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ABSTRACT

Recurrent neural networks (RNN) are powerful time series modeling tools in ma-
chine learning. It has been successfully applied in a variety of fields such as natural
language processing (Mikolov et al. (2010), Graves et al. (2013), Du et al. (2015)),
control (Fei & Lu (2017)) and traffic forecasting (Ma et al. (2015)), etc. In those
application scenarios, RNN can be viewed as implicitly modelling a stochastic dy-
namic system. Another type of popular neural network, deep (feed-forward) neural
network has also been successfully applied in different engineering disciplines,
whose approximation capability has been well characterized by universal approxi-
mation theorem (Hornik et al. (1989), Park & Sandberg (1991), Lu et al. (2017)).
However, the underlying approximation capability of RNN has not been fully
understood in a quantitative way. In our paper, we consider a stochastic dynamic
system with noisy observations and analyze the approximation capability of RNN
in synthesizing the optimal state estimator, namely optimal filter. We unify the
recurrent neural network into Bayesian filtering framework and show that recurrent
neural network is a universal approximator of optimal finite dimensional filters
under some mild conditions. That is to say, for any stochastic dynamic systems
with noisy sequential observations that satisfy some mild conditions, we show that
(informal)

∀ε > 0,∃ RNN-based filter, s.t. lim sup
k→∞

∥∥x̂k|k − E[xk|Yk]
∥∥ < ε,

where x̂k|k is RNN-based filter’s estimate of state xk at step k conditioned on
the observation history and E[xk|Yk] is the conditional mean of xk, known as the
optimal estimate of the state in minimum mean square error sense. As an interesting
special case, the widely used Kalman filter (KF) can be synthesized by RNN.

1 INTRODUCTION

Recurrent neural network (RNN) is a certain type of neural networks characterized by hidden
variables that memorize the history of input sequences, and it has been successfully applied and
brought amazing results in many different disciplines including computer vision, natural language
processing and optimal control, etc. (Mikolov et al. (2010), Graves et al. (2013), Du et al. (2015),
Fei & Lu (2017), Ma et al. (2015)). Its huge empirical success in different engineering disciplines is
grounded on the expressive power of RNN. However, how to understand the expressive power of
RNN in a quantitative way is not fully understood. Even what RNN expresses is not totally clear.
Another type of neural network, deep feed forward neural network has been well characterized as a
universal function approximator (Hornik et al. (1989), Park & Sandberg (1991)). However, a similar
way to characterize the expressive power of RNN is not obvious.

DNN is a mapping from a finite dimensional Euclidean space to another finite dimensional Euclidean
space, that is to say it can be regarded as a vector-valued multivariate function. However, RNN is a
mapping from a sequence space to another sequence space and the current output depends on both
current input and the whole observation history. The input sequence, in principle, can be infinite.
The function of RNN is capturing the relationship between input process and output process. For
example, in machine translation, the input process (or the observation process) is sentence in one
language and the output process (or the state process) is sentence in another language. And in many
other RNN’s application scenarios such as traffic forecast and optimal control, the input is a noisy
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observation or measurement sequence and the output is an estimate sequence of a certain quantity,
e.g., the traffic speed.. We observe that the function of RNN is quite similar to a filter.

In our paper, we propose to characterize the expressive power of RNN in a quantitative way from the
perspective of filtering. We consider a discrete filtering system as 1.{

xk = f(xk−1) + g(xk−1)wk−1,

yk = h(xk) + vk,
(1)

where the state xk at time instant k is an n-dimensional vector, f is an n-dimensional vector-
valued function, g is an n × r matrix-valued function, {wk, k = 0, 1, · · · } is an r-dimensional
white Gaussian process and wk ∼ N (0, Q), where Q is the covariance matrix of wk. yk is the
m-dimensional observation (measurement) process, h is an m-dimensional vector-valued function,
{vk, k = 1, · · · } is an m-dimensional white Gaussian process and vk ∼ N (0, R), where R is the
covariance matrix of vk. And we assume that {wk, k = 0, 1, · · · }, {vk, k = 1, · · · } and the initial
state x0 are jointly independent. We use Yk to denote the sequence of observations up to time instant
k, i.e.,

Yk := {y1, · · · , yk}. (2)

Given the realization of the sequence of observations Yk, the aim of filtering problem is to compute
the optimal estimate of xk conditioned on Yk.

Not surprisingly, recurrent neural network has been proposed to do filtering. James Ting Ho Lo
showed that Recurrent Multi-layer Perceptron can be used to synthesize optimal filter (Lo (1994)).
However, Lo’s approach is based on simply copying and storing the whole observation history in
the hidden variables and thus require the time horizon to be finite, which is fundamentally limited.
Besides Lo’s work, many efforts have been made to connect RNN and dynamical system. Wilson &
Finkel (2009) implemented a neural network based Kalman Filter (KF) but did not provide theoretical
analysis on the approximation error. Parlos et al. (2001) proposed an algorithmic approach to do
nonlinear filtering using recurrent neural network architecture but did not provide theoretical gurantee.
Schäfer & Zimmermann (2006) shows that recurrent neural network is a universal approximator
of dynamical system. However, they only consider the deterministic system dynamics and do not
analyze the filtering relationship between two stochastic processes.

Compared to the existing work, we make the following specific contributions:

• Motivated by the similarity between RNN and filter, we propose to use the ability to
approximate optimal filter to characterize the expressive power of RNN. Unlike existing work
on expressive power of RNN (Schäfer & Zimmermann (2006)) where only deterministic
system is considered, we consider a stochastic dynamic system with noisy observations and
analyze the capability of RNN to estimate unknown state.

• We unify RNN-based filter into Bayesian filtering framework. In this framework, the hidden
variables of RNN are interpreted as statistics of the observation history. And the evolution
of hidden variables are interpreted as the evolution of statistics.

• Based on the Bayesian filtering framework, we derive our main result: Recurrent Neural
Networks (RNN) are universal approximators of a large class of optimal finite dimensional
filters. That is to say, RNN estimator’s asymptotic estimation error can be as close to mini-
mum mean square error as desired. As an interesting special case, the widely used Kalman
Filter can be synthesized by RNN. The consideration of asymptotic error differentiates us
from existing work on expressive power of RNN (Schäfer & Zimmermann (2006)).

2 PRELIMINARY: THE BAYESIAN FRAMEWORK OF FILTERING

We first introduce the definition of minimum mean square error estimate.

Definition 1 (Minimum Mean Square Error (MMSE) Estimate (Jazwinski (1970))). Let x̂ be an
estimate of random variable x and LMSE := (x− x̂)T (x− x̂). The estimate that minimizes E[LMSE]
is called the minimum mean square error estimate.

Theorem 1 (Theorem 5.3 in Jazwinski (1970)). Conditioned on the observation history Yk, the
minimum mean square error estimate of state xk is the conditional mean E[xk|Yk].
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Proof. We refer the reader to the proof in Section 5.2 of Jazwinski (1970).

The Bayesian filtering consists of recursive prediction and update procedures (Jazwinski (1970)):

Prediction Step p(xk−1|Yk−1) → p(xk|Yk−1): Given the posterior distribution p(xk−1|Yk−1) at
instant k − 1, the prior distribution p(xk|Yk−1) of xk satisfies the Fokker-Planck equation:

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1) dxk−1; (3)

Updating Step p(xk|Yk−1)→ p(xk|Yk): Given prior distribution p(xk|Yk−1), when the observation
yk at instant k arrives, the posterior distribution p(xk|Yk) at instant k is given by equation 4,

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1) dxk

. (4)

Then we can get the MMSE estimate by simply doing integration:

E[xk|Yk] =

∫
p(xk|Yk)xk dxk. (5)

To facilitate subsequent discussion, we make the following definition.
Definition 2 (Sufficient Statistic (Beneš (1981))). If the conditional distribution p(xk|Yk) (or
p(xk|Yk−1)) can be fully determined by a vector-valued function sk|k (or sk|k−1) of the obser-
vation sequence Yk (or Yk−1), then we say sk|k (or sk|k−1) is a sufficient statistic for p(xk|Yk) (or
p(xk|Yk−1)).1

Because sufficient statistic sk|k fully determines the posterior distribution p(xk|Yk) and MMSE
estimate E(xk|Yk) is a functional of p(xk|Yk), there exists a function γ that maps sk|k to E[xk|Yk],2
i.e.,

E[xk|Yk] = γ(sk|k). (6)

3 RNN BASED FILTER’S ARCHITECTURE

Motivated by the Bayesian framework of filtering, we propose the RNN based filter’s architecture as
shown in Fig. 1.

Our RNN based filter’s architecture, Bayesian Filter Net (BFN), consists of three parts: prediction
network, update network and estimation network. To mimic the prediction step in Bayesian filtering,
we use the prediction network to map the posterior distribution representation vector to a prior
distribution representation vector. To mimic the update step in Bayesian filtering, we then use an
update network to update the prior state distribution representation vector and the observation to get
the posterior state distribution representation vector. Finally, we use an estimation network to map
the current posterior state distribution representation vector to current estimation x̂k. We will see
in the subsequent discussions, the so-called representation vector or hidden variables indeed can be
interpreted as statistics of the underlying conditional distribution.

4 RNN BASED FILTER IS UNIVERSAL

We now show that our proposed RNN based filter is universal in that it can approximate a large class
of optimal finite dimensional filters to any asymptotic accuracy we desire. We summarize our insight
into the diagram 2.

1 The sufficient statistic sk|k (or sk|k−1) can be any vector-valued function of Yk (or Yk−1) as long as it can
fully determine p(xk|Yk) (or p(xk|Yk−1)). Taking linear system as an example, sk|k can be the vector composed
of the conditional mean and covariance because these two quantities sufficiently determine the conditional
density function of the state in linear filtering system. (See more details in our Appendix A.2.)

2 For instance, as for the Kalman Filter in linear system, the sufficient statistic sk|k can be chosen to be the
conditional mean and conditional covariance, thus γ function can be the function that copy the conditional mean
part of sk|k.
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Figure 1: RNN based filter’s architecture: Bayesian Filter Net (BFN) .
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Figure 2: Our approach’s illustrative diagram

As shown in the diagram 2, we model the conditional prior probability p(xk|Yk−1)
(
posterior

probability p(xk|Yk) resp.
)

of the state at step k by finite dimensional prior statistics sk|k−1 (posterior
statistics sk|k resp.). In finite dimensional filter case (Beneš (1981; 1985); Daum (1987)), there exist
finite dimensional statistics that are sufficient, that is to say, the evolution of conditional probability
can be fully captured by the evolution of a finite dimensional vector. We denote the evolution
function in updating step by ϕ and the evolution function in prediction step by φ. And further, after
modelling the the probability distribution as finite dimensional statistics, we use two neural networks
to approximate the evolution of them. And to get the final estimate of the state, we use another neural
network to approximate the map from the statistics to the optimal estimation.

For the RNN based filter, one can naturally ask:

1. Will the neural network approximation error accumulate and blow up when time goes to
infinity and make RNN asymptotically not work at all?

2. How general is this approach? What filter can RNN approximate?

We give the answers in this section.

4.1 KALMAN FILTER (KF) CAN BE SYNTHESIZED BY RNN

When system equation 1 is linear and satisfies Gaussian noise assumption as shown in equation 7,
it is well known that the filtering problem can be optimally solved by Kalman Filter (KF) (Kalman
(1960)). (See more details in our Appendix A.2.){

xk = Fxk−1 +Gwk−1

yk = Hxk + vk,
(7)
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where F,G,H are constant matrices with proper dimensions, the initial state x0 is Gaussian, and
{wk, k = 0, 1, · · · } and {vk, k = 1, · · · } are two independent white Gaussian sequences that are
also independent of the initial state x0.

It can be known that the prior and posterior distributions are Gaussian and fully characterized by the
sufficient statistics s composed of mean and covariance matrix. (See more details in our Appendix
A.2.) {

sk|k−1 := [mk|k−1, vecT (Pk|k−1)]T ,

sk|k := [mk|k, vecT (Pk|k)]T ,
(8)

where mk|k−1 and Pk|k−1 are the conditional mean and covariance in step k conditioned on Yk−1

and mk|k and Pk|k are the mean and covariance in step k conditioned on Yk, and vec(◦n1×n2
) is the

n1n2 × 1 column vector obtained by stacking the columns of the matrix ◦ on top of one another.
sk|k (sk|k−1 resp.) is the theoretical statistic that determines the conditional probability distribution
of the state xk conditioned on the observation history Yk (Yk−1 resp.) and evolves according to some
function ϕ and φ. (See more details in our Appendix A.2.) We also know that there exists some
function γ that maps sk|k to MMSE estimate E[xk|Yk]. Thus we have,

sk|k = ϕ(sk|k−1, yk), sk+1|k = φ(sk|k), E[xk|Yk] = γ(sk|k). (9)

We use function ϕ̃ generated by a deep (feedforward) neural network (i.e. update network) to
approximate ϕ, and use φ̃ generated by another DNN (i.e. prediction network) to approximate φ.
And the numerical statistics computed by RNN are denoted as s̃k|k and s̃k+1|k, i.e.,

s̃k|k = ϕ̃(s̃k|k−1, yk), s̃k+1|k = φ̃(s̃k|k). (10)

And we use function γ̃ generated by the third deep feedforward neural network (i.e. estimation
network) to approximate γ in equation 6, i.e.,

x̂k|k = γ̃(s̃k|k). (11)

Note that the probability space (Ω,F ,P) with finite second moment, with inner product 〈x, y〉 =
E[xT y] and norm ‖x‖ := E1/2[xTx] is a Hilbert space, denoted as L2(Ω,F ,P). We first state the
universal approximation theorem of feedforward neural network before we proceed to show our
results.
Theorem 2 (Universal Approximation Theorem (Hornik et al. (1989))). For any given compact
subset K ⊂ Rn, any given continuous function f defined on K and any given accuracy degree ε > 0,
there exists a function g represented by a single-hidden-layer neural network with non-constant and
bounded activation function such that maxx∈K |f(x)− g(x)| < ε.

Proof. It is a natural corollary of the Thm. 2.1 in Hornik et al. (1989).

Define ek|k := ‖sk|k − s̃k|k‖, which represents the cumulative error caused by the approximation
error of φ̃ and ϕ̃. Similarly, we define ek|k−1 := ‖sk|k−1 − s̃k|k−1‖. In the following theorem, we
shall give the condition which ensures the cumulative error will not blow up as time k approaches∞.

Before we proceed to show our main result, we first establish a key lemma, Lem. 2. We make two
assumptions on the system we’ll consider..
Assumption 1. We assume that the linear dynamic system of the state in equation 7 is stable in mean
square sense (Samuels (1959)), i.e.,

lim
k→∞

‖xk‖ ≤M, (12)

where M is a finite constant.
Assumption 2. The dynamical system equation 7 is uniformly completely observable and uniformly
completely controllable.

The definitions of uniformly completely observable and uniformly completely controllable can be
found in section 7.5 of Jazwinski (1970). We then state a lemma on the boundedness of conditional
covariance.
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Lemma 1 (Lemma 7.1 in Jazwinski (1970)). If Assumption 2 is satisfied and P0|0 < 03, then Pk|k is
uniformly bounded from above for all k ≥ N ,

Pk|k 4

(
1 + αβ

α

)
I, k ≥ N, (13)

where N is a positive integer, I is the n× n identity matrix and α, β are positive constants.

Based on Lemma 1, Assumption 1 and Assumption 2, we give the key Lemma 2.
Lemma 2. In the discrete linear system equation 7, suppose the Assumption 1 and Assumption 2 are
satisfied, then for any given ε > 0 there exists a compact subsetK ⊂ Rdim(sk|k) such that the statistics
computed by KF sk|k−1, sk|k and the statistics s̃k|k−1, s̃k|k computed by RNN based filter with non-
constant and bounded activation function satisfy

∥∥sk|k−11sk|k−1 6∈K
∥∥ < ε,

∥∥sk|k1sk|k 6∈K∥∥ < ε,∥∥s̃k|k−11s̃k|k−1 6∈K
∥∥ < ε and

∥∥s̃k|k1s̃k|k 6∈K∥∥ < ε, where 1A is an indicator function.

Proof. Proof can be found in our appendix A.3.

We then derive our main result.
Theorem 3. Assume sk|k, k ≥ 0 are the theoretical statistics evolving according to equation 9
and s̃k|k, k ≥ 0 are the real statistics computed by our RNN-based filter evolving according to
equation 10. Suppose the Assumption 1 and Assumption 2 are satisfied. Furthermore, we need to
assume functions ϕ, φ, γ are Lipschitz, i.e., for any s1, s2,

‖ϕ(s1, y)− ϕ(s2, y)‖ ≤ Cϕ‖s1 − s2‖,
‖φ(s1)− φ(s2)‖ ≤ Cφ‖s1 − s2‖,
‖γ(s1)− γ(s2)‖ ≤ Cγ‖s1 − s2‖,

(14)

where Cϕ and Cφ are Lipschitz constants. If Cϕ and Cφ satisfy |CϕCφ| < 1, then for any ε > 0,
there exists an RNN based filter (with non-constant and bounded activation function) such that

lim sup
k→∞

ek|k = lim sup
k→∞

∥∥sk|k − s̃k|k∥∥ < ε. (15)

Furthermore, we have
lim sup
k→∞

∥∥x̂k|k − E[xk|Yk]
∥∥ < ε. (16)

Proof. For any δ > 0, we have the following. By Lem. 3, there exists a compact ball K = B(0, r) ⊂
Rdim(sk|k), such that

∥∥sk|k−11sk|k−1 6∈K
∥∥ < δ,

∥∥sk|k1sk|k 6∈K∥∥ < δ,
∥∥s̃k|k−11s̃k|k−1 6∈K

∥∥ < δ and∥∥s̃k|k1s̃k|k 6∈K∥∥ < δ. By Theorem 2, given any small δϕ, δφ ∈ R+ and δγ ∈ R+, there exist two
functions ϕ̃, φ̃ which are represented by the DNN, such that

‖ϕ− ϕ̃‖K∞ ≤ δϕ, ‖φ− φ̃‖K∞ ≤ δφ, ‖γ − γ̃‖K∞ ≤ δγ . (17)

where ‖h‖K∞ := maxx∈K |h(x)|. And without loss of generality, we set φ(0) = φ̃(0), ϕ(0) = ϕ̃(0)
and γ(0) = γ̃(0). In the prediction step, based on the evolution equations equation 9 and equation 10,
we have

ek|k−1 = ‖(sk|k−1 − s̃k|k−1)‖ = ‖φ(sk−1|k−1)− φ̃(s̃k−1|k−1)‖
≤ ‖φ(sk−1|k−1)− φ(s̃k−1|k−1)‖+ ‖φ(s̃k−1|k−1)− φ̃(s̃k−1|k−1)‖
≤ ‖φ(sk−1|k−1)− φ(s̃k−1|k−1)‖+ ‖(φ(s̃k−1|k−1)− φ̃(s̃k−1|k−1))1s̃k−1|k−1∈K‖

+ ‖(φ(s̃k−1|k−1)− φ̃(s̃k−1|k−1))1s̃k−1|k−1 6∈K‖
≤ Cφek−1|k−1 + δφ + (Cφ + Cφ̃)δ,

(18)

where the last inequality follows from equation 14 and equation 17 and Cφ̃ is the Lipschitz constant
of φ̃. We let δ

′

φ := δφ + (Cφ + Cφ̃)δ.

3Here, X < Y (X 4 Y resp.) if and only if X − Y (Y −X resp.) is positive semi-definite, where X and
Y are symmetric matrices.

6



Under review as a conference paper at ICLR 2020

Similarly, in the updating step, we have ek|k ≤ Cϕek|k−1 + δ
′

ϕ ,where δ
′

ϕ := δϕ + (Cϕ + Cϕ̃)δ.
Combining this and equation 18, we obtain

ek|k ≤ Cϕek|k−1 + δ
′

ϕ ≤ (CϕCφ) ek−1|k−1 +
(
Cϕδ

′

φ + δ
′

ϕ

)
. (19)

Using equation 19 repeatedly, it follows that 4

ek|k ≤ (CϕCφ)
k
e0|0 +

(
Cϕδ

′

φ + δ
′

ϕ

) (CϕCφ)
k − 1

CϕCφ − 1
. (20)

Thus lim sup
k→+∞

ek|k ≤
(
Cϕ

(
δφ + (Cφ + Cφ̃)δ

)
+ δϕ + (Cϕ + Cϕ̃)δ

) 1

1− CϕCφ
as k → ∞

once the condition |CϕCφ| < 1 holds. We choose small enough δφ, δϕ and δ such that(
Cϕ

(
δφ + (Cφ + Cφ̃)δ

)
+ δϕ + (Cϕ + Cϕ̃)δ

) 1

1− CϕCφ
< ε. Then we get 15. Now we prove

16.∥∥x̂k|k − E[xk|Yk]
∥∥ =

∥∥γ̃(s̃k|k)− γ(sk|k)
∥∥ ≤ ∥∥γ(sk|k)− γ(s̃k|k)

∥∥+
∥∥γ(s̃k|k)− γ̃(s̃k|k)

∥∥
≤
∥∥γ(sk|k)− γ(s̃k|k)

∥∥+
∥∥(γ(s̃k|k)− γ̃(s̃k|k)

)
1s̃k−1|k−1∈K

∥∥+
∥∥(γ(s̃k|k)− γ̃(s̃k|k)

)
1s̃k−1|k−1 6∈K

∥∥
?1
≤Cγek|k + δγ + (Cγ + Cγ̃)δ

?2
≤ Cγ (CϕCφ)

k
e0|0 + Cγ

(
Cϕδ

′

φ + δ
′

ϕ

) (CϕCφ)
k − 1

CϕCφ − 1
+ δγ + (Cγ + Cγ̃)δ

(21)

where the inequality ?1 follows equation 14 and equation 17, the inequality ?2 follows equa-
tion 54, and Cγ̃ is the Lipschitz constant of γ̃. Thus lim sup

k→+∞

∥∥x̂k|k − E[xk|Yk]
∥∥ ≤ Cγ(Cϕδ

′

φ +

δ
′

ϕ)(−CϕCφ + 1)
−1

+ δγ + (Cγ + Cγ̃)δ. Again we can choose small enough δφ, δϕ, δγ and δ such
that Cγ(Cϕδ

′

φ + δ
′

ϕ)(−CϕCφ + 1)
−1

+ δγ + (Cγ +Cγ̃)δ < ε. Then we obtain the desired 16.

An example satisfying all the assumptions of Thm. 3 can be found in our Appendix A.4. We also
remark that in our proof, we implicitly require that the Lipschitz constants of φ̃, ϕ̃, γ̃ are uniformly
upper bounded. (See more details in our Appendix A.6) Thm. 3 highlights that the optimal filter in
linear system with Gaussian noise, Kalman Filter, can be synthesized by RNN. And RNN based
filter’s asymptotic error can be as small as wanted under some Lipschitz conditions. That is to say,
RNN is an approximator of Kalman filter.

4.2 RNN BASED FILTER IS A UNIVERSAL APPROXIMATOR OF OPTIMAL FINITE DIMENSIONAL
FILTER

Thm. 3 shows that Kalman Filter (KF) can be synthesized by RNN. In this section, we’ll try to answer
the question "How general is the RNN based filter?" and extend the result into a more general case.
We’ll show that any optimal finite dimensional filter can be universally approximated by RNN under
some mild conditions. For a general system with noisy observation as shown in equation 1, once the
conditional distribution p(xk|Yk) is obtained, the filtering problem is solved. However, we usually
need to solve an infinite number of ordinary differential equations (ODE) in order to solve p(xk|Yk).
If the distribution p(xk|Yk) admits a finite dimensional sufficient statistics, then we only need to
solve a finite number of ODE (Chen (2003)) and we call such filter finite dimensional filter. Finite
dimensional filter has been an active research area after the seminal work (Beneš (1981; 1985)) of
Beneš. It’s is a large class of filters. Some nontrivial finite dimensional nonlinear filter examples can
be found in Daum (1986); Ferrante & Runggaldier (1990); GÜnther (1981); Levine & Marino (1986).

Similarly, we use vector Sk|k to denote the finite dimensional sufficient statistics of the posterior
distribution p(xk|Yk) and Sk|k−1 to denote the finite dimensional sufficient statistics of the prior
distribution p(xk|Yk−1). The evolution functions of the statistics are denoted as Φ and Ψ, and the
map from Sk|k to conditional mean E(xk|Yk) is denoted as Γ, i.e.,

Sk|k−1 = Φ(Sk−1|k−1), Sk|k = Ψ(Sk|k−1, yk), E(xk|Yk) = Γ(Sk|k). (22)

4See more details in our Appendix A.5.
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Similarly, in our proposed neural networks, we use DNN generated function Φ̃ (prediction network)
to approximate Φ, use another DNN generated Ψ̃ (update network) to approximate Ψ, and use the
third DNN generated function Γ̃ to approximate Γ. And the numerical statistics computed by RNN
are denoted as S̃k|k and S̃k|k−1, i.e.,

S̃k|k−1 = Φ̃(S̃k−1|k−1), S̃k|k = Ψ̃(S̃k|k−1, yk), x̂k|k = Γ̃(S̃k|k). (23)

We also need the following assumption.

Assumption 3. We assume that for any given ε > 0 there exists a compact subset K ⊂ Rdim(Sk|k)

such that the statistics computed by the optiaml finite dimensional filter Sk|k−1 and Sk|k satisfy∥∥Sk|k−11Sk|k−1 6∈K
∥∥ < ε, and

∥∥Sk|k1Sk|k 6∈K
∥∥ < ε.

We can see equation 7 is the special case of system equation 1, and it satisfies the Assumption 3
according to Lemma 2. We further have Lem. 3 and Thm. 4.

Lemma 3. In the discrete system equation 1, for any given ε > 0 there exists a compact subset
K ⊂ Rdim(Sk|k) such that the statistics S̃k|k−1, S̃k|k computed by RNN based filter with non-constant

and bounded activation function satisfy
∥∥∥S̃k|k−11S̃k|k−1 6∈K

∥∥∥ < ε and
∥∥∥S̃k|k1S̃k|k 6∈K

∥∥∥ < ε, where
1A is indicator function.

Proof. The proof is similar to the step 2 of the proof of Lem. 2.

Theorem 4. Consider a discrete filtering system equation 1 with optimal finite dimensional filter and
suppose Sk|k, k ≥ 0 are the theoretical statistics evolving according to equation 22 and S̃k|k, k ≥ 0
are the statistics generated by our RNN based filter and evolving according to equation 23. Suppose
the Assumption 3 is satisfied. Furthermore, we need to assume that functions Φ and Ψ are Lipschitz,
i.e., for any S1, S2,

‖Ψ(S1, y)−Ψ(S2, y)‖ ≤ CΨ‖S1 − S2‖,
‖Φ(S1)− Φ(S2)‖ ≤ CΦ‖S1 − S2‖,
‖Γ(S1)− Γ(S2)‖ ≤ CΓ‖S1 − S2‖

(24)

where CΨ and CΦ are Lipschitz constants. If CΨ and CΦ satisfy |CΨCΦ| < 1, then for any ε > 0,
there exists a RNN based filter with non-constant and bounded activation function such that

lim sup
k→∞

∥∥∥Sk|k − S̃k|k∥∥∥ < ε. (25)

Furthermore, we have
lim sup
k→∞

∥∥x̂k|k − E[xk|Yk]
∥∥ < ε. (26)

Proof. The procedure is similar to the proof of Theorem 3.

Thm. 4 highlights that RNN based filter can not only approximate Kalman filter, but any optimal
finite dimensional filter under some Lipschitz conditions. Therefore, RNN’s expressive power is
characterized as the universal filtering property.

5 CONCLUSION

In our paper, we try to characterize the expressive power of RNN from the filtering perspective.
We unify the recurrent neural network into Bayesian filtering framework and show that recurrent
neural network is a universal approximator of optimal finite dimensional filters under some Lipschitz
conditions. As an interesting special case, the widely used Kalman filter can be synthesized by
RNN. Understanding the expressive power of RNN based filter in more general nonlinear filtering
cases (with no finite dimensional sufficient statistics) can be a very interesting future direction.
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A APPENDIX

A.1 THE EVOLUTION OF DISTRIBUTION IN UPDATING STEP OF BAYESIAN FILTER

Let p(xk|Yk) denote the conditional distribution of state xk conditioned on the observation history
Yk, then using Bayes’ rule, we have:

p(xk|Yk)
Bayes’ rule

=
p(Yk|xk)p(xk)

p(Yk)
=
p(yk, Yk−1|xk)p(xk)

p(yk, Yk−1)

=
p(yk|Yk−1, xk)p(Yk−1|xk)p(xk)

p(yk|Yk−1)p(Yk−1)

Bayes’ rule
=

p(yk|Yk−1, xk)p(xk|Yk−1)p(Yk−1)p(xk)

p(yk|Yk−1)p(Yk−1)p(xk)

=
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)

=
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1) dxk

.

(27)

It can be seen that the posterior distribution p(xk|Yk) is determined by the prior distribution
p(xk|Yk−1) and likelihood function p(yk|xk), which depends on the observation model and the
known distribution of vk.

A.2 THE EVOLUTION FUNCTION OF STATISTICS FOR KALMAN FILTER

The widely used Kalman Filter assumes that the posterior distribution at every instant is Gaussian,
and then it can be parameterized by the mean and covariance. We consider the following system:{

xk = Fxk−1 +Gwk−1

yk = Hxk + vk,
(28)

where F,G,H are constant matrices with proper dimensions, the initial state x0 is Gaussian, and
{wk, k = 0, 1, · · · } and {vk, k = 1, · · · } are two independent white Gaussian sequences that are
also independent of the initial state x0 jointly.

Then KF can be viewed as the following recursive relationship:

p(xk−1|Yk−1) = N (xk−1;mk−1|k−1, Pk−1|k−1)

p(xk|Yk−1) = N (xk;mk|k−1, Pk|k−1)

p(xk|Yk) = N (xk;mk|k, Pk|k),

(29)

10
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where in the prediction step, {
mk|k−1 = Fmk−1|k−1

Pk|k−1 = GQGT + FPk−1|k−1F
T ,

(30)

in the updating step, 
mk|k = mk|k−1 + Pk|k−1H

T (HPk|k−1H
T +R)−1

· (yk −Hmk|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T (HPk|k−1H

T +R)−1

·HPk|k−1,

(31)

and N (x;m,P ) is a Gaussian distribution with mean m, and covariance P . The evolution functions
of mean and covariance in the prediction step and updating step can be expressed in the following
compact form: {

mk|k−1 = φ1(mk−1|k−1, Pk−1|k−1)

Pk|k−1 = φ2(mk−1|k−1, Pk−1|k−1),
(32){

mk|k = ϕ1(mk|k−1, Pk|k−1, yk)

Pk|k = ϕ2(mk|k−1, Pk|k−1, yk),
(33)

where φ1, φ2, ϕ1 and ϕ2 are defined as{
φ1(m,P ) := Fm

φ2(m,P ) := GQGT + FPFT ,
(34)

and {
ϕ1(m,P, y) := m+ PHT (HPHT +R)−1(y −Hm)

ϕ2(m,P, y) := P − PHT (HPHT +R)−1HP,
(35)

Here,
mk|k−1 = E[xk|Yk−1], mk|k = E[xk|Yk] (36)

are the conditional means of state conditioned on observation history.

Pk|k−1 = E
[
(xk −mk|k−1)(xk −mk|k−1)T |Yk−1

]
,

Pk|k = E
[
(xk −mk|k)(xk −mk|k)T |Yk

] (37)

are the corresponding conditional covariance. Then we know that the posterior distribution p(xk|Yk)
is parameterized by the conditional mean mk|k and covariance Pk|k which are functions of Yk, i.e.,
p(xk|Yk−1) is parameterized by {mk|k, Pk|k}. And the similar conclusion can be obtained for prior
distribution p(xk|Yk−1).

Now we vectorize {mk|k, Pk|k} as the statistics

sk|k := [mk|k
T , vecT (Pk|k)]T . (38)

Vectorizing the second equation in equation 32 and equation 33, we have[
ϕ1(m,P, y)

vec(ϕ2(m,P, y))

]
=

[
ϕ1(m, vec−1(vec(P )), y)

vec(ϕ2(m, vec−1(vec(P )), y))

]
, ϕ(m, vec(P ), y) = ϕ(s, y),

(39)

and [
φ1(m,P )

vec(φ2(m,P ))

]
, φ(m, vec(P )) = φ(s), (40)

where we omit subscript characters without causing confusion, and vec−1
n1×n2

is the inverse operator
of vec such that vec−1

n1×n2
(vec(◦n1×n2

)) = ◦n1×n2
. Then we obtain the evolution functions of the

statistics:
sk|k = ϕ(sk|k−1, yk), sk+1|k = φ(sk|k), (41)

where ϕ and φ are defined in equation 39 and equation 40.

11



Under review as a conference paper at ICLR 2020

A.3 PROOF TO LEM. 2

Proof. Step 1: It can be known from the KF that the evolution function for conditional covariance is
as follows (see appendix):

Pk|k−1 = GQGT + FPk−1|k−1F
T

Pk|k = Pk|k−1 − Pk|k−1H
T (HPk|k−1H

T +R)−1

·HPk|k−1,

(42)

and the initial value is P0|0. It follows that the conditional covariance P evolves in a deterministic
manner and without any randomness according to the evolution equation equation 42, therefore P is
independent of the observations. Since

Pk|k = E
[(
xk −mk|k

) (
xk −mk|k

)T ∣∣∣Yk] ,
and Pk|k is independent of Yk, we have

Pk|k = E
[(
xk −mk|k

) (
xk −mk|k

)T ]
. (43)

According to Lemma 1, we have

Pk|k 4

(
1 + αβ

α

)
I, k ≥ N, (44)

where N is a positive integer and α, β are positive constants. It can be easily checked that, there
exists a positive constant α0, such that

Pk|k 4 α0I, ∀ k ≥ 0. (45)

According to equation 43, we have

‖xk −mk|k‖2

=E
[(
xk −mk|k

)T (
xk −mk|k

)]
=tr
(
Pk|k

)
,

(46)

where tr(?) denotes the trace of matrix ?. Combining equation 45 and equation 46, we know that

‖xk −mk|k‖ ≤
√
nα0, ∀ k ≥ 0. (47)

Then according to equation 12 and equation 47, we have

‖mk|k‖ ≤ ‖xk −mk|k‖+ ‖xk‖
≤
√
nα0 +M

≤ C0, ∀ k ≥ 0,

(48)

where C0 is a positive constant and can be chosen to be
√
nα0 +M .

Now we have the conclusion that mk|k and Pk|k are bounded for all k ≥ 0. Similarly, we know
that mk|k−1 and Pk|k−1 are all bounded following the similar procedure as above. According to
equation 8, we know that all sufficient statistics sk|k−1, sk|k are bounded.

Step 2: We then prove that
∥∥s̃k|k−11s̃k|k−1 6∈K

∥∥ < ε and
∥∥s̃k|k1s̃k|k 6∈K∥∥ < ε. Recall that

s̃k|k = ϕ̃(s̃k|k−1, yk), s̃k+1|k = φ̃(s̃k|k), (49)

where ϕ̃ and φ̃ are approximating functions generated by neural networks with non-constant and
bounded activation functions. Let σ denote the activation functions used by the neural network and
assume that |σ(x)| < Cσ,∀x ∈ R. And without loss of generality, we assume ϕ̃(s̃k|k−1, yk) =
V1σ(W1p1(s̃k|k−1, yk) + b1) + c1, where p1 is the vector valued function that takes input to the last
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hidden layer’s output, V1 and W1 are matrices with suitable dimension, b1 is a vector with suitable
dimension. Then we’ll have,

∥∥s̃k|k∥∥
=
∥∥ϕ̃(s̃k|k−1, yk)

∥∥
≤
∥∥V1σ(W1p1(s̃k|k−1, yk) + b1) + c1

∥∥
≤‖V1‖

∥∥σ(W1p1(s̃k|k−1, yk) + b1)
∥∥+ ‖c1‖

≤‖V1‖
√

dim(b1)Cσ + ‖c1‖ ,

(50)

where dim(x) is the dimension of the vector of x. We choose the compact set K to cover the compact
ball {x ∈ Rdim(s̃k|k) : ‖x‖E ≤ ‖V1‖

√
dim(b1)Cσ + ‖c1‖} where ‖?‖E denotes Euclidean norm

of ?. Then it can be seen that
∥∥s̃k|k−11s̃k|k−1 6∈K

∥∥ < ε. And
∥∥s̃k|k1s̃k|k 6∈K∥∥ < ε can be shown in a

similar way.

A.4 AN EXAMPLE THAT SATISFIES ALL THE ASSUMPTIONS OF THM. 3

Here we verify that the system shown in equation 51 with state’s dimension 1 satisfies all assumptions
in Theorem 3.

{
xk = (1− α)xk−1 +

√
αwk−1

yk = αxk +
√
αvk,

(51)

where 0 < α < 1 is a small positive parameter.

• As for Assumption 1, from the state equation of equation 51 we have

xk =(1− α)xk−1 +
√
αwk−1

=(1− α)2xk−2 + (1− α)
√
αwk−2 +

√
αwk−1

...

=(1− α)kx0 +

k−1∑
i=0

(1− α)k−1−i√αwi,

(52)

then we have

E[|xk|2] =(1− α)2kE[|x0|2] +

k−1∑
i=0

(1− α)2k−2−2iαQ

=(1− α)2kE[|x0|2] +
(1− α)2k−2 − (1− α)2

(1− α)2 − 1
αQ.

(53)

It can be easily checked that Assumption 1 is satisfied.

• As for Assumption 2, it can be easily checked that system shown in equation 51 satifies
Assumption 2 using the definitions of uniformly completely observable and uniformly
completely controllable in section 7.5 of Jazwinski (1970).
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A.5 CALCULATION DETAILS OF INEQUALITY 20

ek|k ≤ (CϕCφ) ek−1|k−1 +
(
Cϕδ

′

φ + δ
′

ϕ

)
≤ (CϕCφ)

(
CϕCφek−2|k−2 +

(
Cϕδ

′

φ + δ
′

ϕ

))
+
(
Cϕδ

′

φ + δ
′

ϕ

)
= (CϕCφ)

2
ek−2|k−2 + [CϕCφ + 1]

(
Cϕδ

′

φ + δ
′

ϕ

)
...

≤ (CϕCφ)
k
e0|0 +

(
Cϕδ

′

φ + δ
′

ϕ

) k∑
i=0

(CϕCφ)
k

= (CϕCφ)
k
e0|0 +

(
Cϕδ

′

φ + δ
′

ϕ

) (CϕCφ)
k − 1

CϕCφ − 1
.

(54)

A.6 APPROXIMATE φ AND ϕ USING LIPSCHITZ NEURAL NETWORK

In the proof of Thm. 3, we implicitly require the Lipschitz constants of φ̃ and ϕ̃ are uniformly
bounded by another constant C. Note that this assumption won’t affect the approximation
capability of Deep Neural Network in approximating Lipschitz continuous function φ and
ϕ (Thm. 3 in Anil et al. (2018)). With this requirement, the internal state variables of our
proposed RNN based filter is always inside a compact ball independent of the choice of neural

network. And we will have
(
Cϕ

(
δφ + (Cφ + Cφ̃)δ

)
+ δϕ + (Cϕ + Cϕ̃)δ

) 1

1− CϕCφ
<

(Cϕ (δφ + (Cφ + C)δ) + δϕ + (Cϕ + C)δ)
1

1− CϕCφ
, thus we can choose small enough

δ, δφ and δϕ to make
(
Cϕ

(
δφ + (Cφ + Cφ̃)δ

)
+ δϕ + (Cϕ + Cϕ̃)δ

) 1

1− CϕCφ
<

(Cϕ (δφ + (Cφ + C)δ) + δϕ + (Cϕ + C)δ)
1

1− CϕCφ
< ε.
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