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ABSTRACT

Existing local explanation methods provide an explanation for each decision of
black-box classifiers, in the form of relevance scores of features according to their
contributions. To obtain satisfying explainability, many methods introduce ad hoc
constraints into the classification loss to regularize these relevance scores. How-
ever, the large information gap between the classification loss and these constraints
increases the difficulty of tuning hyper-parameters. To bridge this gap, in this pa-
per we present a simple but effective mask predictor. Specifically, we model the
above constraints with a distribution controller, and integrate it with a neural net-
work to directly guide the distribution of relevance scores. The benefit of this
strategy is to facilitate the setting of involved hyper-parameters, and enable dis-
criminative scores over supporting features. The experimental results demonstrate
that our method outperforms others in terms of faithfulness and explainability.
Meanwhile, it also provides effective saliency maps for explaining each decision.
The code is available at https://github.com/iclrlocal/.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved high classification accuracy in a wide range of fields,
such as computer vision (He et al., 2016; Simonyan & Zisserman, 2014) and natural language pro-
cessing (Greff et al., 2016; Mikolov et al., 2010). Despite the superior performance, DNN models
lack meaningful explanations on how a specific decision is made, and are often regarded as black-
boxes. To address this issue, various global and local explanation methods have been proposed. The
former group aims to inspect the structures and the parameters of a complex model (Erhan et al.,
2009; Chen et al., 2016). The latter group provides users understandable rationale for a specific
decision with relevance scores1 (Simonyan et al., 2014; Du et al., 2018a).

In this paper, we focus on local explanation as it extracts the intuitive evidence behind the decision of
each instance. To obtain the relevance scores for local explanation, gradient-based methods compute
the partial derivative of the class probability with respect to an input instance. However, instead of
directly pointing out why the target class is derived based on input, it is likely to answer the question
(Montavon et al., 2018): What makes this instance more or less similar to the target class? To tackle
this limitation, perturbation-based explanation methods are proposed. These methods perturb the
input and aim to find the smallest region, which alone allows a confident classification or prevents a
confident classification once being removed (Dabkowski & Gal, 2017; Fong & Vedaldi, 2017). By
applying various ad hoc constraints, these methods improve explainability and maintains faithfulness
2. Nevertheless, the large information gap between the classification loss and these constraints in
turn increases the difficulty of tuning hyper-parameters.

To bridge this gap, we propose a simple but effective mask predictor. The work is built upon the
following observation: a large portion of contributions to each decision are held by only a small
fraction of features (Fong & Vedaldi, 2017; Chattopadhay et al., 2018; Du et al., 2018a). The pro-
posed predictor consists of a mask generator and a distribution controller. The former takes the

1In this paper, relevance scores indicate the contributions of features to a specific decision. A high score
implies a higher contribution. Besides, we do not discriminate saliency maps and masks, as both indicate the
permutation of relevance scores of each input.

2Explainability quantifies how easy it is to understand and reason about the explanation; faithfulness esti-
mates the fidelity between the explanation and the decision behaviour of black boxes.
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hidden feature maps in black boxes as inputs, and the latter guides the outputs with expected distri-
butions as relevance scores. In this way, the ad hoc constraints for mask generation introduced in
previous work are replaced with the distribution controller. Thus, the process of hyper-parameters
tuning is transferred into the task of distribution design. We show that, with an easy setting of the
involved hyper-parameters in the controller, it can directly lead the relevance scores to right-skewed
distributions with long tails (Clauset et al., 2009). As a result, these scores are more discriminative,
since a small portion of long-tail high scores correspond to the supporting features, while the ma-
jority features have low scores and are regarded as unimportant. An example is shown in Fig.1(a),
where the pixels correspond to the tail are highlighted. Besides, the smoothness of masks can also
be achieved by unsampling the outputs of the controller at a coarse scale, after the whole predictor is
trained with large-scale images. We further denoise these scores for highlighting supporting features
without destroying their ranking. Finally, we introduce two metrics for comprehensively evaluating
relevance scores in terms of faithfulness and explainability, respectively.

The main contributions of our work are as follows.

• We develop a trainable mask predictor to simplify the formulations of perturbation-based
methods. It integrates a distribution controller with a mask generator, aiming to refine the
mask towards the desired score distribution. The predictor is optimized solely under the
classification loss without additional constraints, which therefore improves the faithfulness
of mimicking target black-box models.

• We provide two practical implementations of the controller. As a result, the predictor can
establish the right-skewed distributions for relevance scores by monotonically transforming
the output of the mask generator. Besides, we show that the involved hyper-parameters can
be easily set before the training stage.

• We introduce two metrics to evaluate the quality of scores in terms of faithfulness and ex-
plainability, respectively. Meanwhile, the experiments on real-world datasets demonstrate
that our method not only obtains higher quantitative performance for explaining the behav-
ior of black boxes, but also provides discriminative masks for intuitive explanation.

2 RELATED WORK

This section reviews local explanation methods for DNNs, which target to identify the relevance
score of each feature towards a specific decision (Montavon et al., 2018).

2.1 GRADIENT-BASED LOCAL EXPLANATION

To obtain relevance scores, gradient-based methods compute the partial derivative of the class prob-
ability with respect to the input by using back-propagation (Simonyan et al., 2014). In general, these
methods are advantageous in their high computational efficiency, i.e., using a few forward and back-
ward iterations is sufficient to generate saliency maps. However, these saliency maps based on the
naive gradients are visually noisy and hard to be understand. To address this issue, various methods
have been proposed. For example, Smooth Grad (Smilkov et al., 2017) addresses the visual noise
by introducing noise to inputs repeatedly. Integrated gradient (Fong & Vedaldi, 2017) estimates the
global contribution of each feature rather than the local sensitivity. Guided back-prorogation (Sprin-
genberg et al., 2014) modifies the gradients of RELU functions by discarding negative values at the
back-propagation process. Besides, recent methods proposed to create saliency maps by combining
the gradients with the corresponding features. For example, Grad CAM (Selvaraju et al., 2017) and
Grad CAM ++ (Chattopadhay et al., 2018) take advantages of high-level feature maps, which makes
their saliency maps more clear. Nevertheless, since black-box classifiers are trained without any
location information, the object locations in their high-level layers may not always correspond to
the locations in raw images, leading to new issues for these explanation methods.

2.2 PERTURBATION-BASED LOCAL EXPLANATION

The perturbation-based methods first perturb an input according to a given mask, and then observe
the new class probability of black-box classifiers. By measuring its difference to the probability of
the raw input, the supporting features in the input with the class label can be located (Dabkowski &
Gal, 2017). Let M indicate the expected mask of an image I, wheremij ∈M indicates the relevance
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Figure 1: (a). The illustration of the benefits of using skewed distributions for explanation. (b) The
framework of our mask predictor, where a distribution controller is introduced right after the mask
generator. In particular, pdf stands for the probability density function.

score of the pixel within I. Besides perturbing I with mask M, these methods also introduce an
alternative background image A to reduce the amount of unwanted evidences:

φ(I,M) = I�M + A� (1−M). (1)

Suppose fc indicates the probability of the predicted class c based on the black-box classifier. These
method input the perturbed images to the classifier and optimize the mask with ad hoc constraints:

argminM`p(M) = argminMλ1TV(M) + λ2AV(M)− fc(φ(I,M)) + λ3fc(φ(I,1−M)) (2)

where TV enforces the mask to be smooth and AV aims to minimize the average of all scores. The
last two terms aim to obtain discriminative scores between supporting pixels and the rest pixels.

To improve the explainability, various novel methods following the above formulation are subse-
quently proposed. For example, (Du et al., 2018b) regularizes the expected mask with middle-level
features and optimizes the mask by reconstructing higher-level feature maps. (Fong & Vedaldi,
2017) introduces a deletion game and reformulates the problem by applying multiple masks stochas-
tically. However, these methods need to optimize the mask for each image individually, leading to
non-negligible time costs. Moreover, the large information gap between the loss of classification
and these constraints increases the difficulty of tuning hyper-parameters.

3 THE PROPOSED METHOD

In this section, we introduce the details of the proposed framework, as shown in Fig.1(b). It consists
of an encoder inside the black-box classifier F , a mask generator G, and a distribution controller
C. In particular, the generator and controller together compose the mask predictor, which takes the
feature maps of the black-box classifier as inputs and predicts the relevance scores for each instance.
In the following part, we first introduce the mask generator. Then we present the methodology
of designing our distribution controller and its implementation details. We finally introduce two
metrics to evaluate the quality of explanation masks.

3.1 THE REVIEW OF MASK GENERATOR

We first describe the mask generator G in our framework. Specifically, it contains three bottleneck
blocks and follows the U-Net architecture with the black-box classifier (Dabkowski & Gal, 2017).
Each image is input into the classifier for producing feature maps at multiple layers. Then the mask
generator upsamples the feature maps of lower resolution using transposed convolutions, and con-
catenates them with the higher-resolution feature maps. Based on multiple transposed convolution
layers, the generator produces a reduced mask Mg = (G(F(I)) at a coarse scale and obtain the
relevance score on each location. Then, upsampling based on bilinear interpolation is employed to
obtain more smooth masks at the image scale. Let M indicate the expected mask. Denote F(I) as
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the feature maps for the image I. The image is then perturbed with the generated mask with Eq.1,
and the generator can be optimized based on the constraints in Eq.2:

argminG`p(M),where M = upsample(Mg). (3)

In particular, a simple feature filter is pretrained to perform initial localization with respect to the
predicted class. Since it is not the focus of this paper, we leave the detailed description in Appendix.

The generator module can produce explanation masks in real time. However, balancing the trade-
offs between the classification loss and additional constraints (e.g., the smoothing term in Eq. 2)
involves a non-trivial hyper-parameter tuning process. In addition, the framework needs to process
both the perturbed I ·M and the perturbed I · (1−M) for each image. It results in an increased
GPU memory cost for training the generators with a medium batch size, e.g., 128.

3.2 THE MASK PREDICTOR

To address the above issues , we introduce a simple but effective mask predictor, which is optimized
solely under the classification loss. To do this, we consider two desired properties that a good
mask M need to satisfy with: discrimination, namely the high relevance scores concentrate on a
small portion of supporting features while low scores are preferred on other features; smoothness,
meaning that scores of adjacent pixels in each image are supposed to be similar.

Firstly, to produce discriminative scores in M without any constraint in Eq.2, we instead encode
their distribution inside the mask predictor. Besides, as users require discriminative scores on each
instance I, we introduce a distribution controller C to guide the distribution of the relevance scores
for I individually. Suppose Mg is the output of the generator on I, and Md denotes the output of C.
We obtain Md = C(Mg). The details inside C will be presented in the following sections.

Secondly, to obtain a smooth mask M, we introduce the controller right after the generator at a
coarse scale (e.g., 56×56 pixels) rather than the image scale. Then we follow (Dabkowski & Gal,
2017; Du et al., 2018b) to unsample Mc with interpolation. Benefiting from the training with large-
scale images and the unsampling operation, the output relevance scores are robust on the represen-
tative regions and smoothness can be generally guaranteed.

In short, by following the above properties to design the new strategy, we expect that the obtained
predictor can facilitate the setting of hyper-parameters and remain the effectiveness of masks.

Suppose `ce denotes the classification loss for training the black-box classifier f , and c is the output
class of the classifier. We aim to find the region that maximizes the target classification under the
expected distribution. Thus, the mask predictor can be optimized only based on `ce as

argminC,G`ce(f(φ(I,M)), c), where M = upsample(C(Mg)). (4)

Different from (Dabkowski & Gal, 2017), the above predictor is optimized solely under the classi-
fication loss and only involves the perturbed I ·M. Thus, it better mimics the black-box classifier
and reduces GPU memory cost.

3.2.1 THE PRINCIPLES OF CONTROLLER DESIGN

Now we investigate some principles for designing the distribution controller C.

Principle 1. We expect a right-skewed distribution of relevance scores as interpretation for each in-
stance (see Fig.1(a)). The motivation behind is that a large portion of contributions to each decision
are supposed to be held only by a small fraction of the supporting features. These supporting fea-
tures, whose information should be preserved by the mask, are assigned with high scores. Under this
principle, a proportion of features corresponding to the area at the right tail will be highlighted with
greater scores. The distribution with a narrow peak and a longer tail is desired, which corresponds
to better discrimination among the supporting pixels with different contributions.

Principle 2. We impose the monotonic mapping from the distribution controller’s input Mg to its
Md. The motivation is to enhance the discriminative ability of the coarse mask Mg but without
changing its ranking of relevance scores. Of note, if the monotonicity is not guaranteed for the
controller, the training produce of the mask predictor would become unstable.
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3.2.2 THE DESIGNS OF CONTROLLER

The controller design includes two steps: (1) initializing a symmetric distribution for random inputs
without changing their ranking; (2) transforming the distribution monotonically to a right-skewed
distribution (see Fig.1(b)).

Firstly, let zij ∈ Z be the expected variable with a symmetric distribution, and mg
ij ∈Mg indicates

the output at the location (i, j) of the mask generator. Instance normalization (Ulyanov et al., 2016)

can be easily used to build a normal distribution. Specifically, zij = (mg
ij − E[mg

ij ])/(
√

Var[mg
ij ]),

where the expectation and variance are computed over the outputs of each Mg .

Secondly, let Md be the expected output of a distribution controller. We introduce two monoma-
niacal transformers to achieve right-skewed distributions for md

ij ∈ Md, including a basic design
without any hyper-parameter, and a customized design with easy-to-set hyper-parameters.

Basic Transformer. The straightforward way of transforming a normal distribution into a right-
skewed distributions is cropping variables with Rectified Linear Unit (ReLU) (Nair & Hinton, 2010).
Specifically, md

ij can be obtained as

md
ij = ReLU(zij) = max(0, zij). (5)

The benefit of this transformer is that, it allows a monomaniacal transformation without any hyper-
parameter. Nevertheless, its half-right distribution faces a large variance and may also meet outliers,
which reduces the discrimination of the sores on supporting features. Besides, this transformer is
only able to estimate the relevance scores for a half of the features.

Customized Transformer. To address the issues of the basic transformer, we introduce an alternative
with easy-to-set hyper-parameters. The goal is to produce scores for all features with a right tail in
(0, 1). Specifically, we first transform the normal distribution towards an uniform distribution based
on sigmoid functions, and then change the skewness of the distribution based on power functions:

md
ij = (sigmoid(η · zij))h, (6)

where η is used to approach the uniform distribution, and h determines the skewness of the obtain
distribution. The detailed setting of hyper-parameters will be discussed in Sec. 3.2.3.

In summary, based on two steps of the monomaniacal instance normalization and the monomaniacal
transformation, we have transferred the process of tuning hyper-parameters in Eq.2 into the task of
distribution design with the involved hyper-parameters in a transformer, e.g., Eq.6. The benefit is
that, the effects of these involved hyper-parameters on the scores can be estimated without model
optimization, and the hyper-parameters can be easily set. It is worth noting that other transformers
with a monotonic mapping can also be considered, depending on users’ preference. We choose the
above functions for the customized transformer owing to their intuitive geometric properties.

3.2.3 THE EXAMPLE OF HYPER-PARAMETER SETTING FOR DISTRIBUTION DESIGN

We present an example of hyper-parameter setting for the customized transformer with two steps.

Firstly, we estimate the probability density function of md. With the probability density transforma-
tion Forbes et al. (2011), the transformed probability density function can be obtained as

p(md) =
1√

2πhη
· 1

m(1−m1/h)
· exp(− (ln(m(−1/h) − 1))

2

2η2
), (7)

where the superscript d is removed for clarity. The detailed proof is provided in Appendix.

Secondly, we set the hyper-parameters based on their effects on the geometry of probability density
functions. We fix h = 1 and observe the effect of η. The corresponding probability density function
is displayed in Fig.2(a). By changing η within (0.5,2.5), the density functions of p(md) approxi-
mately change from the concave to the convex formd ∈ (0, 1). Then, we set η = {0.5, 1.5, 2.5} and
observe the effect of h. In particular, η = 1.5 approximately leads p(md) to an uniform distribution
in Fig.2(a). Three probability density functions are displayed in Fig.2(b), Fig.2(c), Fig.2(d). Owing
to the strong concavity and convexity in the first step of the transformer, p(md) with η = 0.5 still
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Figure 2: The probability density functions with the different settings of hyper-parameters.

Figure 3: Left: The example of tuning scores. Right: the modification of class probabilities and the
estimation ofMF .

faces a large variance and p(md) with η = 2.5 continues the undesired concavity. On the contrary,
benefiting from an approximated uniform distribution with η = 1.5, the distribution of p(md) with
η = 1.5 is modified from the trend of the left-skewed to the right-skewed with a small variance in
Fig.2(d). Since a proportion of features corresponding to the area at the tail will be highlighted with
higher scores, we fix η = 1.5 and h = 2.5 to obtain discriminative scores on supporting features.

3.3 FINE-TUNING FOR HIGHLIGHTING SUPPORTING FEATURES

So far, we have provided the strategy to facilitate the setting of hyper-parameters while remaining
the desired properties of masks. The controller C provides the same distribution of relevance scores
for different images. However, as the number of supporting pixels varies across images, these scores
are supposed to be fine-tuned for each image individually.

Specifically, suppose ri is the i-th highest score in the predicted mask. Denote qi as the class
probability of the masked image, where only the top i pixels are not perturbed, and qmax = maxi qi.
We prefer the modified scores r′i to follow two conditions:
(1). if ri > rj , then r′i > r′j ; (2). If qi is monotonically increasing w.r.t. i, then r′i ∝ qmax − qi.
The former demands that the ranking of relevance scores should be remained. The later implies that
the pixel is not likely to be the supporting one if its accumulated class probability already approaches
the maximum.

We present a very simple technique to satisfy the conditions. Firstly, we estimate the class probabil-
ity qi with the increasing number of pixels i, and then refine the monotonicity with qi = max qj≤i.
After that, we calculate the extra importance for each pixel as vi = (qmax − qi). A toy example
is shown in Fig.3, in which the curve of real probabilities in blue is changed to the red one for
monotonicity. The final score can be calculated as r′i = ri × vi. For efficiency, we can uniformly
sample a limited number of i for estimating the above probabilities and infer the remaining with
linear interpolation.

3.4 GENERALIZED EVALUATION METRICS

Evaluating the quality of saliency maps based on a heuristical segmentation of images will reduce
the fairness of comparisons. It is understandable that the segmentation will be significantly affected
by thresholds (Fong & Vedaldi, 2017). To address this issue, we introduce two generalized metrics
to evaluate the comprehensive quality in terms of both the faithfulness and the explainability.
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Faithfulness. The explanation is expected to accurately replicate the models behaviour. Here we
rely on the smallest sufficient region of the image that alone allows a confident and consistent clas-
sification. Compared with smallest destroying regions, it encourages to find explanations more
consistent with the classifiers training distribution (Chang et al., 2019). Since it is subjective to de-
cide how much confidence is preferred for a specific decision, we extend the evaluation into a more
general case by taking advantage of the ranking of relevance scores.

Specifically, we first estimate the class probability of fully-perturbed images qF . We reduce the
percent of perturbed pixels at intervals of ∆ with the decremental ranking of scores and calculate
their probabilities qis, until qO is free of any perturbation. The area under the probability vs. the
percent of pixels curve is used to evaluate the faithfulness, which is integrated with a finite sum:

MF =
∑
i

(
qi

qO − qF
·∆)× 100%. (8)

For illustration, an example is displayed in Fig.3, whereMF indicates the area in blue. Besides, an
extra discussion between this metric and perturbation-based methods are provided in Appendix.

Explainability. For quantitative evaluation of explainability, we can use the extra information such
as bounding boxes for weakly-supervised object localization or the pointing game (Du et al., 2018b).
However, the former still faces the issue of the choice of thresholds; the later meets a large bias, since
it represents the quality of the scores of all pixels only based on one pixel.

Thus, we regard relevance scores as the results of retrieval tasks. Specifically, we denote the preci-
sion as the fraction of the pixels retrieved within bounding boxes. Recall denotes the fraction of the
within-bounding-box pixels that are successfully retrieved. By computing a precision Pi and recall
Ri at each position in the ranked scores of pixels, we can evaluate the explainability of scores by the
area under the precision-recall curve:

MI =
∑
i

Pi · (Ri −Ri−1)× 100%. (9)

4 EXPERIMENTS

This section evaluates the effectiveness of the proposed method. We firstly estimate the ability of
mimicking black boxes with the first metric. Then we evaluate the explainability through both the
second metric and pointing game. Finally, we display masks for visual comparison.

We perform experiments on ImageNet, and ResNet50 (He et al., 2016) is used as the black-box
classifier. We build the mask generator with three bottleneck blocks, which takes 7×7 feature maps
as the low-level input, and predicts the mask at the 56 × 56 in size. We use a two-stage scheme to
train the mask predictor. We first train the feature filter based on 250,000 images sampled from the
training set, and then optimize other parts of the mask predictor with the batch size of 64. Of note,
no ground truth is introduced and only the outputs of the classifier are utilized. We use Adam for 10
epochs with the initialized learning rate of 10−2. We apply step decay, and reduce the learning rate
by half every three epochs. In addition, during training stage, 50% of cases the image A is the Gaus-
sian blurred version of I with a variance of 10. The remainder of cases, A is set to a random colour
image with the addition of a Gaussian noise. Besides the proposed Basic Transformer (BF) and
Customized Transformer (CF), the following methods are used for comparison: (1) Mask Generator
(MGnet) (Dabkowski & Gal, 2017), (2) Meaningful Perturbation (MPert) (Fong & Vedaldi, 2017),
(3) Grad CAM (Selvaraju et al., 2017), (4) Grad CAM++ (Chattopadhay et al., 2018), (5) Vanilla
Gradient (V-Grad) (Simonyan et al., 2014), (6) Smoothness-Gradient (SM-Grad) (Smilkov et al.,
2017), (7) Integrated Gradient (IT-Grad) (Sundararajan et al., 2017). In particular, all perturbation-
based methods apply the same strategy for adding noise. For the hyper-parameters in the compared
methods, we follow the setting in their papers for a fair comparison.

4.1 FAITHFULNESS WITH QUANTITATIVE EVALUATION

We sample 10,000 images from the validation set to compose the testing set and calculate the faith-
fulness scoreMF . According to the definition ofMF , a larger value means the method can better
estimate the contributions of pixels on specific decisions. We set ∆ = 1

32 to sum up their proba-
bilities. To obtain the ranking of pixels with zero scores, we simply add a smoothed mask over the
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Table 1: Metric ofMF .

Method Average
Ours(BF) 69.35
Ours(CF) 71.35
MGnet 64.93
MPert 68.93
Grad CAM 69.71
Grad CAM++ 67.92
V-Grad 30.40
SM-Grad 43.25
IT-Grad 39.43

Table 2: Metric ofMI .

Method Average
Ours(BF) 84.31
Ours(CF) 84.02
MGnet 83.16
MPert 78.21
Grad CAM 77.56
Grad CAM++ 83.33
V-Grad 65.30
SM-Grad 71.91
IT-Grad 66.46

Table 3: Metric ofMPG .

Method Average
Ours(BF) 87.41
Ours(CF) 85.90
MGnet 88.63
MPert 84.25
Grad CAM 76.72
Grad CAM++ 83.42
V-Grad 76.78
SM-Grad 87.63
IT-Grad 81.94

original one with a tiny weight. We perturb images with their Gaussian blurred version based on
their masks and estimate the average faithfulness.

The results of averageMF are listed in Tab.1. Based on the results, the following observations can
be obtained. Firstly, the former six methods outperform V-Grad, SM-Grad, and IT-Grad with a large
gap. It is understandable that, these three methods only search sensitive pixels with gradients, the
pixels with high scores will discretely appear in each image. As a result, these methods become
harder to gather the information in a local region and reach a high class probability. Secondly, Grad
CAM is slightly better than Grad CAM++. The possible reason is that, although Grad CAM ++
can localize multiple objects in an image if the image contains multiple occurrences of the same
class, it also increases the possibility to generate the high scores at background and makes the pixels
with high scores separated. Thirdly, our methods outperform most compared methods, and obtain
much higher performance than MGnet. Since all three methods apply the same architecture of mask
generators, it demonstrates the effectiveness of fitting the relevance scores towards right-skewed
distributions. Finally, by constraining the tail with a small variance in (0,1), Ours(CF) improves the
ranking of supporting pixels and outperforms Ours(BF).

4.2 EXPLAINABILITY WITH QUANTITATIVE EVALUATION

4.2.1 WEAKLY SUPERVISED OBJECT LOCALIZATION

Below we evaluate the explainability by applying the generated masks to weakly supervised object
localization tasks. The second metricMI in Eq.9 is used for this task. We resize and crop bounding
boxes to the size of 224×224, leading to the same size of test images. The experiments are performed
on a subset of validation set, which contains 10,000 images with bounding box annotations.

The results of averageMI are listed in Tab.2. From this table, we have the following observations.
Firstly, Grad CAM ++ obtained much better performance than Grad CAM. It is understandable
that the former is able to detect multiple objects in the image and assign them the high relevance
scores. Secondly, by replacing all constraints with a simple distribution controller, our methods
outperform MGnet with a small gap. Besides, benefiting from the training with large-scale images,
their predicted high relevance scores focus on objects more robustly, and leads to better performance
than MPert. Thirdly, the last three gradient-based methods perform worse than others. The possible
reason is that, gradients are insensitive to the smooth supporting regions, which makes these regions
ignored and reduces the performances.

4.2.2 POINTING GAME

Now we evaluate the explainability with pointing games. Specifically, the maximum point is first
extracted from each generated mask. Then according to whether the maximum point falls in one
of the ground truth bounding boxes or not, a hit or a miss is counted. The localization accuracy of
the pointing game for each object category is defined as: MPG = #Hits

#Hits+#Misses × 100%. This
process is repeated for all categories and the results are averaged as the final accuracy.

The average results of all compared methods are listed in Tab. 3. From the results of this table,
the following observations can be obtained. Firstly, SM-Grad and IT-Grad obtain comparable per-
formance to the former six methods and outperform V-Grad. The main reason is that, this metric

8



Under review as a conference paper at ICLR 2020

Figure 4: Saliency maps of different methods. More examples are displayed in Appendix.

only considers the localization precision of the top pixel rather than a group of pixels. By removing
noise in gradients to some degree, these two methods are able to locate the most important pixel.
Secondly, although our methods remove the smoothness constraint, they still obtain high accuracy
of locating the most important pixel. One possible reason is that, by optimizing the predictor with
training data, a large number of noisy features can be removed, leading to the robust estimation of
scores. Thirdly, MGnet obtains the best performance. It means that, by enforcing the background
towards a low class probability, the high scores on the background pixels are generally prevented.

4.3 EXPLAINABILITY WITH VISUALIZATION

4.3.1 COMPARISON TO BASELINE METHODS

To visually demonstrate the explainability, we show the generated saliency maps of different meth-
ods, where the red denotes the high score and the blue indicates the low score. For a fair comparison,
no fine-tuning is used for the proposed methods. We randomly sample images from ImageNet and
show their masks in Fig.4. More examples are displayed in Fig.6 in Appendix.

From this figure, we have the following observations. Firstly, the gradient-based methods generally
results in more noise outside the objects. Secondly, although the high-level feature maps are used to
build saliency maps, Grad CAM and Grad CAM++ may still miss the supporting regions of objects,
such as the last two examples in Fig.4. Thirdly, although MGnet generally locates the positions
of objects, it may lead to redundancy high scores when multiple objects exist. Finally, with an
easy setting of hyper-parameters, Ours(CF) can obtain more discriminative saliency masks than
Ours(BF). It demonstrates the effectiveness of introducing a small-variance tail within (0, 1).

4.3.2 THE EFFECT OF FINE-TUNING

In this section, we aim to demonstrate the effectiveness of fine-tuning. As we mentioned, constrain-
ing different images with the same distribution may lead to redundant scores on unimportant pixels,
especially when the supporting pixels only take a small part of the image. Thus, we perform the
fine-tuning on the obtained masks. Fig.5 shows same examples of our masks before and after the
fine-tuning operation. The masks of MGnet are also displayed for comparison. More examples of
this task can be found in Fig.7 in Appendix.
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Figure 5: Some saliency maps before and after fine-tuning. More examples are shown in Appendix.

From the figure, we observe that although the obtained raw masks are generally targeted at objects
with discriminative scores, there are still many redundant relevance scores on unimportant pixels.
By weighting them with the extra importance in Sec. 3.3, we can remove the noise and highlight the
supporting region which has high relevance to the predicted class.

5 CONCLUSION AND FURTHER WORK

This paper presents a simple but effective mask predictor to provide local explanations for DNNs.
Specifically, we replace the ad hoc constraints with a distribution controller, and integrate it with a
mask generator to directly guide the distribution of relevance scores. The benefit is that, it facilitates
the setting of involved hyper-parameters, and enables discriminative scores over supporting features.
The experimental results demonstrate that our method outperforms others in terms of faithfulness
and explainability. Meanwhile, it also provides effective saliency maps for explaining each decision.

There are some aspects needing further investigations. Firstly, other different distributions may be
explored for guiding the distribution of relevance scores. Secondly, although this paper provides an
intuitive comparison of the transformed distributions for setting hyper-parameters, a more quanti-
tative analysis on the proportion of features at the tail could be studied. Thirdly, various advanced
techniques, such as Dropout, can be used for further improving the smoothness of masks.
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A APPENDIX

A.1 THE FEATURE FILTER IN THE MASK GENERATOR

The purpose of the feature filter is to attenuate spatial locations which contents do not correspond
to the selected class. Denote X ∈ RH×W×C as the output of the last convolution layer of the
classifier, where H ,W C indicate the height, the width, and the number of channels of its feature
maps, respectively. The output of filter Y ∈ RH×W×C at the spatial location i, j is formulated as

Yij = Xijsigmoid(XT
ijCs), (10)

where Cs ∈ R1×C is the embedding of the class c. For efficient optimization, (Dabkowski & Gal,
2017) introduces noise on real labels. Specifically, gradient-based optimizers are employed to max-
imize mean(sigmoid(XT

ijCk)), k = s and minimize mean(sigmoid(XT
ijCs)), k 6= s, iteratively.

A.2 A BRIEF INTRODUCTION OF THE EXPERIMENTAL SETTING

Below we present a brief description on the experimental settings of compared methods.

• Mask Generator (Dabkowski & Gal, 2017), which introduces the multiple constraints into
the objective functions for training the predictor. For this method, we use the same setting
in our method and using its default hyper-parameters in its publicly available codes.

• Meaningful Perturbation (Fong & Vedaldi, 2017), which performs meaningful image per-
turbations and directly optimizes masks with designed constraints. For comparison, we
use the same kind of perturbations in our method, and apply an Adam optimizer with the
learning rate of 0.1 for optimization. The iterations is set to 300.

• Grad CAM (Selvaraju et al., 2017), which unsamples the saliency maps based on the
gradient-weighted high-level feature maps. We use the last convolutional layers to build
its coarse saliency map and upsample it to the image scale as the final saliency map.

• Grad CAM++ (Chattopadhay et al., 2018), which conducts a weighted combination of the
positive partial derivatives to generate a visual explanation. We apply Grad CAM ++ with
exponential functions for efficiency.

• Vanilla Gradient (Simonyan et al., 2014), the basic method that uses the gradients of the
raw images as saliency maps. To improve the visualization, we crop outliers and normalize
the scores to [0, 1].

• Smoothness-Gradient (Smilkov et al., 2017), which removes noise by adding noise to im-
ages. We apply 20% noise as suggested and set the sample size to 50. Similarly, we crop
outliers and normalize the scores.

• Integrated Gradient (Sundararajan et al., 2017), which combines the implementation invari-
ance of gradients along with the sensitivity. We introduce black images as the baseline and
set 200 as the number of steps in its Riemman approximation of the integral. We use the
same way of improving visualization for saliency maps.

A.3 THE PROOF OF EQ.7.

According to the probability density transformation Forbes et al. (2011), the transformed probability
density function can be obtained based on that of the original variable:

p(m) = pz(g
−1
z (m)) · |∂g

−1
z (m)

∂m
|, (11)

where pz(·) is the probability density function of the original variable z, and g−1z (m) is the inverse
function of m on z. Since m = gz(z) = ( 1

1+exp(−ηz) )
h ∈ (0, 1) in Eq.6, we obtain

z = g−1z (m) = −1

η
ln(m−1/h − 1), (12)
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where (m−1/h − 1) > 0. Besides, we obtain:

|∂g
−1
z (m)

∂m
| = 1

η
· 1

m(−1/h) − 1
· ( 1

h
m(−1/h)−1)

=
1

ηh
· 1

m
· m(−1/h)

m(−1/h) − 1

=
1

ηh
· 1

m(1−m(1/h))

(13)

Recall the probability density function of a normal distribution is

pz(z) =
1√
2πσ

exp(− 1

2σ2
). (14)

where σ = 1 in standard normal distributions. By substituting Eqs.12-14 into Eq.11, we obtain

p(m) =
1√

2πhη
· 1

m(1−m(1/h))
exp(− (ln(m(−1/h) − 1))

2

2η2
), (15)

which completes the proof.

A.4 THE ANALYSIS ON THE RELATIONSHIP BETWEEN THE PROPOSED METRIC AND THE
PERTURBATION-BASED METHODS.

We provide a new view to discuss the relationship between the proposed metric and wildly used
perturbation-based methods with the mask involved. Recall that in most perturbation-based meth-
ods, we aim to maximize the probability of the target class of the perturbed image:

argminfc(φ(I,M)), (16)

where the pixels with higher scores in masks are supposed to be more important. By decomposing
the above mask into multiple ones with one-hot coded mask Mi, Eq.16 is equal to

fc(φ(I,

N∑
i=0

αiMi)) (17)

where αi denotes the relevance score with αi > αi+1. Suppose βi indicate some positive weights
and denote αi =

∑N
j=i βj , the above equation can be further transformed into

fc(φ(I,

N∑
i=0

(

N∑
j=i

βj)Mi)) = fc(φ(I,

N∑
i=0

(βi + ...+ βN )Mi)). (18)

Recall the area under the probability vs. the number of pixels, which can be formulated as
N∑
j=0

(βjfc(φ(I,

j∑
i=0

Mj))) = β0fc(φ(I,M0))) + β1fc(φ(I,M0 + M1)) + .... (19)

We observe that Eq.18 tends to be a linear approximation of Eq.19. Specifically, two of them be-
come equal when fc(·) and φ(·) are linear. According to Eq.19, the larger values on the former βi
means the users pay more attention to the top features. According to Eq.18, it also implies the high
scores should be much larger than others and highlight important features. Thus, to evaluate the
effectiveness of perturbation-based methods, the proposed metric tends to be more convincing.

A.5 SALIENCY MAPS OF DIFFERENT METHODS.

More saliency maps generated by different methods are displayed in Fig.6.

A.6 SALIENCY MAPS OF FINE-TUNING.

Saliency maps of the proposed methods before and after fine-tuning are displayed in Fig.7. In
addition, the results of MGnet are displayed for comparison.
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Figure 6: Example of the saliency maps of different methods.
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Figure 7: Saliency maps of the proposed methods before and after fine-tuning.
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