
Under review as a conference paper at ICLR 2020

LEARNING TO PLAN IN HIGH DIMENSIONS VIA
NEURAL EXPLORATION-EXPLOITATION TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a meta path planning algorithm named Neural Exploration-Exploitation
Trees (NEXT) for learning from prior experience for solving new path planning problems
in high dimensional continuous state and action spaces. Compared to more classical
sampling-based methods like RRT, our approach achieves much better sample efficiency
in high-dimensions and can benefit from prior experience of planning in similar envi-
ronments. More specifically, NEXT exploits a novel neural architecture which can learn
promising search directions from problem structures. The learned prior is then integrated
into a UCB-type algorithm to achieve an online balance between exploration and exploita-
tion when solving a new problem. We conduct thorough experiments to show that NEXT
accomplishes new planning problems with more compact search trees and significantly
outperforms state-of-the-art methods on several benchmarks.

1 INTRODUCTION

Path planning is a fundamental problem with many real-world applications, such as robot manipulation
and autonomous driving. A simple planning problem within low-dimensional state space can be
solved by first discretizing the continuous state space into a grid, and then searching for a path
on top of it using graph search algorithms such as A∗ (Hart et al., 1968). However, due to the
curse of dimensionality, these approaches do not scale well with the number of dimensions of
the state space. For high-dimensional planning problems, people often resort to sampling-based
approaches to avoid explicit discretization. Sampling-based planning algorithms, such as probabilistic
roadmaps (PRM) (Kavraki et al., 1996), rapidly-exploring random trees (RRT) (LaValle, 1998), and
their variants (Karaman & Frazzoli, 2011) incrementally build an implicit representation of the state
space using probing samples. These generic algorithms typically employ a uniform sampler which
does not make use of the structures of the problem. Therefore they may require lots of samples to
obtain a feasible solution for complicated problems. To improve the sample efficiency, heuristic
biased samplers, such as Gaussian sampler (Boor et al., 1999), bridge test (Hsu et al., 2003) and
reachability-guided sampler (Shkolnik et al., 2009) have been proposed. All these sampling heuristics
are designed manually to address specific structural properties, which may or may not be valid for a
new problem, and may lead to even worse performance compared to the uniform proposal.

Online adaptation in path planning has also been investigated for improving sample efficiency in
current planning problem. Specifically, Hsu et al. (2005) exploits online algorithms to dynamically
adapts the mixture weights of several manually designed biased samplers. Burns & Brock (2005a;b) fit
a model for the planning environment incrementally and use the model for planning. Yee et al. (2016)
mimics the Monte-Carlos tree search (MCTS) for problems with continuous state and action spaces.
These algorithms treat each planning problem independently, and the collected data from previous
experiences and built model will be simply discarded when solving a new problem. However, in
practice, similar planning problems may be solved again and again, where the problems are different
but sharing common structures. For instance, grabbing a coffee cup on a table at different time
are different problems, since the layout of paper and pens, the position and orientation of coffee
cups may be different every time; however, all these problems show common structures of handling
similar objects which are placed in similar fashions. Intuitively, if the common characteristics across
problems can be learned via some shared latent representation, a planner based on such representation
can then be transferred to new problems with improved sample efficiency.

Several methods have been proposed recently to learn from past planning experiences to conduct
more efficient and generalizable planning for future problems. These works are limited in one way

1

Under review as a conference paper at ICLR 2020

or the other. Zucker et al. (2008); Zhang et al. (2018); Huh & Lee (2018) treat the sampler in the
sampling-based planner as a stochastic policy to be learned and apply policy gradient or TD-algorithm
to improve the policy. Finney et al. (2007); Bowen & Alterovitz (2014); Ye & Alterovitz (2017);
Ichter et al. (2018); Kim et al. (2018); Kuo et al. (2018) apply imitation learning based on the
collected demonstrations to bias for better sampler via variants of probabilistic models, e.g., (mixture
of) Gaussians, conditional VAE, GAN, HMM and RNN. However, many of these approaches either
rely on specially designed local features or assume the problems are indexed by special parameters,
which limits the generalization ability. Deep representation learning provides a promising direction to
extract the common structure among the planning problems, and thus mitigate such limitation on hand-
designed features. However, existing work, e.g., motion planning networks (Qureshi et al., 2019),
value iteration networks (VIN) (Tamar et al., 2016), and gated path planning networks (GPPN) (Lee
et al., 2018), either apply off-the-shelf MLP architecture ignoring special structures in planning
problems or can only deal with discrete state and action spaces in low-dimensional settings.

In this paper, we present Neural EXploration-EXploitation Tree (NEXT), a meta neural path plan-
ning algorithm for high-dimensional continuous state space problems. The core contribution is a
novel attention-based neural architecture that is capable of learning generalizable problem struc-
tures from previous experiences and produce promising search directions with automatic online
exploration-exploitation balance adaption. Compared to existing learning-based planners,
• NEXT is more generic. We propose an architecture that can embed high dimensional continuous

state spaces into low dimensional discrete spaces, on which a neural planning module is used to
extract planning representation. These module will be learned end-to-end.

• NEXT balances exploration-exploitation trade-off. We integrate the learned neural prior into
an upper confidence bound (UCB) style algorithm to achieve an online balance between exploration
and exploitation when solving a new problem.

Empirically, we show that NEXT can exploit past experiences to reduce the number of required
samples drastically for solving new planning problems, and significantly outperforms previous
state-of-the-arts on several benchmark tasks.

1.1 RELATED WORKS

Designing non-uniform sampling strategies for random search to improve the planning efficiency
has been considered as we discussed above. Besides the mentioned algorithms, there are other
works along this line, including informed RRT∗ (Gammell et al., 2014) and batch informed Trees
(BIT*) (Gammell et al., 2015) as the representative work. Randomized A∗ (Diankov & Kuffner,
2007) and Sampling-based A∗ (Persson & Sharf, 2014) expand the search tree with hand-designed
heuristics. These methods incorporate the human prior knowledge via hard-coded rules, which is
fixed and unable to adapt to problems, and thus, may not universally applicable. Bhardwaj et al.
(2017) attempts to learn such heuristics. However, their method is restricted to planning on graphs.

The online exploration-exploitation trade-off is also an important issue in planning. For instance,
Rickert et al. (2009) constructs a potential field sampler and tuned the sampler variance based on
collision rate for the trade-off heuristically. Paxton et al. (2017) separates the action space into
high-level discrete options and low-level continuous actions, and only considered the trade-off at the
discrete option level, ignoring the exploration-exploitation in the fine action space. These existing
works address the trade-off in an ad-hoc way, which may be inferior for the balance.

2 SETTINGS FOR LEARNING TO PLAN

Let S ⊆ Rq be the state space of the problem, e.g., all the configurations of a robot and its base
location in the workspace, Sobs (S be the obstacles set, Sfree := S \ Sobs be the free space,
s0 ∈ Sfree be the initial state and Sgoal (Sfree be the goal region. Then the space of all collision-
free paths can be defined as a continuous function Ξ := {ξ (·) : [0, 1]→ Sfree} . Let c (·) : Ξ 7→ R
be the cost functional over a path. The optimal path planning problem is to find the optimal path in
terms of cost c(·) from start s0 to goal Sgoal in free space Sfree, i.e.,

ξ∗ = argminξ∈Ξ c (ξ) , s.t. ξ(0) = s0, ξ(1) ∈ Sgoal. (1)
Traditionally (Karaman & Frazzoli, 2011), the planner has direct access to (s0,Sgoal, c (·)) and the
workspace map (Ichter et al., 2018; Tamar et al., 2016; Lee et al., 2018), map(·) : R2 or R3 7→ {0, 1},
(0: free spaces and 1: obstacles). Since Sfree often has a very irregular geometry (illustrated
in Figure 8 in Appendix A), it is usually represented via a collision detection module which is able to

2

Under review as a conference paper at ICLR 2020

detect the obstacles in a path segment. For the same reason, the feasible paths in Ξ are hard to be
described in parametric forms, and thus, the nonparametric ξ, such as a sequence of interconnected
path segments [s0, s1], [s1, s2], . . . , [sT−1, sT] ⊂ S with ξ(0) = s0 and ξ(1) = sT , is used with an
additive cost

∑T
i=1 c ([si−1, si]).

Assuming given the planning problems {Ui := (s0,Sgoal,S,Sfree, map, c (·))}Ni=1 sampled from
some distribution U , we are interested in learning an algorithm alg (·), which can produce the
(nearly)-optimal path efficiently from the observed planning problems. Formally, the learning to plan
is defined as

alg∗ (·) = argminalg∈A EU∈U [` (alg(U))] , (2)
where A denotes the planning algorithm family, and ` (·) denotes some loss function which evaluates
the quality of the generated path and the efficiency of the alg (·), e.g., size of the search tree. We elab-
orate each component in Eq (2) in the following sections. We first introduce the tree-based sampling
algorithm template in Section 3, upon which we instantiate the alg (·) via a novel attention-based
neural parametrization in Section 4.2 with exploration-exploitation balance mechanism in Section 4.1.
We design the `-loss function and the meta learning algorithm in Section 4.3. Composing every
component together, we obtain the neural exploration-exploitation trees (NEXT) which achieves
outstanding performances in Section 5.

Goal

Start

Goal Goal

Start

Start

l�
l � l � l �
� � � L�

max V+U

max V+U

Goal

Start

Goal

Start

max V+U

π(|s)�

b. Selecta. New Task c. Expand d. Update

Repeat

l � �� � � L�

Goal

Start

Goal

Start

Goal

Startse
lf-

im
pr

ov
e

se
lf-

im
pr

ov
e

max V+U

π(|s)�

...
Figure 1: Illustration of NEXT. In each epoch, NEXT is executed on a randomly generated planning problem.
The search tree grows with Ṽ ∗ and π̃∗ guidance. {Ṽ ∗, π̃∗} will be updated according to the successful path.
Such planning and learning iteration is continued interactively.

3 PRELIMINARIES

Algorithm 1: Tree-based Sampling Algorithm
1 Problem: U = (sinit,Sgoal,S,Sfree, map, c(·));
2 Initialize T = (V, E) with V ← {sinit}, E ← ∅;
3 for t← 0 to T do
4 sparent, snew ← Expand(T , U) ;
5 if ObstacleFree(sparent, snew) then
6 V ← V ∪ {snew} and

E ← E ∪ {[sparent, snew]};
7 T ← Postprocess(T , U) ;

. Optional
8 if snew ∈ Sgoal then
9 return T ;

The sampling-based planners are more practi-
cal and become dominant for high-dimensional
path planning problems (Elbanhawi & Simic,
2014). We describe a unifying view for many
existing tree-based sampling algorithms (TSA),
which we will also base our algorithm upon.
More specifically, this family of algorithms
maintain a search tree T rooted at the initial
point sinit and connecting all sampled points V
in the configuration space with edge set E . The
tree will be expanded by incorporating more
sampled states until some leaf reaches Sgoal.
Then, a feasible solution for the path planning
problem will be extracted based on the tree T .
The template of tree-based sampling algorithms is summarized in Algorithm 1 and illustrated in
Fig. 1(c). A key component of the algorithm is the Expand operator, which generates the next
exploration point snew and its parent sparent ∈ V . To ensure the feasibility of the solution, the snew
must be reachable from T , i.e., [sparent, snew] is collision-free, which is checked by a collision

3

Under review as a conference paper at ICLR 2020

detection function. As we will discuss in Appendix B, by instantiating different Expand operators,
we will arrive at many existing algorithms, such as RRT (LaValle, 1998) and EST (Hsu et al., 1997;
Phillips et al., 2004).

One major limitation of existing TSAs is that they solve each problem independently from scratch
and ignore past planning experiences in similar environments. We introduce the neural components
into TSA template to form the learnable planning algorithm family A, which can explicitly take
advantages of the past successful experiences to bias the Expand towards more promising regions.

4 NEURAL EXPLORATION-EXPLOITATION TREES

Based on the TSA framework, we introduce a learnable neural based Expand operator, which can
balance between exploration and exploitation, to instantiate A in Eq (2). With the self-improving
training, we obtain the meta NEXT algorithm illustrated in Figure 1.

4.1 GUIDED PROGRESSIVE EXPANSION

Algorithm 2: NEXT :: Expand(T = (V, E), U)

1 sparent ← argmaxs∈V φ(s) ; . Selection

2 {s1, . . . , sk}
iid.∼ π̃∗(s′|sparent, U) ; . Candidates

3 snew ← argmaxs′∈{s1,...,sk} φ(s′); . Expansion
4 return sparent, snew;

We start with our design of the Expand.
We assume having an estimated value
function Ṽ ∗(s|U), which stands for the
optimal cost from s to target in plan-
ning problem U , and a policy π̃∗ (s′|s, U),
which generates the promising action s′
from state s. The concrete parametriza-
tion of Ṽ ∗ and π̃∗ will be explained in Section 4.2 and learned in Section 4.3. We will use these
functions to construct the learnable Expand with explicit exploration-exploitation balancing.

The Expand operator will expand the current search tree T by a new neighboring state snew around
T . We design the expansion as a two-step procedure: (i) select a state sparent from existing tree T ;
(ii) expand a state snew in the neighborhood of sparent. More specifically,

Selecting sparent from T in step (i). Consider the negative value function−Ṽ ∗ (s|U) as the rewards
r (s), step (i) shares some similarity with the multi-armed bandit problem by viewing existing nodes
s ∈ V as arms. However, the vanilla UCB algorithm is not directly applicable, since the number
of states is increasing as the algorithm proceeds and the value of these adjacent states are naturally
correlated. We address this challenge by modeling the correlation explicitly as in contextual bandits.
Specifically, we parametrize the UCB of the reward function as φ (s), and select a node from T
according to φ(s)

sparent = argmaxs∈V φ(s) := r̄t (s) + λσt (s) , (3)
where r̄t and σt denote the average reward and variance estimator after t-calls to Expand. Denote
the sequence of t selected tree nodes so far as St = {s1

parent, . . . , s
t
parent}, then we can use kernel

smoothing estimator for r̄t(s) =
∑

s′∈St
k(s′,s)r(s′)∑

s′∈St
k(s′,s) and σt(s) =

√
log

∑
s′∈St

w(s′)

w(s) where k(s′, s)

is a kernel function and w(s) =
∑
s′∈St k(s′, s). Other parametrizations of r̄t and σt are also

possible, such as Gaussian Process parametrization in Appendix C. The average reward exploits more
promising states, while the variance promotes exploration towards less frequently visited states; and
the exploration versus exploitation is balanced by a tunable weight λ > 0.

Expanding a reachable snew in step (ii). Given the selected sparent, we consider expanding a
reachable state in the neighborhood sparent as an infinite-armed bandit problem. Although one
can first samples k arms uniformly from a neighborhood around sparent and runs a UCB algorithm
on the randomly generated finite arms (Wang et al., 2009), such uniform sampler ignores problem
structures, and will lead to unnecessary samples. Instead we will employ a policy π̃∗ (s′|s, U)1 for
guidance when generating the candidates. The final choice for next move will be selected from these
candidates with maxφ (s) defined in (3). As explained in more details in Section 4.2, π̃∗ will be
trained to mimic previous successful planning experiences across different problems, that is, biasing
the sampling towards the states with higher successful probability.

With these detailed step (i) and (ii), we obtain NEXT :: Expand in Algorithm 2 (illustrated in Fig-
ure 1(b) and (c)). Plugging it into the TSA in 1, we construct alg (·) ∈ A which will be learned.

1In the path planning setting, we use π̃∗ (s′|s, U) and π̃∗ (a|s, U) interchangeably as the action is next state.

4

Under review as a conference paper at ICLR 2020

𝑠 = 𝑥, 𝑦, 𝜃1, ⋯ , 𝜃𝑁 ∈ ℝ𝑁+2

𝜇(𝑠) ∈ ℝ3

𝜇(𝑠𝑔𝑜𝑎𝑙) ∈ ℝ3

Original Planning Space Latent Planning Space

Figure 2: Our neural network model maps
a N -link robot from the original planning
space (a (N + 2)-d configuration space) to a
3d discrete latent planning space in which we
plan a path using value iteration. The result
of value iteration is then used as features for
defining Ṽ ∗ (s|U) and π̃∗ (s′|s, U).

The guided progressive expansion bears similarity to MCTS but deals with high dimensional continu-
ous spaces. Moreover, the essential difference lies in the way to select state in T for expansion: the
MCTS only expands the leaf states in T due to the hierarchical assumption, limiting the exploration
ability and incurring extra unnecessary UCB sampling for internal traversal in T ; while the proposed
operation enables expansion from each visited state, particularly suitable for path planning problems.

4.2 NEURAL ARCHITECTURE FOR VALUE FUNCTION AND EXPANSION POLICY

In this section, we will introduce our neural architectures for Ṽ ∗ (s|U) and π̃∗ (s′|s, U) used in
NEXT :: Expand. The proposed neural architectures can be understood as first embedding the state
and problem into a discrete latent representation, upon which neuralized value iteration is performed
to extract features for defining Ṽ ∗ (s|U) and π̃∗ (s′|s, U), as illustrated in Figure 2.

Configuration space embedding. Our network for embedding high-dimension configuration space
into a latent representation is designed based on an attention mechanism. More specifically, let
sw denote the workspace in state and sh denote the remaining dimensions of the state, i.e. s =
(sw, sh). sw and sh will be embedded by different sub-neural networks and combined for the final
representation, as illustrated in Figure 3. For simplicity of exposition, we will focus on the 2d
workspace, i.e., sw ∈ R2. However, our method applies to 3d workspace as well.

x
y

z

x x x
x x x
x x x

y y y
y y y
y y y

0 0 0

1 1 1

2 2 2

0 1 2

0 1 2

0 1 2

0 0.09 0

0 0 0

0 0 0

0 0.81 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0.9 0

0 0.1 0

0 0 0

Stack

z (dense, relu)x

(1 1conv, relu)x x

0.1

0.9

0

0

...
x

Coordinate i Coordinate j

state

Spatial Attention:

Config Attention: Full Attention:

Element-wise Product

x x x
x x x
x x x

y y y
y y y
y y y

0 0 0
1 1 1

2 2 2

0 1 2

0 1 2

0 1 2

(1,1,da) (d,d,da)

(d,d,1)

kh

kw

Figure 3: Attention-based state embedding
module. sw = (x, y) and z = sh. The
upper part is spatial attention, with the first
two channels being x and y, and the last two
channels being constant templates with the
row and column coordinates, as shown with
a d set to 3. The bottom module learns the
representation for z. The final embedding is
obtained by outer-product of these two atten-
tion parts.

• Spatial attention. The workspace information sw will be embedded as µw(sw) ∈ Rd×d, d is a
hyperparameter related to map (see remark below). The spatial embedding module is composed of
kw convolution layers, i.e.,

µw(sw) = softmax2d(fwkw(sw)), fwi+1(sw) = relu(θwi ⊕ fwi (sw)), (4)
where θwi denotes the convolution kernels, ⊕ denotes the convolution operator and fwi (sw) ∈
Rd×d×di with di channels. The first layer fw0 is designed to represent sw into a d× d× 4 tensor
as fw0 (sw)ij = [sw1 , s

w
2 , i, j], i, j = 1, . . . , d, without any loss of information.

• Configuration attention. The remaining configuration state information will be embedded as
µh(sh) through kh fully-connected layers, i.e.

µh(sh) = softmax(fhkh(sh)), fhi+1(sh) = relu(θhi f
h
i (sh) + bi),

where µh(sh) ∈ Rda and fh0 (sh) = sh.

The final representation µθ(s) will be obtained by multiplying µw(sw) with µh(sh) element-wisely,
µθ(s)ijl = µw(sw)ij · µh(sh)l, which is a d × d × da tensor attention map with µθ(s)ijl >
0, and

∑
ijl µθ(s)ijl = 1. Intuitively, one can think of da as the level of the learned discretization

of the configuration space sh, and the entries in µ softly assign the actual state s to these discretized
locations. θ := ({θwi }

kw−1
i=0 , {θhi , bi}

kh−1
i=0) are the set of parameters to learn.

Remark (different map size): To process map using convolution neural networks, we resize it to a
d× d image, with the same size as the spatial attention in Eq (4), where d is a hyperparameter.

5

Under review as a conference paper at ICLR 2020

x

Map: (d,d)

Element-wise Product
Sum over first 2 dimensions

Goal Attention

State Attention

Goal state: (q)

State s: (q)

Planning
 Module

Stack
Conv

Repeat times

Attention
Module

Attention
Module

ν∗(0)
ν∗(T)

T

Figure 4: Overall model architecture. Cur-
rent and goal states are embedded through
attention module. Then the embedding of
the goal state is concatenated with the map
to produce ν∗(0) and R̃ as the input to the
planning module. The output of the planning
module is aggregated with the embedding of
the current state to produce feature ψ(s) for
defining Ṽ ∗ and π̃∗.

Neural value iteration. We will apply neuralized value iteration on top of the configuration space
embedding to extract further features (Tamar et al., 2016; Lee et al., 2018). First, we produce the
embedding µθ(sgoal) of the center of the goal region sgoal. Then we execute T steps of neuralized
Bellman updates in the embedding space,

ν∗(t) = min
(
W1 ⊕

[
ν∗(t−1), R̃

])
, with (ν∗(0), R̃) = σ (W0 ⊕ [µθ(sgoal), map]) ,

and obtain ν∗(T) ∈ Rd×d×da×p. Both W0 and W1 are 3d convolution kernels, min implements the
pooling across channels. Accordingly, ν∗(T) now can be understood as a latent representation of the
value function Ṽ ∗(·) in learned embedding space for the problem U with sgoal in map.

To define the value function for particular state s, i.e., Ṽ ∗ (s|U), from the latent representation ν∗(T),
we first construct another attention model between the embedding of state s using µθ(s) and ν∗(T),
i.e., ψ (s)k =

∑
ijl ν

∗(T)
ijlk · µθ (s)ijl, for k = 1, . . . , p. Finally we define

Ṽ ∗ (s|U) = hW2 (ψ(s)) , and π̃∗ (s′|s, U) = N (hW3 (ψ(s)) , σ2) (5)
where hW2

and hW3
are fully connected dense layers with parameters W2 and W3 respectively, and

N (hW3
(ψ(s)) , σ2) is a Gaussian distribution with variance σ2. Note that we also parametrize the

policy π̃∗ (s′|s, U) using the embedding ν∗(T), since the policy is connected to the value function
via π∗ (s′|s, U) = argmins′∈S c ([s, s′]) + V ∗ (s′|U). It should also be emphasized that in our
parametrization, the calculation of ν∗(T) only relies on the µθ (sgoal), which can be reused for
evaluating Ṽ ∗ (s|U) and π̃∗ (s′|s, U) over different s, saving computational resources.

The overall model architecture in alg (·) is illustrated in Figure 4. The parameters W =
(W0,W1,W2,W3, θ) will be learned together by our meta self-improving learning. For the de-
tails of the parameterization and the size of convolution kernels in our implementation, please refer
to Figure 10 in Appendix D.

4.3 META SELF-IMPROVING LEARNING

Algorithm 3: Meta Self-Improving Learning
1 Initialize dataset D0;
2 for epoch n← 1 to N do
3 Sample a planning problem U ;
4 T ← TSA(U) with ε ∼ Unif [0, 1], and

ε ·RRT :: Expand+ (1− ε) ·NEXT :: Expand;

Postprocessing with RRT∗ :: Postprocess;
5 Dn ←Dn−1 ∪ {(T , U)} if successful else

Dn−1;
6 for j ← 0 to L do
7 Sample (Tj , Uj) from Dn;
8 Reconstruct optimal path {si}mi=1 and the

cost of paths based on Tj ;
9 Update parameters

W ←W − η∇W `(Ṽ ∗, π̃∗; Tj , Uj);
10 Anneal ε = αε, α ∈ (0, 1);

The learning of the planner alg (·) reduces
to learning the parameters in Ṽ ∗ (s|U) and
π̃∗ (s′|s, U) and is carried out while planning
experiences accumulate. We do not have an ex-
plicit training and testing phase separation. Par-
ticularly, we use a mixture of RRT :: Expand
and NEXT :: Expand with probability ε and
1 − ε, respectively, inside the TSA framework
in Algorithm 1. The RRT∗ postprocessing step
is used in the template. The ε is set to be 1 ini-
tially since {Ṽ ∗, π̃∗} are not well-trained, and
thus, the algorithm behaves like RRT∗. As the
training proceeds, we anneal ε gradually as the
sampler becomes more efficient.

The dataset Dn = {(Tj , Uj)}nj=1 for the n-th
training epoch is collected from the previous
successful planning experiences across multi-
ple random problems. We fix the size of dataset
and update D in the same way as experience reply buffer (Lin, 1992; Schaul et al., 2015). For an
experience (T , U) ∈ Dn, we can reconstruct the successful path {si}mi=1 from the search tree T (m
is the number of segments), and the value of each state si in the path will be the sum of cost to the

6

Under review as a conference paper at ICLR 2020

goal region, i.e., yi :=
∑m−1
l=i c([sl, sl+1]). We learn {Ṽ ∗, π̃∗} by optimizing objective

min
W

∑
(T ,U)∈Dn

`(Ṽ ∗, π̃∗; T , U):=−
∑
Dn

m−1∑
i=1

log π̃∗
(
si+1|si

)
+

m∑
i=1

(Ṽ ∗
(
si
)
−yi)2

2 +λ ‖W‖2 . (6)

The loss (6) pushes the Ṽ ∗ and π̃∗ to chase the successful trajectories, providing effective guidance
in alg (·) for searching, and therefore leading to efficient searching procedure with less sample
complexity and better solution. On one hand, the value function and policy estimation {Ṽ ∗, π̃∗} is
improved based upon the successful outcomes from NEXT itself on previous problems. On the other
hand, the updated {Ṽ ∗, π̃∗} will be applied in the next epoch to improve the performance. Therefore,
the training is named as Meta Self-Improving Learning (MSIL). Since all the trajectories we collected
for learning are feasible, the reachability of the proposed samples is enforced implicitly via imitating
these successful paths.

By putting every components together into the learning to plan framework in Eq (2), the overall
procedure is summarized in Algorithm 3 and illustrated in Figure 1.

5 EXPERIMENTS

In this section, we evaluate the proposed NEXT empirically on different planning tasks in a variety of
environments. Comparing to the existing planning algorithms, NEXT achieves the state-of-the-art
performances, in terms of both success rate and the quality of the found solutions. We further
demonstrate the power of the proposed two components by the corresponding ablation study.

Benchmark environments. We designed four benchmark tasks to demonstrate the effectiveness of
our algorithm for high-dimensional planning. The first three involve planning in a 2d workspace with
a 2 DoF (degrees of freedom) point robot, a 3 DoF stick robot and a 5 DoF snake robot, respectively.
The last one involves planning a 7 DoF spacecraft in a 3d workspace. For all problems in each
benchmark task, the workspace maps were randomly generated from a fixed distribution; the initial
and goal states were sampled uniformly randomly in the free space; the cost function c (·) was set as
the sum of the Euclidean path length and the control effort penalty of rotating the robot joints.

Baselines. We compared NEXT with RRT∗ (Karaman & Frazzoli, 2011), BIT∗ (Gammell et al.,
2015), CVAE-plan (Ichter et al., 2018), Reinforce-plan (Zhang et al., 2018), and an improved
version of GPPN (Lee et al., 2018) in terms of both planning time and solution quality. RRT∗
and BIT∗ are two widely used effective instances of TSA in Algorithm 1. In our experiments, we
equipped RRT∗ with the goal biasing heuristic to improve its performance. BIT∗ adopts the informed
search strategy (Gammell et al., 2015) to accelerate planning. CVAE-plan and Reinforce-plan are
two learning-enhanced TSA planners proposed recently. CVAE-plan learns a conditional VAE as
the sampler (Sohn et al., 2015), which will be trained by near-optimal paths produced by RRT∗.
Reinforce-plan learns to do rejection sampling with policy gradient methods. For the improved
GPPN, we combined its architecture for map with a fully-connected MLP for the rest state, such that
it can be applied to high-dimensional continuous spaces. Please refer to Appendix E for more details.

Settings. For each task, we randomly generated 3000 different problems from the same distribution
without duplicated maps. We trained all learning-based baselines using the first 2000 problems, and
reserved the rest for testing. The parameters for RRT∗ and BIT∗ are also tuned using the first 2000
problems. For NEXT, we let it improve itself using MSIL over the first 2000 problems. In this period,
for every 200 problems, we updated its parameters and annealed ε once.

Comparison results. Examples of all four environments are illustrated in Appendix F.1 and Figure 6,
where NEXT finds high-quality solutions as shown. We also illustrated the comparison of the search
trees on two 2d and 7d planning tasks between NEXT and RRT* in Figure 5 (a)-(c) and Figure 6
(b)-(c). Obviously, the proposed NEXT algorithm explores with guidance and achieves better quality
solutions with fewer samples, while the RRT* expands randomly which may fail to find a solution.
The learned Ṽ ∗ and π̃∗ in the 2d task are also shown in Figure 5(d). As we can see, they are consistent
with our expectation, towards the ultimate target in the map. For more search tree comparisons for all
four experiments, please check Figure 16, 17, 18 and 19 in Appendix F.

To systematically evaluate the algorithms, we recorded the cost of time (measured by the number of
collision checks used) to find a collision-free path, the success rate within time limits, and the cost of
the solution path for each run. The results of the reserved 1000 test problems of each environment are

7

Under review as a conference paper at ICLR 2020

(a) RRT* (w/o rewiring) (b) NEXT-KS search tree (c) NEXT-GP search tree (d) learned Ṽ ∗ and π̃∗

Figure 5: Search trees and the learned Ṽ ∗ and π̃∗ produced by NEXT. Obstacles are colored in blue. The start
and goal locations are denoted by orange and brown dots. In (a) to (c), samples are represented with yellow
circles. In (d), the level of redness denotes the value of the cost-to-go estimate Ṽ ∗. The cyan arrows point from
a given state s to the mean of the learned policy π̃∗(s′|s, U).

(a) NEXT-KS solution path (b) NEXT-KS search tree (c) RRT* search tree (w/o rewiring)

Figure 6: Search trees and a solution path produced in an instance of spacecraft planning. The 7 DOF spacecraft
has a yellow body and two 2 DOF red arms. NEXT-KS produced a nearly minimum viable search tree while
RRT* failed to find a path within limited trials.

shown in the top row of Figure 7. We set the maximal number of samples as 500 for all algorithms.
Both the kernel smoothing (NEXT-KS) and the Gaussian process (NEXT-GP) version of NEXT
achieves the state-of-the-art performances, under all three criteria in all test environments. Although
the BIT* utilizes the heuristic particularly suitable for 3d maze in 7d task and performs quite well,
the NEXT algorithm still outperform every competitor by a large margin, no matter learning-based or
prefixed heuristic planner, demonstrating the advantages of the proposed NEXT algorithm.

Ablation study I: guided progressive expansion. To demonstrate the power of NEXT :: Expand, we
replace it with breadth-first search (BFS) (Kim et al., 2018), another expanding strategy, while keeping
other components the same. Specifically, BFS uses a search queue in planning. It repeatedly pops a
state s out from the search queue, samples k states from π (·|s), and pushes all generated samples
and state s back to the queue, until the goal is reached. For fairness, we use the learned sampling
policy π (s′|s, U) by NEXT-KS in BFS. As shown in Figure 7, BFS obtained worse paths with a
much larger number of collision checks and far lower success rate, which justifies the importance of
the balance between exploration versus exploitation achieved by the proposed NEXT :: Expand.

Ablation study II: neural architecture. To further demonstrate the benefits of the proposed neural
architecture for learning generalizable representations in high-dimension planning problems, We
replaced our attention-based neural architecture with an improved GPPN, as explained in Appendix E,
for ablation study. We extended the GPPN for continuous space by adding an extra reactive policy
network to its final layers. We emphasize the original GPPN is not applicable to the tasks in our
experiments. Intuitively, the improved GPPN first produces a ‘rough plan’ by processing the robot’s
discretized workspace positions. Then the reactive policy network predicts a continuous action
from both the workspace feature and the full configuration state of the robot. We provide more
preference to the improved GPPN by training it to imitate the near-optimal paths produced by RRT*
in the training problems. During test time it is also combined with both versions of the guided
progressive expansion operators. As we can see, both GPPN-KS and GPPN-GP are clearly much
worse than NEXT-KS and NEXT-GP, demonstrating the advantage of our proposed attention-based
neural architecture in high-dimensional planning tasks.

Ablation study III: learning versus heuristic. The NEXT algorithm in Figure 5 shows similar
behavior as the Dijkstra heuristic, i.e. sampling on the shortest path connecting the start and the goal
in workspace. However, in higher dimensional space, the Dijkstra heuristic will fail. To demonstrate
that, we replace the policy and value network with Dijkstra heuristic, using the best direction in

8

Under review as a conference paper at ICLR 2020

2D 3D 5D 7D
Experiments

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

NEXT-KS
NEXT-GP
Dijkstra
GPPN-KS
GPPN-GP
RRT*
BIT*
Reinforce
CVAE
BFS

2D 3D 5D 7D
Experiments

0

2

4

6

8

Av
er

ag
e

co
llis

io
n

ch
ec

ks

NEXT-KS
NEXT-GP
Dijkstra
GPPN-KS
GPPN-GP
RRT*
BIT*
Reinforce
CVAE
BFS

2D 3D 5D 7D
Experiments

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

pa
th

 c
os

t

NEXT-KS
NEXT-GP
Dijkstra
GPPN-KS
GPPN-GP
RRT*
BIT*
Reinforce
CVAE
BFS

0 1 2 3 4 5 6
Training phase

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s r

at
e

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

2

4

6

8

Av
er

ag
e

co
llis

io
n

ch
ec

ks

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

pa
th

 c
os

t

RRT* RRT*-10k NEXT-KS NEXT-GP

Figure 7: First row: histograms of results, in terms of success rate, average collision checks, and average cost
of the solution paths; Second row: NEXT improvement curves in the 5d experiments. All algorithms are set to
use up to 500 samples, except RRT∗-10k, which uses 10,000 samples. The value of collision checks and path
costs are normalized w.r.t. the performance of RRT∗.

workspace to guide sampling. NEXT performs much better than Dijkstra in all but the 2d case, in
which the workspace happens to be the state space.

Self-improving. We plot the performance improvement curves of our algorithms on the 5d planning
task in the bottom row of Figure 7. For comparison, we also plot the performance of RRT∗. At the
beginning phase of self-improving, our algorithms are comparable to RRT∗. They then gradually learn
from previous experiences and improve themselves as they see more problems and better solutions.
In the end, NEXT-KS is able to match the performance of RRT∗-10k using only one-twentieth of its
samples, while the competitors perform consistently without any improvements.

Due to the space limits, we put improvement curves on other environments in Figure 15 and the
quantitative evaluation in Table 1, 2, and 3 in Appendix F. Please refer to the details there.

6 CONCLUSION

In this paper, we propose a self-improving planner, Neural EXploration-EXploitation Trees (NEXT),
which can generalize and achieve better performance with experiences accumulated. The algorithm
achieves a delicate balance between exploration-exploitation via our carefully designed UCB-type
expansion operation. To obtain the generalizable ability across different problems, we proposed a
new parametrization for the value function and policy, which captures the Bellman recursive structure
in the high-dimensional continuous state and action space. We demonstrate the power of the proposed
algorithm by outperforming previous state-of-the-art planners with significant margins on planning
problems in a variety of different environments.

REFERENCES

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic search via imitation.
arXiv preprint arXiv:1707.03034, 2017.

Boor, V., Overmars, M. H., and Van Der Stappen, A. F. The gaussian sampling strategy for
probabilistic roadmap planners. In Robotics and automation, 1999. proceedings. 1999 ieee
international conference on, volume 2, pp. 1018–1023. IEEE, 1999.

Burns, B. and Brock, O. Sampling-based motion planning using predictive models. In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp.
3120–3125. IEEE, 2005a.

9

Under review as a conference paper at ICLR 2020

Burns, B. and Brock, O. Toward optimal configuration space sampling. In Robotics: Science and
Systems, pp. 105–112. Citeseer, 2005b.

Bowen, Chris, and Ron Alterovitz. Closed-loop global motion planning for reactive execution
of learned tasks. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1754-1760, 2014.

Cadena Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian Reid,
and John J. Leonard. Past, present, and future of simultaneous localization and mapping: Toward
the robust-perception age. IEEE Transactions on Robotics, 32(6), 2016.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp.
208–214, 2011.

Couëtoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., and Bonnard, N. Continuous upper
confidence trees. In International Conference on Learning and Intelligent Optimization, pp.
433–445. Springer, 2011.

Silver, David and Hubert, Thomas and Schrittwieser, Julian and Antonoglou, Ioannis and Lai,
Matthew and Guez, Arthur and Lanctot, Marc and Sifre, Laurent and Kumaran, Dharshan and
Graepel, Thore and others Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Rosen Diankov and James Kuffner. Randomized statistical path planning. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1–6. IEEE, 2007.

Elbanhawi, M. and Simic, M. Sampling-based robot motion planning: A review. Ieee access, 2:
56–77, 2014.

Finney, S., Kaelbling, L. P., and Lozano-Perez, T. Predicting partial paths from planning problem
parameters. In Robotics Science and Systems, 2007.

Fulgenzi, Chiara and Tay, Christopher and Spalanzani, Anne and Laugier, Christian Probabilistic
navigation in dynamic environment using rapidly-exploring random trees and gaussian processes
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1056–1062, 2008.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Informed rrt*: Optimal sampling-based
path planning focused via direct sampling of an admissible ellipsoidal heuristic. arXiv preprint
arXiv:1404.2334, 2014.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Batch informed trees (bit*): Sampling-based
optimal planning via the heuristically guided search of implicit random geometric graphs. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 3067–3074. IEEE,
2015.

Guez, Arthur and Weber, Théophane and Antonoglou, Ioannis and Simonyan, Karen and Vinyals,
Oriol and Wierstra, Daan and Munos, Rémi and Silver, David Learning to search with mctsnets
arXiv preprint arXiv:1802.04697, 2018.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Hsu, D., Latombe, J.-C., and Motwani, R. Path planning in expansive configuration spaces. In
Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, volume 3,
pp. 2719–2726. IEEE, 1997.

Hsu, D., Jiang, T., Reif, J., and Sun, Z. The bridge test for sampling narrow passages with probabilistic
roadmap planners. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International
Conference on, volume 3, pp. 4420–4426. IEEE, 2003.

Hsu, D., Sánchez-Ante, G., and Sun, Z. Hybrid prm sampling with a cost-sensitive adaptive strategy.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pp. 3874–3880. IEEE, 2005.

10

Under review as a conference paper at ICLR 2020

Huh, Jinwook and Lee, Daniel Efficient Sampling With Q-Learning to Guide Rapidly Exploring
Random Trees. IEEE Robotics and Automation Letters, 3:3868–3875, 2018.

Ichter, B., Harrison, J., and Pavone, M. Learning sampling distributions for robot motion planning. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7087–7094. IEEE,
2018.

Karaman, S. and Frazzoli, E. Sampling-based algorithms for optimal motion planning. The interna-
tional journal of robotics research, 30(7):846–894, 2011.

Karkus, P., Hsu, D., and Lee, W. S. Qmdp-net: Deep learning for planning under partial observability.
In Advances in Neural Information Processing Systems, pp. 4694–4704, 2017.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4), 1996.

Kim, B., Kaelbling, L. P., and Lozano-Pérez, T. Guiding search in continuous state-action spaces by
learning an action sampler from off-target search experience. 2018.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

Krause, A. and Ong, C. S. Contextual gaussian process bandit optimization. In Advances in Neural
Information Processing Systems, pp. 2447–2455, 2011.

Kuo, Yen-Ling and Barbu, Andrei and Katz, Boris Deep sequential models for sampling-based
planning In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6490–6497,
2018.

Langford, J. and Zhang, T. The epoch-greedy algorithm for multi-armed bandits with side information.
In Advances in neural information processing systems, pp. 817–824, 2008.

LaValle, S. M. Rapidly-exploring random trees: A new tool for path planning. 1998.

Lee, L., Parisotto, E., Chaplot, D. S., Xing, E., and Salakhutdinov, R. Gated path planning networks.
arXiv preprint arXiv:1806.06408, 2018.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Paxton, Chris and Raman, Vasumathi and Hager, Gregory D and Kobilarov, Marin Combining neural
networks and tree search for task and motion planning in challenging environments In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6059–6066, 2017.

Sven Mikael Persson and Inna Sharf. Sampling-based a* algorithm for robot path-planning. The
International Journal of Robotics Research, 33(13):1683–1708, 2014.

Phillips, J. M., Bedrossian, N., and Kavraki, L. E. Guided expansive spaces trees: A search strategy
for motion-and cost-constrained state spaces. In IEEE International Conference on Robotics and
Automation, pp. 3968–3973, 2004.

Qureshi, Ahmed H and Simeonov, Anthony and Bency, Mayur J and Yip, Michael C. Motion planning
networks. In IEEE International Conference on Robotics and Automation, 2019.

Reif, J. H. Complexity of the mover’s problem and generalizations. In Foundations of Computer
Science, 1979., 20th Annual Symposium on, pp. 421–427. IEEE, 1979.

Rickert, Markus and Brock, Oliver and Knoll, Alois. Balancing exploration and exploitation in
motion planning In IEEE International Conference on Robotics and Automation, pp. 2812–2817.
IEEE, 2008.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

11

Under review as a conference paper at ICLR 2020

Shkolnik, A., Walter, M., and Tedrake, R. Reachability-guided sampling for planning under differen-
tial constraints. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,
pp. 2859–2865. IEEE, 2009.

Sohn, K., Lee, H., and Yan, X. Learning structured output representation using deep conditional
generative models. In Advances in Neural Information Processing Systems, pp. 3483–3491, 2015.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value iteration networks. In Advances in
Neural Information Processing Systems, pp. 2154–2162, 2016.

Wang, Y., Audibert, J.-Y., and Munos, R. Algorithms for infinitely many-armed bandits. In Advances
in Neural Information Processing Systems, pp. 1729–1736, 2009.

Ye, Gu and Alterovitz, Ron Guided motion planning. In Robotics research, pp. 291–6307. Springer,
2017.

Yee, T., Lisy, V., and Bowling, M. Monte carlo tree search in continuous action spaces with execution
uncertainty. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, pp. 690–696. AAAI Press, 2016.

Zhang, C., Huh, J., and Lee, D. D. Learning implicit sampling distributions for motion planning.
arXiv preprint arXiv:1806.01968, 2018.

Zucker, M., Kuffner, J., and Bagnell, J. A. Adaptive workspace biasing for sampling-based planners.
In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 3757–3762.
IEEE, 2008.

12

Under review as a conference paper at ICLR 2020

Appendix
A ILLUSTRATION OF THE DIFFICULTY IN PLANNING PROBLEMS

The Figure 8(a) illustrates a concrete planning problem for a stick robot in 2d workspace. With one
extra continuous action for rotation, the configuration state is visualized in Figure 8(b), which is
highly irregular and unknown to the planner.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1
2

0

1
2

(a) Workspace (b) Configuration space

Figure 8: Different views of the same planning problem. In (a) we color the obstacles, the starting
and the goal position of the robot in deep blue, orange and brown, respectively. The stick robot can
move and rotate. The corresponding configuration space is 3d, as visualized in (b), with the extra
dimension being the rotation angle w.r.t. the x-axis. The blue region indicates the feasible state space,
i.e., the set of collision-free states. The starting and the goal position are denoted with an orange and
a brown dot, respectively. Although the workspace looks trivial, the configuration space is irregular,
which makes the planning difficult.

B MORE PRELIMINARIES

Tree-based sampling planner The tree-based sampling planner algorithm is illustrated in Figure 9.
The Expand in Algorithm 1 operator returns an existing node in the tree sparent ∈ V and a new
state snew ∈ S sampled from the neighborhood of sparent. Then the line segment [sparent, snew]
is passed to function ObstacleFree for collision checking. If the line segment [sparent, snew] is
collision-free (no obstacle in the middle, or called reachable from T), then snew is added to the tree
vertex set V , and the line segment is added to the tree edge set E . If the newly added node snew has
reached the target Sgoal, the algorithm will return. Optionally, some concrete algorithms can define a
Postprocess operator to refine the search tree. For an example of the Expand operator, as shown in
Figure 1 (c), since there is no obstacle on the dotted edge [sparent, snew], i.e., snew is reachable, the
new state and edge will be added to the search tree (connected by the solid edges).

Goal

Start
Parent

New

Goal

Start
Parent

New

Figure 9: Illustration for one iteration of Algorithm 1. The left and right figures illustrate two different
cases where the sample returned by the Expand operator is unreachable and reachable from the
search tree.
Now we will provide two concrete algorithm examples. For instance,

• If we instantiate the Expand operator as Algorithm 4, then we obtain the rapidly-exploring random
trees (RRT) algorithm (LaValle, 1998), which first samples a state s from the configuration space

13

Under review as a conference paper at ICLR 2020

Algorithm 4: RRT :: Expand(T , U)

Data: T = (V, E), U = (sinit,Sgoal,S,Sfree, map, c(·))
1 srand ← Unif(S); . Sample configuration space
2 sparent ← argmins∈V ‖srand − s‖; . Pull to a tree node
3 snew ← argmins∈B(sparent,η) ‖s− srand‖;
4 return sparent, snew;

Algorithm 5: EST :: Expand(T , U)

Data: T = (V, E), U = (sinit,Sgoal,S,Sfree, map, c(·))
1 sparent ∼ φ(s), s ∈ V; . Sample a tree node
2 snew ← Unif(B(sparent)); . Sample neighborhood
3 return snearest, snew;

S and then pulls it toward the neighborhood of current tree T measured by a ball of radius η:
B(s, η) = {s′ ∈ S | ‖s′ − s‖ 6 η}.

Moreover, if the Postprocess operator is introduced to modify the maintained search tree as
in RRT∗ (Karaman & Frazzoli, 2011), the algorithm is provable to obtain the optimal path
asymptotically.

• If we instantiate the Expand operator as Algorithm 5, then we obtain the expansive-space trees
(EST) algorithm (Hsu et al., 1997; Phillips et al., 2004), which samples a state s from the nodes of
the existing tree, and then draw a sample from the neighborhood of s.

UCB-based algorithms Specifically, in a K-armed bandit problem, the UCB algorithm will first
play each of the arms once, and then keep track of the average reward r̄i and the visitation count
ni for each arm. After T rounds of trials, the UCB algorithm will maintain a set of information
{(r̄i, ni)}Ki=1 with

∑K
i=1 ni = T . Then, for the next round, the UCB algorithm will select the next

arm based on the one-sided confidence interval estimation provided by the Chernoff-Hoeffding bound,

a∗T+1 = argmaxi∈{1,...,K} r̄i + λ
√

log T
ni

, (7)

where λ controls the exploration-exploration trade-off. It has been shown that the UCB algorithm
achieves O (log T) regret. However, the MCTS is not directly applicable to continuous state-action
spaces.

There have been many attempts to generalize the UCB and UCT algorithms to continuous state-action
spaces (Chu et al., 2011; Krause & Ong, 2011; Couëtoux et al., 2011; Yee et al., 2016). For instance,
contextual bandit algorithms allow continuous arms but involve a non-trivial high dimensional
non-convex optimization to select the next arm. In UCT, the progressive widening technique has
been designed to deal with continuous actions (Wang et al., 2009). Even with these extensions, the
MCTS restricts the exploration only from leaves states, implicitly adding an unnecessary hierarchical
structure for path planning, resulting inferior exploration efficiency and extra computation in path
planning tasks.

Although these off-the-shelf algorithms are not directly applicable to our path planning setting, their
successes show the importance of exploration-exploitation trade-off and will provide the principles
for our algorithm for continuous state-action planning problems.

Planning networks Value iteration networks (Tamar et al., 2016) employ neural networks to embed
the value iteration algorithm from planning and then use this embedded algorithm to extract input
features and define downstream models such as value functions and policies.

Specifically, VIN mimics the following recursive application of Bellman update operator G to value
function V ∗,

V ∗ (s|U) = (GV ∗) (s) := min
a

∑
s′

P (s′|s, a)(c ([s, s′]) + V ∗ (s′|U)). (8)

where P (s′|s, a) is the state transition model. When the state space for s and action space for a are low
dimensional, these spaces can be discretized into grids. Then, the local cost function c([s, s′]) and the

14

Under review as a conference paper at ICLR 2020

value function V ∗(s′|U) can be represented as matrices (2d) or tensors (3d) with each entry indexed
by grid locations. Furthermore, if the transition model P (s′|s, a) is local, that is P (s′|s, a) = 0
for s′ /∈ B(s), it resembles a set of convolution kernels, each indexed by a discrete action a. And
the Bellman update operator essentially convolves P (s′|s, a) with c([s, s′]) and V ∗(s′|U), and then
performs a min-pooling operation across the convolution channels.

Inspired by the above computation pattern of the Bellman operator, value iteration networks design
the neural architecture as follows,

Ṽ ∗0 = min
(
W1 ⊕

[
map, R̃

])
(9)

Ṽ ∗t = min
(
W1 ⊕

[
Ṽ ∗t−1, R̃

])
(10)

where ⊕ is the convolution operation, both map, Ṽ ∗t and R̃ are d× d matrices, and the parameter
W1 are kc convolution kernels of size k × k. The min implements the pooling across kc convolution
channels.

The gated path planning networks (GPPN) (Lee et al., 2018) improves the VIN by replacing the VIN
cell (9) with the well-established LSTM update, i.e.,

Ṽ t, c̃t = LSTM
(∑(

W1 ⊕
[
Ṽ t, R̃

])
, c̃t
)
, (11)

where the summation is taking over all the kc convolution channels.

After constructing the VIN and GPPN, the parameters of the model, i.e.,
{
R̃,W1

}
can be learned by

imitation learning or reinforcement learning.

The application of planning networks are restricted in low-dimension tasks. However, their success
enlightens our neural architecture for generalizable representation for high-dimension planning tasks.

C PARAMETRIZED UCB ALGORITHMS

We list two examples of parametrized UCB as the instantiation of (3) used in GPE:

• GP-UCB: The GP-UCB Chu et al. (2011) is derived by parameterizing via Gaussian
Processes (GP) with kernel k (s, s′), i.e., E [r (s) |T , U] ∼ GP (0, k), GP-UCB maintains
an UCB of the reward after t-step as

φ (s) := r̄t (s) + λσt (s) , (12)
where

r̄t (s) = kt (s) (Kt + αI)
−1
rt,

σ2
t (s) = k (s, s)− kt (s)

>
(Kt + αI)

−1
kt (s) ,

with kt (s) = [k (si, s)]si∈St ,Kt = [k (s, s′)]s,s′∈St , and St = {s1, s2, . . . , st} denotes the
sequence of selected nodes in current trees. The variance estimation σ2

t (s) takes the number
of visits into account in an implicit way: the variance will reduce, as the neighborhood of s
is visited more frequently (Srinivas et al., 2009).

• KS-UCB: We can also use kernel regression as an alternative parametrization for (7) (Yee
et al., 2016), which leads to an UCB of the reward after t-step as

φ (s) := r̄t (s) + λσt (s) , (13)
where

r̄t [s] =

∑
s′∈St k (s′, s) r (s′)∑

s′∈St k (s′, s)
,

σt (s) =

√
log
∑
s′∈St w (s′)

w (s)
,

with w (s) =
∑
s′∈St k (s′, s). Clearly, the variance estimation is to promote exploration

towards less frequently visited states.

As we can see, in both two examples of the parametrized UCB, we parametrize the observed rewards,
leading to generalizable UCB for increased states by considering the correlations.

15

Under review as a conference paper at ICLR 2020

D POLICY AND VALUE NETWORK ARCHITECTURE

We explain the implementation details of the proposed parametrization for policy and value function.
Figure 10 and Figure 11 are neural architectures for the attention module, the policy/value network,
and the planning module, respectively.

Input: state 𝑠 = 𝑠𝑤 , 𝑠ℎ ∈ ℝ𝑞

𝑠𝑤 ∈ ℝ𝑞𝑤 𝑠ℎ ∈ ℝ𝑞ℎ

Expand and Stack

𝑓0
𝑤(𝑠𝑤) ∈ ℝ𝑑×𝑑×4

Conv 1 × 1, 16, relu

Conv 1 × 1, 16, relu

Conv 1 × 1, 32, relu

Conv 1 × 1, 32, relu

Conv 1 × 1, 64, relu

Conv 1 × 1, 1

Spatial embedding

𝜇𝜃
𝑤(𝑠𝑤) ∈ ℝ𝑑×𝑑

Config embedding

𝜇𝜃
ℎ(𝑠ℎ) ∈ ℝ𝑑𝑎

Dense, 𝑑𝑎

Softmax Softmax

Dense, 64, relu

Element-wise

product

Output:

Full embedding 𝜇𝜃(𝑠) ∈ ℝ𝑑×𝑑×𝑑𝑎

Attention

module

Input: goal state 𝑠𝑔𝑜𝑎𝑙 ∈ ℝ𝑞 Input: state 𝑠 ∈ ℝ𝑞Input: maze map ∈ ℝ𝑑×𝑑

Attention module

Goal embedding

𝜇𝜃(𝑠𝑔𝑜𝑎𝑙) ∈ ℝ𝑑×𝑑×𝑑𝑎

Stack

Task embedding ∈ ℝ𝑑×𝑑×(𝑑𝑎+1)

Conv 3 × 3, 𝑑𝑒 Conv 3 × 3, 𝑑𝑒

ℎ0 ∈ ℝ𝑑×𝑑×𝑑𝑒 𝑐0 ∈ ℝ𝑑×𝑑×𝑑𝑒

Planning module

ℎ𝑇 ∈ ℝ𝑑×𝑑×𝑑𝑒, reshape it to ℝ𝑑×𝑑×𝑑𝑎×𝑝

Element-wise product, sum

over first 3 dimensions

𝜓(𝑠) ∈ ℝ𝑝

Dense, 32, relu

Dense, 32, relu

Dense, 𝑞 Dense, 1

Output: 𝜋∗(𝑠′|𝑠, 𝑈) Output: ෨𝑉∗(𝑠|𝑈)

Attention module

State attention

𝜇𝜃(𝑠) ∈ ℝ𝑑×𝑑×𝑑𝑎

Loop 𝑇 times

Figure 10: Left: attention module, instantiating the Figure 3; Right: policy/value network, instantiat-
ing the Figure 4.

In the figures, we use rectangle blocks to denote inputs, intermediate results and outputs, stadium
shape blocks to denote operations, and rounded rectangle blocks to denote modules. We use different
colors for different operations. In particular, we use blue for convolutional/LSTM layers, green for
dense layers, and orange for anything else. For convolutional layers, "Conv 1× 1, 32, relu" denotes a
layer with 1× 1 kernels, 32 channels, followed by a rectified linear unit; for dense layers, "Dense, 64,
relu" denotes a layer of size 64, followed by a rectified linear unit.

The attention module (Figure 10-left) embeds a state to a d× d× da tensor. The planning module
(Figure 11) is a one-step LSTM update which takes the result of a convolutional layer as input. Both
the input and hidden size of the LSTM cell are de. All d× d locations share one set of parameters
and are processed by the LSTM in one batch.

The main architecture is illustrated in Figure 10-right. It takes maze map, state and goal as input,
and outputs the action and the value. Refer to Section 4.2 for details for computing ψ(s). In our
experiments, we set the values of the hyper-parameters to be (d, de, da, p) = (15, 64, 8, 8).

16

Under review as a conference paper at ICLR 2020

Planning

module

Input: ℎ𝑖 ∈ ℝ
𝑑×𝑑×𝑑𝑒 Input: 𝑐𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Conv 1 × 1, 𝑑𝑒

LSTM cell (input size: 𝑑𝑒, hidden size: 𝑑𝑒)

Batch size: 𝑑 × 𝑑

LSTM input: 𝑥𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Output: ℎ𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒 Output: 𝑐𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Figure 11: planning module

E EXPERIMENT DETAILS

E.1 BENCHMARK ENVIRONMENTS

We used four benchmark environments in our experiment. For the first three, the workspace dimension
is 2d. We generated the maze maps with the recursive backtracker algorithm using the following imple-
mentation: https://github.com/lileee/gated-path-planning-networks/blob/master/generate_dataset.py.
Examples of the workspace are shown in Figure 13. Three environments differ in the choice of robots:

• Workspace planning (2d). The robot is abstracted with a point mass moving in the plane. Without
higher dimensions, this problem reduces to planning in the workspace.

• Rigid body navigation (3d). A rigid body robot, abstracted as a thin rectangle, is used here. The
extra rotation dimension is added to the planning problem. This robot can rotate and move freely
without any constraints in the free space.
• 3-link snake (5d). The robot is a 5 DoF snake with two joints. Two more angle dimensions are

added to the planning task. To prevent links from folding, we restrict the angles to the range of
[−π/4, π/4].

The fourth environment has a 3d workspace. Cuboid obstacles were generated uniformly randomly
in space with density ≈ 20%. Example of the workspace is shown in Figure 6 and 14, where the blue
cuboids are obstacles. The environment is described below:

• Spacecraft planning (7d). The robot is a spacecraft with a cuboid body and two 2 DoF arms
connecting to two opposite sides of the body. There is a joint in the middle of each arm. The
outer arm can rotate around this joint. Each arm can also rotate as a whole around its connection
point with the body. All rotation angles are restricted in the range of [0, π/2]. The spacecraft itself
cannot rotate.

E.2 HYPERPARAMETER FOR MSIL

During self-improving over the first 2000 problems, NEXT updated its parameters and annealed ε
once for every 200 problems. The value of the annealing ε was set as the following:

ε =

1, if i < 1000,

0.5− 0.1 · b(i− 1000)/200c, if 1000 6 i < 2000,

0.1, otherwise,
with i denoting the problem number.

E.3 BASELINE: THE IMPROVED GPPN

The original GPPN is not directly applicable to our experiments. Inspired by Tamar et al. (2016),
we add a fully-connected MLP to its final layers, so that the improved architecture can be applied to
high-dimensional continuous domain. As shown in Figure 12, the GPPN first processes the discretized

17

Under review as a conference paper at ICLR 2020

GPPN

MLP

Workspace
Map

Initial
Position

Full
Initial
State

Value

Action

Full
Goal
State

Goal
Position

Figure 12: Improved GPPN architecture

workspace locations. Its output and the full robot configurations are processed together by the MLP,
which then produces the current value and action estimates. The improved GPPN is trained using
supervisions from the near-optimal paths produced by RRT*.

F EXPERIMENT RESULTS

F.1 SOLUTION PATH ILLUSTRATION

Figure 13: The solution path produced by NEXT in a workspace planning task (2d), rigid body
navigation task (3d), 3-link snake task (5d) from left to right. The orange dot and the brown dot are
starting and goal locations, respectively.

Figure 14: The solution paths produced by NEXT in spacecraft planning task (7d). Spacecraft has a
yellow body and two 2 DoF (red) arms. Blue cuboids are obstacles.

F.2 DETAILS OF QUANTITATIVE EVALUATION

More detailed results are shown in Table 1, 2, 3, including learning-based and non-learning-based
ones, on the last 1000 problems in each experiment. We normalized the number of collision checks
and the cost of paths based on the solution of RRT∗. The success rate result is not normalized. The

18

Under review as a conference paper at ICLR 2020

best planners in each experiment are in bold. NEXT-KS and NEXT-GP outperform the current
state-of-the-art planning algorithm with large margins.

Table 1: Success rate results. The higher the better. NEXT-KS performs the best.

NEXT-KS NEXT-GP GPPN-KS GPPN-GP RRT* BIT* BFS CVAE Reject
2d 0.988 0.981 0.718 0.632 0.735 0.710 0.185 0.535 0.720
3d 0.943 0.841 0.689 0.554 0.490 0.514 0.121 0.114 0.498
5d 0.883 0.768 0.633 0.515 0.455 0.497 0.030 0.476 0.444
7d 0.931 0.906 0.634 0.369 0.361 0.814 0.288 0.272 0.370

Table 2: Average number of collision checks results. The lower the better. The score is normalized
based on the solution of RRT∗. NEXT-KS performs the best in 3 benchmarks.

NEXT-KS NEXT-GP GPPN-KS GPPN-GP RRT* BIT* BFS CVAE Reject
2d 0.177 0.243 2.342 3.484 1.000 5.945 9.247 1.983 1.011
3d 0.694 1.334 2.214 3.125 1.000 7.924 7.292 2.162 0.988
5d 0.888 1.520 1.800 2.706 1.000 7.483 5.758 1.188 0.997
7d 0.653 0.502 1.877 1.313 1.000 4.683 3.856 1.591 0.987

Table 3: Average cost of paths. The lower the better. The score is normalized based on the solution of
RRT∗. The NEXT-KS achieves the best solutions.

NEXT-KS NEXT-GP GPPN-KS GPPN-GP RRT* BIT* BFS CVAE Reject
2d 0.172 0.193 1.049 1.333 1.000 1.140 2.811 1.649 1.050
3d 0.116 0.315 0.612 0.875 1.000 0.955 1.720 1.734 0.984
5d 0.215 0.426 0.673 0.890 1.000 0.923 1.780 0.961 1.020
7d 0.108 0.147 0.573 0.987 1.000 0.291 1.114 1.139 0.986

We demonstrated the performance improvement curves for 2d workspace planning, 3d rigid body
navigation in Figure 15. As we can see, similar to the performances on 5d 3-link snake planning task
in Figure 7, in these tasks, the NEXT-KS and NEXT-GP improve the performances along with more
and more experiences collected, justified the self-improvement ability by learning Ṽ ∗ and π̃∗.

F.3 SEARCH TREES COMPARISON

We illustrate the search trees generated by RRT* and the proposed NEXT algorithms with 500
samples in Figure 16, Figure 17, Figure 18 and Figure 19 on several 2d, 3d, 5d and 7d planning tasks,
respectively. To help readers better understand how the trees were expanded, we actually visualize
the RRT* search trees without edge rewiring, which is equivalent to the RRT search trees, however
the vertex set is the same. Comparing to the search trees generated by RRT∗ side by side, we can
clearly see the advantages and the efficiency of the proposed NEXT algorithms. In all the tasks, even
in 2d workspace planning task, the RRT∗ indeed randomly searches without realizing the goals, and
thus cannot complete the missions, while the NEXT algorithms search towards the goals with the
guidance from Ṽ ∗ and π̃∗, therefore, successfully provides high-quality solutions.

19

Under review as a conference paper at ICLR 2020

0 1 2 3 4 5 6
Training phase

0.75

0.80

0.85

0.90

0.95

1.00
Su

cc
es

s r
at

e
RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

0

1

2

3

4

Av
er

ag
e

co
llis

io
n

ch
ec

ks

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

1

2

3

4

5

6

Av
er

ag
e

pa
th

 c
os

t

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s r

at
e

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

1

2

3

4

5

Av
er

ag
e

co
llis

io
n

ch
ec

ks

RRT* RRT*-10k NEXT-KS NEXT-GP

0 1 2 3 4 5 6
Training phase

1

2

3

4

5

6

7

8

Av
er

ag
e

pa
th

 c
os

t

RRT* RRT*-10k NEXT-KS NEXT-GP

Figure 15: The first and second rows display the improvement curves of our algorithms on all 3000
problems of the 2d workspace planning and 3d rigid body navigation problems. We compare our
algorithms with RRT*. Three columns correspond to the success rate, the average collision checks,
and the average cost of the solution paths for each algorithm.

(a) RRT* (w/o rewiring) (b) NEXT-KS search tree (c) NEXT-GP search tree (d) learned Ṽ ∗ and π̃∗

Figure 16: Column (a) to (c) are the search trees produced by the RRT*, NEXT-KS, and NEXT-GP
on the same workspace planning task (2d). The learned Ṽ ∗ and π̃∗ from NEXT-KS are plotted in
column (d). In the figures, obstacles are colored in deep blue, the starting and goal locations are
denoted by orange and brown dots, respectively. In column (a) to (c), samples are represented with
hollow yellow circles, and edges are colored in green. In column (d), the level of redness denotes the
value of the cost-to-go estimate Ṽ ∗, and the cyan arrows point from a given state s to the center of
the proposal distribution π̃∗(s′|s, U). We set the maximum number of samples to be 500.

20

Under review as a conference paper at ICLR 2020

RRT* search tree (w/o rewiring)

NEXT-KS search trees

Figure 17: Each column corresponds to one example from the rigid body navigation problem (3d).
The top and the bottom rows are the search trees produced by the RRT* and NEXT-KS, respectively.
In the figures, obstacles are colored in deep blue, and the rigid bodies are represented with matchsticks.
The samples, starting states, and goal states are denoted by yellow, orange, and brown matchsticks,
respectively. Edges are colored in green. We set the maximum number of samples to be 500.

RRT* search tree (w/o rewiring)

NEXT-KS search trees

Figure 18: Each column corresponds to one example from the 3-link snake problem (5d). The top
and the bottom rows are the search trees produced by the RRT* and NEXT-KS, respectively. In the
figures, obstacles are colored in deep blue, and the rigid bodies are represented with matchsticks.
The samples, starting states, and goal states are denoted by yellow, orange, and brown matchsticks,
respectively. Edges are colored in green. We set the maximum number of samples to be 500.

21

Under review as a conference paper at ICLR 2020

RRT* search tree (w/o rewiring)

NEXT-KS search trees

Figure 19: Each column corresponds to one example from the spacecraft planning problem (7d).
The top and the bottom rows are the search trees produced by the RRT* and NEXT-KS, respectively.
In the figures, obstacles are colored in blue, and each spacecraft has a yellow body and two 2 DoF
red arms. We set the maximum number of samples to be 500.

22

	Introduction
	Related Works

	Settings for Learning to Plan
	Preliminaries
	Neural Exploration-Exploitation Trees
	Guided Progressive Expansion
	Neural Architecture for Value Function and Expansion Policy
	Meta self-improving learning

	Experiments
	Conclusion
	Illustration of the Difficulty in Planning Problems
	More Preliminaries
	Parametrized UCB Algorithms
	Policy and Value Network Architecture
	Experiment Details
	Benchmark Environments
	Hyperparameter for MSIL
	Baseline: the Improved GPPN

	Experiment Results
	Solution Path Illustration
	Details of Quantitative Evaluation
	Search Trees Comparison

