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ABSTRACT

Learning group representation is a commonly concerned issue in tasks where the
basic unit is a group, set or sequence. The computer vision community tries to
tackle it by aggregating the elements in a group based on an indicator either de-
fined by human such as the quality or saliency of an element, or generated by a
black box such as the attention score or output of a RNN.
This article provides a more essential and explicable view. We claim the most
significant indicator to show whether the group representation can be benefited
from an element is not the quality, or an inexplicable score, but the discrimia-
bility. Our key insight is to explicitly design the discrimiability using embedded
class centroids on a proxy set, and show the discrimiability distribution w.r.t. the
element space can be distilled by a light-weight auxiliary distillation network.
This processing is called discriminability distillation learning (DDL). We show
the proposed DDL can be flexibly plugged into many group based recognition
tasks without influencing the training procedure of the original tasks. Compre-
hensive experiments on set-to-set face recognition and action recognition valid
the advantage of DDL on both accuracy and efficiency, and it pushes forward the
state-of-the-art results on these tasks by an impressive margin.

1 INTRODUCTION

With the rapid development of deep learning and the easy access to large-scale group data, recogni-
tion tasks using group information has drawn great attention in the computer vision community. The
rich information provided by different frames can complement each other to boost the performance
of tasks such as face recognition, action recognition and person re-identification. While common
practice is to either aggregate the whole set by average or max-pooling, or sample randomly from
a whole video, they ignore the fact that certain frames contributes negatively towards recognition
tasks. Thus, an important issue is to select represent samples from the whole set efficiently for
group understanding.

To tackle such cases, previous methods aims at defining quality or saliency of an element, or learning
weights automatically in a self-attentional manner. For example, Liu et al. (2017b) propose the
Quality Aware Network (QAN) to learn quality scores for each frame inside an image set during
network training. Other works borrow same idea and extend to specific tasks such as video-based
person re-identification by learning spatial-temporal attentions. However, the whole online quality
or attention learning procedure are either manually designed or learned through a black box, which
lack explainablility. Also, their online learning has to be specifically trained with the main network,
which cost great computation burden.

In this work, we explore deeper into the underlying mechanism for defining effective elements in-
stead of relying on self-learned attention. Assuming that a base network has already been trained for
element-based recognition using class labels, we define the “discriminability” of one sample by how
difficult it is for the network to discriminate its class. It can be observed that the feature embedding
of elements lie close to the centroid of its corresponding class are the representatives of this class,
while features far away or closer to other classes are the confusing ones which are not distinguish-
able enough. Inspired by this observation, we identify a successful discriminability indicator by
measuring one embedding’s cosine distance with class centroids, and compute the ratio of between
positive and hardest-negative, where the positive is its distance with its class’s corresponding cen-
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triod and the hardest-negative is the closest counterpart. This process is defined as discriminability
distillation regulation (DDR).

Armed with recent theories on the homogeneity between class centroids and projection weights of
classifiers, the entire distance-measuring procedure can be easily accomplished by simply encoding
all elements in one group. Thus, discriminability scores can be assessed for each element after the
training of the base network. This assessing procedure is highly flexible without quality supervision
nor re-training base network, so it can be adopted to any existing base. With our explicitly designed
discriminability indicator on the training set, the distillation of such discriminability can be success-
fully performed with a light-weight network, which shows the superiority of our proposed indicator.
We call our whole procedure uniformly as discriminability distillation learning (DDL).

The next step is towards finding better aggregation policy. At the test phase, all samples are first
sent to the light-weight discriminability distillation network, only frames will high scores will be
weighted and aggregated. We evaluate the effectiveness of our proposed DDL on two classical yet
challenging tasks: set-to-set face recognition and action recognition. Comprehensive experiments
show the advantage of our method on both recognition accuracy and computational efficiency. We
achieve state-of-the-art results without modifying the base networks.

We highlight our contributions as follows: (1) We define the discriminability of one element within
a group from a more essential and explicable view. (2) We verify that a light-weight network has the
capacity of distilling discriminability from the assessed elements. Combining the post-processing
with the network, great computational burden can be saved comparing with existing methods. (3)
We validate the effectiveness of DDL for both efficiency and accuracy on set-to-set face recognition
and action recognition through extensive studies. State-of-the-art results can be achieved.

2 RELEATED WORK

2.1 SET TO SET FACE RECOGNITION

Convolutional neural network has achieved great success in face recognition. Many new loss func-
tions Deng et al. (2019a); Schroff et al. (2015); Liu et al. (2017a); Sun et al. (2014); Wen et al.
(2016), training datasets Cao et al. (2018); Yi et al. (2014); Wang et al. (2018); Guo et al. (2016),
and neural archte He et al. (2016); Zhang et al. (2017); Chen et al. (2018) are proposed to boost face
recognition performance. The accuracy achieved by state-of-the-arts face recognition model Arc-
Face Deng et al. (2019a) on a million scale still image test benchmark MegaFace has been 98.35%.
However, in real-world face verification application, it is more practical to recognize a face with
adjacent video frames in a set to set manner.

The core problem of the set to set recognition task is face feature aggregation. Since not all frames
have salient information and some frame meet with visual blur and large pose problems, simply
average or max-pooling feature performs not well. There are works proposed to optimize set to set
recognition with attention or quality mechanism. Yang et al. (2017) uses two cascaded attention
module to aggregate frame feature. While QAN Liu et al. (2017b) proposes a quality-aware side-
network trained with a specifically designed main network. During testing, the video-level feature
is weight aggregated by quality. Our work is inspired by QAN but introduces a robust post-training
mechanism which decouple quality network and base recognition model. State-of-the-art results can
be achieved.

2.2 ACTION RECOGNITION

With the advence of the multimedia era, millions of hours of video are uploaded to video platforms
every day, so video understanding task like action recognition has become a popular research topic.
There are two typical approaches to action recognition. The first one is to extract feature by frames
and use sophisticated late fusion strategy to form video-level prediction Yue-Hei Ng et al. (2015);
Simonyan & Zisserman (2014a); Girdhar et al. (2017). However, aggregate high-level frame feature
tends to limit the model ability to handle complex motion and temporal relation.

Other approaches are to use 3D convolutional neural network to jointly capture spatio-temporal
features, which perform well in action recognition. Tran et al. (2015) first proposes 3D convolu-
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Figure 1: The pipeline of group representation learning with our DDL. Given a base feature ex-
tract model, we first compute the discriminability score for each training image and then trianing a
lightweight CNN N to approximate it. For testing, all frames are first sent to N to approximate the
discriminability score and then the group representation can be generated by well-designed feature
aggregation module.

tion neural network for video recognition based on an VGG Simonyan & Zisserman (2014b) like
network. Tran et al. (2018) proposes R(2+1)D convolution, which separates 3d convolution to 2d
convolution following by a 1d convolution. R(2+1)D introduces more non-linear operation and
reduce the risk of over-fitting. SlowFast Feichtenhofer et al. (2018) proposes a two patch 3D con-
volution architecture and achieves state-of-the-art performance. Though the above methods achieve
huge success in action recognition, they need a large number of computing resources due to dense
sample strategy during inference, making it unpractical to application.

2.3 DISTILLATION

Our approach is also inspired by distilling teacher networks into student models Hinton et al. (2015).
However, traditional distillation usually trains the student model with the same task with the teacher
model for the purpose that achieves better recognition performance for the flops-constrained model.
Our DDL introduces a quality distillation mechanism, the light-weight network are designed to
distill the centroid-based quality measured by the base model prediction confidence and help the
base model to achieve accurate and efficient recognition in a frame set manner.

3 DISCRIMINABILITY DISTILLATION LEARNING

In this paper, we aim to explore the discriminative score of an image in a given image set. Be-
yond the traditional quality learning strategies where the quality score of image is learned by well-
designed attention mechanism or manual annotation, we propose to distill the discriminative score
from the feature space distribution. Based on the interpretable and reasonable distillation rules, the
discriminative score is practical for learning group representation and it can be easily plugged into
the popular group representation learning framework. In the following subsections, we first formu-
late the group representation and then define the discriminability distillation regulation. Finally, the
whole discriminability distillation learning (DDL) is introduced in subsection 3.3.

3.1 FORMULATION OF GROUP REPRESENTATION LEARNING

Group representation learning focuses on formulating an uniform representation for a whole set of
images. Whether verification task or classification task, the core of them is how to aggregate the
features of a given image set.

Define the fi as the embedded feature of frame Ii in an image set IS , the aggregated feature FIS is
generated by:
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FIS = G(f1, f2, · · · , fi) (1)

Where G indicates the feature aggregation module. In the previous research, conducting G with
quality score has become a priority. Different from the general quality learning via attention mech-
anism or manual annotation, we propose a discriminability distillation learning (DDL) to genearte
the discriminability of a feature representation. Furthermore, the well-designed discriminability
distillation regulation in DDL makes it interpretable and reasonable.

3.2 DISCRIMINABILITY DISTILLATION REGULATION

Towards efficient and accurate G, we design the discriminability distillation regulation (DDR) to
generate the discriminability to replace the traditional quality score. In DDR, we joinly consider
the feature space distribution and explicitly distill the discriminability via encoding the intra-class
distance and inter-class distance with class centroids. Define the training dataset X with C identities
and the class centroids Wj , j ∈ [1, C] in the final classification layer, for feature fi, i ∈ [1, s] with
identity c where s indicates the length of X , the intra-class distance and inter-class distance are
formulated as:

Cia =
fi ·Wc

‖fi‖2 ‖Wc‖2

Cie =
fi ·Wj

‖fi‖2 ‖Wj‖2
, j 6= c

(2)

By jointly considering this, we define the discriminability Qi of fi via the DDR as:

Qi =
Cia

max {Cie | j ∈ [1, C], j 6= c}
(3)

Considering the variant number of images in different groups, we further normalize the discrim-
inability by:

Di = τ

(
Qi − µ({Qj | j ∈ [1, s]})
σ({Qj | j ∈ [1, s]})

)
(4)

where τ(·), µ(·) and σ(·) mean the sigmoid function, mean value and standard deviation value of
{Qj | j ∈ [1, s]}, respectively.

Coorperated with the feature space distribution, the discriminability Di is more interpretable and
reasonable than the quality score in traditional quality learning. It can better represent the discrim-
inability of a feature based on explicitly encoding the intra-class distance and inter-class distance
with class centroids.

3.3 DISCRIMINABILITY DISTILLATION LEARNING

According to the Sec 3.2, given the training dataset θ and the corresponding model, the discrim-
inability Di of fi can be naturally computed via Eq(2)(3)(4). However, for the test set T in group
representation learning, it’s unavailable to the Di due to the lack of Wj . In order to better embed
the Di into the group representation learning, we introduce the discriminability distillation learning
(DDL) to generate the approximated discriminability D̂i ofDi. Given an arbitrary CNN architecture
N and the image Ii, the discriminability D̂i can be approximated by:

D̂i = N (Ii;θ) (5)

where θ is the parameter ofN . At the training stage, we apply mean squared error between each D̂i

and target Di as:

L =
1

2N

N∑
i

(D̂i −Di)
2 (6)

where N is the batch size. At the inference stage, N can assess each frame a discriminability D̂i.
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Figure 2: The formulation of Discriminability. The base model is trained with classification task, and
features of samples from the same class are projected to hyperspace tightly in order to form a clear
decision boundary. The outliers are usually not discriminative samples. We list several situations
here. (b)appearance similar to neighboring class,(c) data noise (d) visual blur (e) large pose, which
for (a), a clear front face, which is discriminative.

3.4 FEATURE AGGREGATION G

At the test stage, we can generate the discriminability D̂i via Eq(5) for each test image Ii in the
given image set IS . The feature aggregation G in Eq (1) can be formulated as:

FIS = G(f1, f2, · · · , fn) =
n∑
i

R̂ifi

R̂i

(7)

where n is the image number of IS . R̂i is the re-scaled discriminability of D̂i via:

R̂i = KD̂i +B (8)

In Eq(8), we linearly map the minimum discriminability and maximum discriminability of image
set IS to 0 and 1, respectively. This mapping ensures that image sets with different lengths have the
same range of discriminability. The K and B are formulated as:

K =
1

max{D̂i | i ∈ [1, n]} −min{D̂i | i ∈ [1, n]}
(9)

B = 1−Kmax{D̂i | i ∈ [1, n]} (10)

3.5 ADVANTAGE OF DISCRIMINABILITY DISTILLATION LEARNING

Different from the subjective quality judgment of an image or quality learning via attention mech-
anism, we explicitly assign discriminability for each image via the feature space distribution. By
jointly considering the inter-class distance and intra-class distrance with class centroids, DDL can
effectively approximate how discriminative is a feature. According to aggregate more information
from the features with high discriminability in an image set, the recognition performance can be
easily boosted. With the assistant of DDL, both hard samples (the model easily failed on them) or
low-quality image ( the model is easily to give wrong predict result) will be filtered. For face recog-
nition, DDL can easily improve the performance by concentrating the discriminative information
and for video action recognition, DDL can further accelerate the pipeline by eliminating the frames
with insufficient information.
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Method Data Accuracy(%)
NAN 3M 95.5

Center Loss 0.7M 94.9
FaceNet 200M 95.1

QAN 5M 96.2
UniformFace 6.1M 97.7

CosFace 5M 97.6
SphereFace 0.5M 95.0

ArcFace+Avg 5.1M 98.3
ArcFace+DDL 99.2

Table 1: Comparison with different methods on the Youtube Face benchmark. DDL will base model
trained with ArcFace loss achieves the state-of-the-art verification performance.

4 EXPERIMENTS

In this section, we first evaluate our DDL for set to set face recognition on YTF dataset. Next,
for action recognition, we conduct experiments on untrimmed video dataset ActivityNet-1.2 and
trimmed video dataset Kinetics-700.

Datasets. We train our base recognition model and distillation network on MS-Celeb-1M
dataset Guo et al. (2016). Since the original dataset is proved to be dirty, we use the cleaned version
by Deng et al. (2019a), which consists of 5,179,510 pictures from 93,431 identities.

Implementation details. RetinaFace Deng et al. (2019b) is used to detect and align training images
to 112 × 112. For data augmentation, only random flip is used. For the base recognition model,
the backbone network we select is the modified version of ResNet-101 He et al. (2016) introduced
by Deng et al. (2019a). After the last convolution layer, the network outputs a 256-D embedding
feature. ArcFace Deng et al. (2019a) function loss is used to form more discriminate feature. The
hyperparameter scale and margin are 64 and 0.5 respectively. Learning rate is initially with 0.1 and
divides by 10 at 60k, 80k iterations, and we finish our training at 11k. 16 GPUS with total batch size
1024 and Pytorch Paszke et al. (2017) framework are used.

Details of DDL architecture

All frames will be sent to the quality network at the inference stage, so the compute burden for DDL
is sensitive. To make the inference stage efficient, we design the distillation network to be light-
weight and compute efficiently. DDL is a channel reduce ResNet-18 convolution. Our DDL only
introduces 81.9 Mflops computation amount (112*112) input, compared to the base feature extract
model which often reaches 24Gflops (ResNet101), it is super-efficient.

4.1 SET TO SET FACE RECOGNITION

For DDL, we use the light-weight Resnet-like architecture which has been shown above. Discrim-
ination scores are generated for each image in the training set following the pipeline in section 3.
Then DDL will regress them with the same RGB input. L2 loss is used and the training procedure
is similar to the base recognition model. During testing, the DDL will predict scores for set images
and the set level feature will be aggregated by discrimination score weight average.

EVALUATION ON YOUTUBE FACE.

The YTF dataset includes 3425 videos of 1595 identities with an average of 2.15 videos per identity.
The videos vary from 48 frames to 6,070 frames. They are challenging because most faces are
blurred and have large variations in pose, expression. The performance test on YTF datasets is
evaluated under the unrestricted with labeled outside data protocol. We strictly follow the official
test protocol that evaluate using 10-fold cross-validation.

As shown in table ??, our DDL achieves state-of-the-art performance on the Youtube Face bench-
mark. What’s more, from the comparison for different aggregation strategies like average pooling,
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Aggregation Base model TPR@FPR=1e-4(%)
Avg

R100

65.843
Top1 Quality 65.217

DDL w/o Re-scale 67.381
DDL 69.048

DDL PolyNet
72.981

(rank 1st in the leaderborad)

Table 2: Comparison with different aggreation stragegy on the IQIYI-VID-FACE challenge. DDL
achieve huge performance gain compared to simple avgerage pooling. By combing with strong
base model PolyNet, DDL achieves 1st performance in the leaderboard. (http://www.insightface-
challenge.com/results)

SF SF(DDL) CF CF(DDL) AF AF(DDL)
95.8 97.1 97.8 98.7 98.3 99.2

Table 3: Combine DDL with more baselines including SphereFace (SF) and CosFace (CF). All
baseline models are trained with same backbone and datasets. Average pooling is used as the default
aggregation strategy.

DDL can significantly boost performance, which indicates DLL has has learned a meaningful pattern
for discriminability.

As a post-training module, DDL can cooperate with any pre-trained model, so we re-implement
more baseline and combine them with DDL, the results are shown in the table 3. In cooperation
with DDL, all baseline models achieve huge performance gain compared to the simple average
pooling fusion strategy. Those experiments show our DDL is robust and has good generalization
ability.

4.2 RESULTS ON IQIYI-VID-FACE

The iQIYI-VID-FACE dataset iQIYI (2019) aims to identify the person in entertainment video by
face images. The total dataset contains 643,816 video clips of 10,034 identities. To simplify, face
frames are extracted from each video at 8FPS and preprocessed to size 112*112. 6.3 M preprocessed
face crops are provided finally.

The test protocol is 1:1 verification and the true positive rate under false positive rate at 1e−4 is
reported. The results are shown in table 3. QAN improve 3.2% TPR compared to average pooling
and 1.7% to weight sum, which indicate the superb performance of DDL. By combing DDL with
stronger base recognition model trained with PolyNet, our DDL achieves 72.981, which is rank 1st
method in the leadboard.

4.3 VIDEO ACTION RECOGNITION

EVALUATION ON ACTIVITYNET-1.2

The discriminability distillation learning is more practical to untrimmed video action recognition
since there are more diversity videos chip with ambiguous content and visual blur problem. More-
over, dense sampling clips along with the whole video and do average pooling to aggregate is im-
possible due to massive computational requirements for untrimmed video. For example, the compu-
tational consumption of one 2 minutes long video can reach 95,400 Gflops (224*224 input) for the
state-of-the-art action recognition model SlowFast Feichtenhofer et al. (2018). Thus filter clips by
a lightweight discriminability distillation network and only aggregate clips with high quality can be
more efficient and practical to industry application.
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Model
DDL (9 clips)

Acc(%) GFLOPs×clips
Random ( 9 clips)

Acc(%) GFLOPs×clips
Uniform (9 clips)

Acc(%) GFLOPs×clips
Dense ( all clips)

Acc(%) GFLOPs×clips
3D-RS-50 86.38 37×9+1.7×60 82.83 37×9 83.14 37×9 83.92 37×60

R(2+1)D-RS-50 89.08 39×9+1.7×60 84.51 39×9 84.89 39×9 85.46 39×60
SlowFast-RS-50 90.21 16×9+1.7×60 85.92 16×9 86.14 16×9 87.72 16×60

Table 4: Video action recognition results on ActivityNet-1.2 dataset. We compare randomly, uni-
formly and filter by DDL to select 9 clips to aggregate. Accuracy is reported on the valiation set.
And the compute consumption is estimated on a 2 minutes videos (above 60 clips), for that 2 minutes
is the average video length of ActivityNet-1.2.

We test our DDL on untrimmed video action recognition with the ActivityNet-1.2 dataset. The
ActivityNet-1.2 dataset contains 4,819 training videos and 2,383 validation videos for 100 action
class. The duration of those videos vary from 2 seconds to 4 minutes and the average video length
is 2 minutes. We carefully remove videos with multi-label. Frames are extracted from videos and
resized the width to 240 pixels.

To combine and compare with DDL, we choose three clips-based 3D CNN models 3D-ResNet-50
Hara et al. (2018), SlowFast-50 Feichtenhofer et al. (2018) and R(2+1)D-50 Tran et al. (2018). To
prevent over-fitting, we use the Kinetics-700 as pre-trained datasets. Video clips with adjacent 64
frames are randomly sampled from raw videos for training and testing. For the spatial domain,
we randomly crop 112*112 pixels with a shorted side randomly sampled in [128, 160] pixels. 32
NVIDIA V100 GPUS with synchronized SGD training and global BN are used to train and we find
that result for typical training in one 8 GPUs machine is the same. Similar to the 2D-DDL, we
generate the pseudo quality label for each clip and use a channel reduction 3D resnet-18 network to
regress the score after training the base model.

During inference, we choose top-K discriminability and aggregate them by average pooling. For
comparison, we randomly or uniformly sample K clips in videos. K=9 is selected here to achieve
accuracy and efficiency trade-off. Dense sampling is also used to compare, but it is not practical
because of huge compute resource consumption.

As shown in table 4, DDL improves recognition performance for all baseline model. For the state-
of-the-arts clips-based model SlowFast, combing with DDL achieves 4% accuracy gain. What’s
more, DDL can even outperform dense evaluation along with the whole video by a huge margin,
which introduces dozens of times computation resource consumption. It is reasonable that DDL can
select and aggregate clips with the highest quality, which avoids low-quality videos with visual blur
or ambiguous content to pollute the video-level prediction.

EVALUATION ON KINETICS700.

we also evaluate our DDL on the popular trimmed action recognition benchmark Kinetics. Since
around 2% videos of Kinetics-600 and 12% of videos of Kinetics-400 can’t get access from youtube,
we use the latest version Kinetics-700. Kinetics-700 contains 700 classes and 650k videos, and each
action class has at least 600 video clips. Each clip is human annotated with a single action class and
lasts around 10s.

The baseline models we select and the training procedure is similar to the last section besides the clip
length is 32 frame. As shown in the table 5, DDL outperform random sample by 1.84 % and uniform
sample by 2.18 %. For dense sample, DDL can achieve 0.86 performance gain with 6x speed up.
Since Kinetics-700 is well trimmed, the improvement is not so large compared to untrimmed video
dataset ActivityNet-1.2. However,as a post-training module, DDL can cooperate with any clip-
based 3D action recognition model and achieve a more efficient and accurate inference, which is
very suitable for real-world video understanding applications.

CROSS DATASET AND MODEL EVALUATION.

In the last two sections, we train specialized quality network for different dataset and different base
model respectively, to demonstrate the generalization ability of our DDL, we do the cross dataset and
cross model evolution experiment. Action recognition model R(2+1)D for ActivityNet-1.2 dataset
is combined with DDL trained with Kinetics-700 and base model SlowFast, the results are shown
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Model
DDL (5 clips)

Acc(%) GFLOPs×clips
Random ( 5 clips)

Acc(%) GFLOPs×clips
Uniform (5 clips)

Acc(%) GFLOPs×clips
Dense ( 30 clips)

Acc(%) GFLOPs×clips
3D-RS-50 71.01 37×5+1.7×30 68.26 37×5 67.43 37×5 68.83 37×30

R(2+1)D-RS-50 72.51 35×5+1.7×30 69.24 35×5 68.79 35×5 70.94 35×30
SlowFast-RS-50 74.23 16×5+1.7×30 72.39 16×5 72.05 16×5 73.37 16×30

Table 5: Video action recognition results on Kinetics-700 dataset. We compare randomly, uniformly
and filter by DDL to select 5 clips to aggregate. Accuracy is reported on the validation set and is the
average of top1 and top5 accuracy. Dense sample strategy sample 10 clips along the temporal axis
and random crop 3 clips on the spatial axis.

DDL trained with Accuracy(%)
SlowFast-RS-50/ActivityNet-1.2 87.91

SlowFast-RS-50/Kinetics-700 86.31
R(2+1)D/ActivityNet-1.2 89.08

R(2+1)D/Kinetics-700 86.92
Uniform 84.51
Random 84.80
Dense 85.46

Table 6: Results for cross dataset and cross model experiment. All results are reported with base ac-
tion recognition R(2+1)D-ResNet-50 on ActivityNet-1.2 dataset. The training procedures for DDL
vary from dataset and base model.

in table 6. It can be found that through trained with different dataset and base model causes a
performance drop, DDL can still improve about 1% accuracy for dense sampling. These results
show that the quality pattern learned by DDL is robust and well to generalize to other datasets.
What’s more, the generalization ability can avoid the training quality model for each action model
and each dataset, making the DDL more efficient and pratical.

To better explore the pattern learned by DDL, we visualize some pictures in the YouTube Face
datasets and their quality score generated by DDL.

5 CONCLUSION

In this paper, we have proposed a novel post-processing module called DDL for all group-based
recognition tasks. We explicitly define the discriminability with observations on feature embedding,
then a light-weight network is applied for quality distillation and feature aggregation. We identify
the advantage of our proposed methods in the following aspects: (1) The entire discriminability
distillation is performed without modifying the pretrained base network, which is highly flexible
comparing with existing quality aware or attention ethods. (2) Our distillation network is extremely
light-weighted with great computational cost salvage. (3) With our DDL and feature aggregation,
we achieved state-of-the-art results on set-to-set face recognition and action recognition tasks.
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A APPENDIX

A.1 QUALITATIVE ANALYSIS

We visualize images in frames set with their discrimination scores. Frames within a video with
different discrimination scores are first shown. As we can see in pictures, our DLL learns meaning-
ful discriminative feature patterns. Frames that meets large pose, visual blur, semantic ambiguous
are assigned to a low score and those frame with well discriminative appearance are high weight.
Aggregate frames by weight sum with such meaning discrimination patterns can form better set
representation.

Discrimination scores for frames from the different sequence sets are shown next, which indicates
the generalized ability among image sets.
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Figure 3: Visualization discrimiability of frames from one video.
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