-5736, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, pp. 6076-6085, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visu-
al recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. 2016.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional network-
s: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

Martin Sundermeyer, Ralf Schlter, and Hermann Ney. Lstm neural networks for language modeling.
In Interspeech, 2012.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In ECCV,
pp. 818-833. Springer, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. 2015.

	Introduction
	Preliminaries
	Notation
	Random Permutation of Neural Networks

	Method
	Learning tells the truth principle
	Chain Alignment Rule of Neural Networks
	Function Feature Learning of Neural Networks

	Experiment
	Evaluations on the tiny ImageNet Dataset
	Evaluations on the CIFAR-100 Dataset
	Evaluations on the NameData Dataset
	Effect of different factors

	Conclusion

