
Under review as a conference paper at ICLR 2020

VIDEOFLOW: A CONDITIONAL FLOW-BASED MODEL
FOR STOCHASTIC VIDEO GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models that can model and predict sequences of future events can,
in principle, learn to capture complex real-world phenomena, such as physical
interactions. However, a central challenge in video prediction is that the future
is highly uncertain: a sequence of past observations of events can imply many
possible futures. Although a number of recent works have studied probabilistic
models that can represent uncertain futures, such models are either extremely
expensive computationally as in the case of pixel-level autoregressive models, or
do not directly optimize the likelihood of the data. To our knowledge, our work is
the first to propose multi-frame video prediction with normalizing flows, which
allows for direct optimization of the data likelihood, and produces high-quality
stochastic predictions. We describe an approach for modeling the latent space
dynamics, and demonstrate that flow-based generative models offer a viable and
competitive approach to generative modeling of video.

1 INTRODUCTION

Exponential progress in the capabilities of computational hardware, paired with a relentless effort
towards greater insights and better methods, has pushed the field of machine learning from relative
obscurity into the mainstream. Progress in the field has translated to improvements in various
capabilities, such as classification of images (Krizhevsky et al., 2012), machine translation (Vaswani
et al., 2017) and super-human game-playing agents (Mnih et al., 2013; Silver et al., 2017), among
others. However, the application of machine learning technology has been largely constrained
to situations where large amounts of supervision is available, such as in image classification or
machine translation, or where highly accurate simulations of the environment are available to the
learning agent, such as in game-playing agents. An appealing alternative to supervised learning
is to utilize large unlabeled datasets, combined with predictive generative models. In order for a
complex generative model to be able to effectively predict future events, it must build up an internal
representation of the world. For example, a predictive generative model that can predict future frames
in a video would need to model complex real-world phenomena, such as physical interactions. This
provides an appealing mechanism for building models that have a rich understanding of the physical
world, without any labeled examples. Videos of real-world interactions are plentiful and readily
available, and a large generative model can be trained on large unlabeled datasets containing many
video sequences, thereby learning about a wide range of real-world phenoma. Such a model could be
useful for learning representations for further downstream tasks (Mathieu et al., 2016), or could even
be used directly in applications where predicting the future enables effective decision making and
control, such as robotics (Finn et al., 2016). A central challenge in video prediction is that the future
is highly uncertain: a short sequence of observations of the present can imply many possible futures.
Although a number of recent works have studied probabilistic models that can represent uncertain
futures, such models are either extremely expensive computationally (as in the case of pixel-level
autoregressive models), or do not directly optimize the likelihood of the data.

In this paper, we study the problem of stochastic prediction, focusing specifically on the case of
conditional video prediction: synthesizing raw RGB video frames conditioned on a short context
of past observations (Ranzato et al., 2014; Srivastava et al., 2015; Vondrick et al., 2015; Xingjian
et al., 2015; Boots et al., 2014). Specifically, we propose a new class of video prediction models
that can provide exact likelihoods, generate diverse stochastic futures, and accurately synthesize
realistic and high-quality video frames. The main idea behind our approach is to extend flow-based

1

Under review as a conference paper at ICLR 2020

generative models (Dinh et al., 2014; 2016) into the setting of conditional video prediction. To our
knowledge, flow-based models have been applied only to generation of non-temporal data, such as
images (Kingma & Dhariwal, 2018), and to audio sequences (Prenger et al., 2018). Conditional
generation of videos presents its own unique challenges: the high dimensionality of video sequences
makes them difficult to model as individual datapoints. Instead, we learn a latent dynamical system
model that predicts future values of the flow model’s latent state. This induces Markovian dynamics
on the latent state of the system, replacing the standard unconditional prior distribution. We further
describe a practically applicable architecture for flow-based video prediction models, inspired by the
Glow model for image generation (Kingma & Dhariwal, 2018), which we call VideoFlow.

Our empirical results show that VideoFlow achieves results that are competitive with the state-of-
the-art in stochastic video prediction on the action-free BAIR dataset, with quantitative results that
rival the best VAE-based models. VideoFlow also produces excellent qualitative results, and avoids
many of the common artifacts of models that use pixel-level mean-squared-error for training (e.g.,
blurry predictions), without the challenges associated with training adversarial models. Compared
to models based on pixel-level autoregressive prediction, VideoFlow achieves substantially faster
test-time image synthesis 1, making it much more practical for applications that require real-time
prediction, such as robotic control (Finn & Levine, 2017). Finally, since VideoFlow directly optimizes
the likelihood of training videos, without relying on a variational lower bound, we can evaluate its
performance directly in terms of likelihood values.

2 RELATED WORK

Early work on prediction of future video frames focused on deterministic predictive models (Ranzato
et al., 2014; Srivastava et al., 2015; Vondrick et al., 2015; Xingjian et al., 2015; Boots et al., 2014).
Much of this research on deterministic models focused on architectural changes, such as predicting
high-level structure Villegas et al. (2017b), incorporating pixel transformations (Finn et al., 2016;
De Brabandere et al., 2016; Liu et al., 2017) and predictive coding architectures (Lotter et al., 2017),
as well as different generation objectives (Mathieu et al., 2016; Vondrick & Torralba, 2017; Walker
et al., 2015) and disentangling representations (Villegas et al., 2017a; Denton & Birodkar, 2017).
With models that can successfully model many deterministic environments, the next key challenge
is to address stochastic environments by building models that can effectively reason over uncertain
futures. Real-world videos are always somewhat stochastic, either due to events that are inherently
random, or events that are caused by unobserved or partially observable factors, such as off-screen
events, humans and animals with unknown intentions, and objects with unknown physical properties.
In such cases, since deterministic models can only generate one future, these models either disregard
potential futures or produce blurry predictions that are the superposition or averages of possible
futures.

A variety of methods have sought to overcome this challenge by incorporating stochasticity, via three
types of approaches: models based on variational auto-encoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014), generative adversarial networks (Goodfellow et al., 2014), and autoregressive
models (Hochreiter & Schmidhuber, 1997; Graves, 2013; van den Oord et al., 2016b;c; Van Den Oord
et al., 2016). Among these models, techniques based on variational autoencoders which optimize
an evidence lower bound on the log-likelihood have been explored most widely (Babaeizadeh et al.,
2017; Denton & Fergus, 2018; Lee et al., 2018; Xue et al., 2016; Li et al., 2018). To our knowledge,
the only prior class of video prediction models that directly maximize the log-likelihood of the data
are auto-regressive models (Hochreiter & Schmidhuber, 1997; Graves, 2013; van den Oord et al.,
2016b;c; Van Den Oord et al., 2016), that generate the video one pixel at a time (Kalchbrenner et al.,
2017). However, synthesis with such models is typically inherently sequential, making synthesis
substantially inefficient on modern parallel hardware. Prior work has aimed to speed up training and
synthesis with such auto-regressive models (Reed et al., 2017; Ramachandran et al., 2017). However,
(Babaeizadeh et al., 2017) show that the predictions from these models are sharp but noisy and that
the proposed VAE model produces substantially better predictions, especially for longer horizons. In
contrast to autoregressive models, we find that our proposed method exhibits faster sampling, while
still directly optimizing the log-likelihood and producing high-quality long-term predictions.

1We generate 64x64 videos of 20 frames in less than 3.5 seconds on a NVIDIA P100 GPU as compared to
the fastest autoregressive model for video (Reed et al., 2017) that generates a frame every 3 seconds

2

Under review as a conference paper at ICLR 2020

3 PRELIMINARIES: FLOW-BASED GENERATIVE MODELS

Flow-based generative models (Dinh et al., 2014; 2016) have received comparatively little attention in
the research community. However, these models have a unique set of advantages: exact latent-variable
inference, exact log-likelihood evaluation, and efficiency in terms of both inference and synthesis.
The basic principles behind flow-based generative models were first described by (Deco & Brauer,
1995), but were re-discovered and more fully developed in a modern context by (Dinh et al., 2014)
as Non-linear Independent Component Estimation (NICE), with further refinements and extensions
proposed by (Dinh et al., 2016) (RealNVP). Here, we first summarize the foundations of modern
normalizing flow models.

In flow-based generative models (Dinh et al., 2014; 2016), we model the data as if it was first
generated from a latent space pθ(z) then transformed to x through an invertible transformation:

z ∼ pθ(z) (1)
x = gθ(z) (2)

where z is the latent variable and pθ(z) has a simple, tractable density, such as a spherical multivariate
Gaussian distribution: pθ(z) = N (z; 0, I). The function gθ(..) is invertible, also called bijective,
such that given a datapoint x, latent-variable inference is done by z = fθ(x) = g−1

θ (x). We will
omit subscript θ from fθ and gθ.

We focus on functions where f (and, likewise, g) is composed of a sequence of invertible transfor-
mations: f = f1 ◦ f2 ◦ · · · ◦ fK . Under the change of variables of Eq. (2), the probability density
function (PDF) of the model given a datapoint can be written as:

log pθ(x) = log pθ(z) + log |det(dz/dx)| (3)

= log pθ(z) +

K∑
i=1

log |det(dhi/dhi−1)| (4)

where h0 , x and hK , z. The scalar value |det(dhi/dhi−1)| is the absolute value of the
determinant of the Jacobian matrix (dhi/dhi−1), also called the Jacobian determinant. This value is
the change in log-density when going from hi−1 to hi under transformation fi. While computation
of the Jacobian determinant is expensive in the general case, its value can be surprisingly simple to
compute for certain choices of transformations, as explored in prior work (Deco & Brauer, 1995;
Dinh et al., 2014; 2016; Rezende & Mohamed, 2015; Kingma et al., 2016; Kingma & Dhariwal,
2018). The basic idea used in this work, is to choose transformations whose Jacobian dhi/dhi−1 is a
triangular matrix, diagonal matrix or a permutation matrix. For permutation matrices, the Jacobian
determinant is one. For triangular and diagonal Jacobian matrices L = dhi/dhi−1, the determinant
is simply the product of diagonal terms, such that:

log |det(L)| =
∑
j

log |Lj,j | (5)

where log() takes the element-wise logarithm, and Lj,j is the j-th element on the diagonal of matrix
L.

4 PROPOSED ARCHITECTURE

We propose a generative flow for video, extending the recently proposed Glow (Kingma & Dhariwal,
2018) and RealNVP (Dinh et al., 2016) architectures.

In our model, we break up the latent space z into separate latent variables per timestep: z = {zt}Tt=1.
The latent variable zt at timestep t is an invertible transformation of a corresponding frame of
video: xt = gθ(zt). Furthermore, like in (Dinh et al., 2016; Kingma & Dhariwal, 2018), we use
a multi-scale architecture (Fig. 1): the latent variable zt is composed of a stack of multiple levels:
where each level l encodes information about frame xt at a particular scale: zt = {z(l)t }Ll=1, one
component z(l)t per level.

3

Under review as a conference paper at ICLR 2020

x

z(1) z(2)

. . .

z(L−1) z(L)z

x0 x1 . . . xT

z
(1)
0

z
(2)
0

z
(3)
0

z
(1)
1

z
(2)
1

z
(3)
1

z
(1)
T

z
(2)
T

z
(3)
T

. . .

. . .

. . .

z0 z1 zT

Figure 1: Left: Multi-scale prior The flow model uses a multi-scale architecture using several levels of
stochastic variables. Right: Autoregressive latent-dynamic prior The input at each timestep xt is encoded
into multiple levels of stochastic variables (z(1)t , . . . , z

(L)
t). We model those levels through a sequential process∏

t

∏
l p(z

(l)
t | z(l)<t, z

(>l)
t).

4.1 AUTOREGRESSIVE LATENT DYNAMICS MODEL

As in equation (1), we need to choose a form of latent prior pθ(z). We use the following autoregressive
factorization for the latent prior:

pθ(z) =

T∏
t=1

pθ(zt|z<t) (6)

where z<t denotes the latent variables of frames prior to the t-th timestep: {z1, ..., zt−1}. We specify
the conditional prior pθ(zt|z<t) as having the following factorization:

pθ(zt|z<t) =

L∏
l=1

pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) (7)

where z
(l)
<t is the set of latent variables at previous timesteps and at the same level l, while z

(>l)
t

is the set of latent variables at the same timestep and at higher levels. See figure 1 for a graphical
illustration of the dependencies.

We let each pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) be a conditionally factorized Gaussian density:

pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) = N (z

(l)
t ;µ, σ) (8)

where (µ, log σ) = NNθ(z
(l)
<t, z

(>l)
t) (9)

where NNθ() is a deep residual network (He et al., 2015) described in the supplementary material.

4.2 INVERTIBLE NEURAL NETWORKS

As explained in section 3, the observed variables x are modeled as an invertible function of the latent
variable z. We let each individual frame in the video be modeled as function (a normalizing flow) of
the set of corresponding latent variable: xt = gθ(zt) = gθ({z(l)t }Ll=1); see figure 1 for an illustration.
For this flow gθ, we use the multi-scale Glow architecture as introduced in (Kingma & Dhariwal,
2018), which builds upon the multi-scale flow introduced in (Dinh et al., 2016). We refer to (Dinh
et al., 2016; Kingma & Dhariwal, 2018) for more details.

Note that in our architecture we have chosen to let the prior pθ(z), as described in eq. (6), model
temporal dependencies in the data, while constraining the flow gθ to act on separate frames of video.
We have experimented with using 3-D convolutional flows, but found this to be computationally
overly expensive compared to an autoregressive prior; in terms of both number of operations and
number of parameters. Further, due to memory limits, we found it only feasible to perform SGD
with a small number of sequential frames per gradient step. In case of 3-D convolutions, this would

4

Under review as a conference paper at ICLR 2020

Model Fooling rate
SAVP-VAE 16.4 %
VideoFlow 31.8 %

SV2P 17.5 %
Table 1: We compare the realism of the generated trajec-
tories using a real-vs-fake 2AFC Amazon Mechanical
Turk with SAVP-VAE and SV2P. Figure 2: We condition the VideoFlow model with

the frame at t = 1 and display generated trajectories
at t = 2 and t = 3 for three different shapes.

make the temporal dimension considerably smaller during training than during synthesis; this would
change the model’s input distribution between training and synthesis, which often leads to various
temporal artifacts. Using 2-D convolutions in our flow fθ with autoregressive priors, allows us to
synthesize arbitrarily long sequences without introducing temporal border effects.

5 EXPERIMENTS

All our generated videos and qualitative results can be viewed at this website. In the generated videos,
a border of blue represents the conditioning frame, while a border of red represents the generated
frames.

5.1 VIDEO MODELLING WITH THE STOCHASTIC MOVEMENT DATASET

We use VideoFlow to model the Stochastic Movement Dataset used in (Babaeizadeh et al., 2017).
The first frame of every video consists of a shape placed near the center of a 64x64x3 resolution gray
background with its type, size and color randomly sampled. The shape then randomly moves in one
of eight directions with constant speed. (Babaeizadeh et al., 2017) show that conditioned on the first
frame, a deterministic model averages out all eight possible directions in pixel space. Since the shape
moves with a uniform speed, we should be able to model the position of the shape at the (t+1)th step
using only the position of the shape at the tth step. Using this insight, we extract random temporal
patches of 2 frames from each video of 3 frames. We then use VideoFlow to maximize the log-
likelihood of the second frame given the first, i.e the model looks back at just one frame. We observe
that the bits-per-pixel on the holdout set reduces to a very low 0.04 bits-per-pixel for this model. On
generating videos conditioned on the first frame, we observe that the model consistently predicts the
future trajectory of the shape to be one of the eight random directions. We compare our model with
two state-of-the-art stochastic video generation models SV2P and SAVP-VAE (Babaeizadeh et al.,
2017; Lee et al., 2018) using their Tensor2Tensor implementation (Vaswani et al., 2018). We assess
the quality of the generated videos using a real vs fake Amazon Mechanical Turk test. In the test, we
inform the rater that a "real" trajectory is one in which the shape is consistent in color and congruent
throughout the video. We show that VideoFlow outperforms the baselines in terms of fooling rate in
Table 1 consistently generating plausible "real" trajectories at a greater rate.

5.2 VIDEO MODELING WITH THE BAIR DATASET

We use the action-free version of the BAIR robot pushing dataset (Ebert et al., 2017) that contain
videos of a Sawyer robotic arm with resolution 64x64. In the absence of actions, the task of
video generation is completely unsupervised with multiple plausible trajectories due to the partial
observability of the environment and stochasticity of the robot actions. We train the baseline models,
SAVP-VAE and SV2P to generate 10 target frames, conditioned on 3 input frames. We extract random
temporal patches of 4 frames, and train VideoFlow to maximize the log-likelihood of the 4th frame
given a context of 3 past frames. We, thus ensure that all models have seen a total of 13 frames during
training.

Bits-per-pixel: We estimated the variational bound of the bits-per-pixel on the test set, via importance
sampling, from the posteriors for the SAVP-VAE and SV2P models. We find that VideoFlow

5

https://sites.google.com/corp/view/videoflow/home

Under review as a conference paper at ICLR 2020

Model Bits-per-pixel
VideoFlow 1.87
SAVP-VAE ≤ 6.73

SV2P ≤ 6.78
Table 2: Left: We report the average bits-per-pixel
across 10 target frames with 3 conditioning frames for
the BAIR action-free dataset. Figure 3: We measure realism using a 2AFC test

and diversity using mean pairwise cosine distance
between generated samples in VGG perceptual
space.

outperforms these models on bits-per-pixel and report these values in Table 2. We attribute the high
values of bits-per-pixel of the baselines to their optimization objective. They do not optimize the
variational bound on the log-likelihood directly due to the presence of a β 6= 1 term in their objective
and scheduled sampling (Bengio et al., 2015).

Figure 4: For a given set of conditioning frames on the BAIR action-free we sample 100 videos from each of
the stochastic video generation models. We choose the video closest to the ground-truth on the basis of PSNR,
SSIM and VGG perceptual metrics and report the best possible value for each of these metrics. All the models
were trained using ten target frames but are tested to generate 27 frames. For all the reported metrics, higher is
better.

Accuracy of the best sample: For a given set of conditioning frames in the BAIR action-free test-set,
we generate 100 videos from each of the stochastic models. We then compute the closest of these
generated videos to the ground truth according to three different metrics, PSNR (Peak Signal to Noise
Ratio), SSIM (Structural Similarity) (Wang et al., 2004) and cosine similarity using features obtained
from a pretrained VGG network (Dosovitskiy & Brox, 2016; Johnson et al., 2016) following prior
work (Babaeizadeh et al., 2017; Lee et al., 2018) and report our findings in Figure 4. This metric
helps us understand if the true future lies in the set of all plausible futures according to the video
model and the implicit embedding space of each of the metrics.

In prior work, (Lee et al., 2018; Babaeizadeh et al., 2017) effectively tune the pixel-level variance as a
hyperparameter and sample from a deterministic decoder. They obtain training stabiltiy and improve
sample quality by removing pixel-level noise using this procedure. We can remove pixel-level noise in
our VideoFlow model resulting in higher quality videos at the cost of diversity by sampling videos at a
lower temperature, analogous to the procedure in (Kingma & Dhariwal, 2018). For a network trained
with additive coupling layers, we can sample the tth frame xt from P (xt|x<t) with a temperature T
simply by scaling the standard deviation of the latent gaussian distribution P (zt|z<t) by a factor of T .
We report results with both a temperature of 1.0 and the optimal temperature tuned on the validation
set using VGG similarity metrics in Figure 4. For SAVP-VAE, we notice that the hyperparameters
that perform the best on these metrics are the ones that have disappearing arms. For completeness, we
report these numbers as well as the numbers for the best performing SAVP models that do not have
disappearing arms. Our model with optimal temperature performs better or as well as the SAVP-VAE
model on the VGG-based similarity metrics, which correlate well with human perception (Zhang
et al., 2018) and SSIM. Our model with temperature T = 1.0 is also competent with state-of-the-art
video generation models on these metrics. PSNR is explicitly a pixel-level metric, which the VAE

6

Under review as a conference paper at ICLR 2020

models incorporate as part of its optimization objective. VideoFlow on the other-hand models the
conditional probability of the joint distribution of frames, hence as expected it underperforms on
PSNR.

Figure 5: We display three different futures for two sets of conditioning frames (left and right) at T = 0.6
showcasing diversity in outcomes

Diversity and quality in generated samples: For each set of conditioning frames in the test set, we
generate 10 videos and compute the mean distance in VGG perceptual space across these 45 different
pairs. We average this across the test-set for T = 1.0 and T = 0.6 and report these numbers in Figure
3. We also assess the quality of the generated videos at T = 1.0 and T = 0.6, using a real vs fake
Amazon Mechanical Turk test and report fooling rates. We observe that VideoFlow outperforms
diversity values reported in prior work (Lee et al., 2018) while being competitive in the realism axis.
We also find that VideoFlow at T = 0.6 has the highest fooling rate while being competent with
state-of-the-art VAE models in diversity.

On inspection of the generated videos, we find that at lower temperatures, the arm exhibits less
random behaviour with the background objects remaining static and clear achieving higher realism
scores. At higher temperatures, the motion of arm is much more stochastic, achieving high diversity
scores with the background objects becoming much noisier leading to a drop in realism.

5.3 LATENT SPACE INTERPOLATION

Figure 6: Left: We display interpolations between a) a small blue rectangle and a large yellow rectangle b) a
small blue circle and a large yellow circle. Right: We display interpolations between the first input frame and
the last target frame of two test videos in the BAIR robot pushing dataset.

BAIR robot pushing dataset: We encode the first input frame and the last target frame into the
latent space using our trained VideoFlow encoder and perform interpolations. We find that the motion
of the arm is interpolated in a temporally cohesive fashion between the initial and final position.
Further, we use the multi-level latent representation to interpolate representations at a particular level
while keeping the representations at other levels fixed. We find that the bottom level interpolates the
motion of background objects which are at a smaller scale while the top level interpolates the arm
motion.

Stochastic Movement Dataset: We encode two different shapes with their type fixed but a different
size and color into the latent space. We observe that the size of the shape gets smoothly interpolated.

7

Under review as a conference paper at ICLR 2020

During training, we sample the colors of the shapes from a uniform discrete distribution which is
reflected in our experiments. We observe that all the colors in the interpolated space lie in the set of
colors in the training set.

5.4 LONGER PREDICTIONS

Figure 7: Left: We generate 100 frames into the future with a temperature of 0.5. The top and bottom row
correspond to generated videos in the absence and presence of occlusions respectively. Right: We use VideoFlow
to detect the plausibility of a temporally inconsistent frame to occur in the immediate future.

We generate 100 frames into the future using our model trained on 13 frames with a temperature of
0.5 and display our results in Figure 7. On the top, even 100 frames into the future, the generated
frames remain in the image manifold maintaining temporal consistency. In the presence of occlusions,
the arm remains super-sharp but the background objects become noisier and blurrier. Our VideoFlow
model has a bijection between the zt and xt meaning that the latent state zt cannot store information
other than that present in the frame xt. This, in combination with the Markovian assumption in our
latent dynamics means that the model can forget objects if they have been occluded for a few frames.
In future work, we would address this by incorporating longer memory in our VideoFlow model; for
example by parameterizing NNθ() as a recurrent neural network in our autoregressive prior (eq. 9)
or using more memory-efficient backpropagation algorithms for invertible neural networks (Gomez
et al., 2017).

5.5 OUT-OF-SEQUENCE DETECTION

We use our trained VideoFlow model, conditioned on 3 frames as explained in Section 5.2, to detect
the plausibility of a temporally inconsistent frame to occur in the immediate future. We condition
the model on the first three frames of a test-set video X<4 to obtain a distribution P (X4|X<4) over
its 4th frame X4. We then compute the likelihood of the tth frame Xt of the same video to occur
as the 4th time-step using this distribution. i.e, P(X4 = Xt|X<4) for t = 4 . . . 13. We average the
corresponding bits-per-pixel values across the test set and report our findings in Figure 7. We find
that our model assigns a monotonically decreasing log-likelihood to frames that are more far out in
the future and hence less likely to occur in the 4th time-step.

6 CONCLUSION AND DISCUSSION

We describe a practically applicable architecture for flow-based video prediction models, inspired
by the Glow model for image generation Kingma & Dhariwal (2018), which we call VideoFlow.
We introduce a latent dynamical system model that predicts future values of the flow model’s
latent state replacing the standard unconditional prior distribution. Our empirical results show that
VideoFlow achieves results that are competitive with the state-of-the-art VAE models in stochastic
video prediction. Finally, our model optimizes log-likelihood directly making it easy to evaluate
while achieving faster synthesis compared to pixel-level autoregressive video models, making our
model suitable for practical purposes. In future work, we plan to incorporate memory in VideoFlow
to model arbitrary long-range dependencies and apply the model to challenging downstream tasks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. arXiv preprint arXiv:1710.11252, 2017.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems,
pp. 1171–1179, 2015.

Byron Boots, Arunkumar Byravan, and Dieter Fox. Learning predictive models of a depth camera &
manipulator from raw execution traces. In International Conference on Robotics and Automation
(ICRA), 2014.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In Neural
Information Processing Systems (NIPS), 2016.

Gustavo Deco and Wilfried Brauer. Higher order statistical decorrelation without information loss.
Advances in Neural Information Processing Systems, pp. 247–254, 1995.

Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled representations from
video. arXiv preprint arXiv:1705.10915, 2017.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. arXiv preprint
arXiv:1802.07687, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv
preprint arXiv:1605.08803, 2016.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
on deep networks. In Advances in Neural Information Processing Systems, pp. 658–666, 2016.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. arXiv preprint arXiv:1710.05268, 2017.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In International
Conference on Robotics and Automation (ICRA), 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. In Advances in Neural Information Processing Systems, 2016.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. In Advances in Neural Information Processing
Systems, pp. 2211–2221, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation, 9(8):
1735–1780, 1997.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision, pp. 694–711. Springer, 2016.

Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu. Video pixel networks. International Conference on Machine Learning
(ICML), 2017.

9

Under review as a conference paper at ICLR 2020

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. Proceedings of the 2nd
International Conference on Learning Representations, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems, pp. 4743–4751, 2016.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10236–10245, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pp. 1106–1114, 2012.

Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Flow-grounded
spatial-temporal video prediction from still images. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 600–615, 2018.

Ziwei Liu, Raymond Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. Video frame synthesis
using deep voxel flow. International Conference on Computer Vision (ICCV), 2017.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video
prediction and unsupervised learning. International Conference on Learning Representations
(ICLR), 2017.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. International Conference on Learning Representations (ICLR), 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
for speech synthesis. CoRR, abs/1811.00002, 2018. URL http://arxiv.org/abs/1811.
00002.

Prajit Ramachandran, Tom Le Paine, Pooya Khorrami, Mohammad Babaeizadeh, Shiyu Chang, Yang
Zhang, Mark A Hasegawa-Johnson, Roy H Campbell, and Thomas S Huang. Fast generation for
convolutional autoregressive models. arXiv preprint arXiv:1704.06001, 2017.

MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and Sumit
Chopra. Video (language) modeling: a baseline for generative models of natural videos. arXiv
preprint arXiv:1412.6604, 2014.

Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Dan
Belov, and Nando de Freitas. Parallel multiscale autoregressive density estimation. arXiv preprint
arXiv:1703.03664, 2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of The 32nd International Conference on Machine Learning, pp. 1530–1538, 2015.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1278–1286, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. In International Conference on Machine Learning, 2015.

10

http://arxiv.org/abs/1811.00002
http://arxiv.org/abs/1811.00002

Under review as a conference paper at ICLR 2020

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with PixelCNN decoders. In Advances in Neural Information Processing Systems,
pp. 4790–4798, 2016a.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016b.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Ko-
ray Kavukcuoglu. Conditional image generation with PixelCNN decoders. arXiv preprint
arXiv:1606.05328, 2016c.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, et al. Tensor2tensor for neural machine
translation. arXiv preprint arXiv:1803.07416, 2018.

Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion
and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033, 2017a.

Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and Honglak Lee. Learning
to generate long-term future via hierarchical prediction. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 3560–3569. JMLR. org, 2017b.

Carl Vondrick and Antonio Torralba. Generating the future with adversarial transformers. In Computer
Vision and Pattern Recognition (CVPR), 2017.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating the future by watching
unlabeled video. arXiv preprint arXiv:1504.08023, 2015.

Jacob Walker, Abhinav Gupta, and Martial Hebert. Dense optical flow prediction from a static image.
In International Conference on Computer Vision (ICCV), 2015.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 2004.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. In
Advances in Neural Information Processing Systems, 2015.

Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics: Probabilistic future
frame synthesis via cross convolutional networks. In Advances in Neural Information Processing
Systems, 2016.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. arXiv preprint, 2018.

A DISCRETIZATION AND UNIFORM QUANTIZATION

Let D = {x(i)}Ni=1 be our dataset of i.i.d. observations of a random variable x with an unknown
true distribution p∗(x). Our data consist of 8-bit videos, with each dimension rescaled to the domain
[0, 255/256]. We add a small amount of uniform noise to the data, u ∼ U(0, 1/256.), matching its
discretization level (Dinh et al., 2016; Kingma & Dhariwal, 2018). Let q(x) be the resulting empirical
distribution corresponding to this scaling and addition of noise. Note that additive noise is required
to prevent q(x) from having infinite densities at the datapoints, which can result in ill-behaved
optimization of the log-likelihood; it also allows us to recast maximization of the log-likelihood as
minimization of a KL divergence.

11

Under review as a conference paper at ICLR 2020

B RESIDUAL NETWORK ARCHITECTURE

Here we’ll describe the architecture for the residual network NNθ() that maps z
(l)
<t, z

(>l)
t to

(µ(l)
t , log σ

(l)
t). Let h(>l)

t be the tensor representing z
(>l)
t after the split operation between lev-

els in the multi-scale architecture. We apply a 1 × 1 convolution over h(>l)
t and concatenate this

across channels to each latent from the previous time-step and the same-level independently. In this
way, we obtain ((Wh

(>l)
t ; z

(l)
t−1), (Wh

(>l)
t ; z

(l)
t−2) . . . (Wh

(>l)
t ; z

(l)
t−n)). We transform these values

into (µ(l)
t , log σ

(l)
t) via a stack of residual blocks. We obtain a reduction in parameter count by sharing

parameters across every 2 time-steps via 3-D convolutions in our residual blocks.

Each 3-D residual block consists of three layers. The first layer has a filter size of 2x3x3 with 512
output channels followed by a ReLU activation. The second layer has two 1× 1× 1 convolutions
via the Gated Activation Unit Van Den Oord et al. (2016); van den Oord et al. (2016a). The third
layer has a filter size of 2× 3× 3 with the number of output channels determined by the level. This
block is replicated three times in parallel, with dilation rates 1, 2 and 4, after which the results of
each block, in addition to the input of the residual block, are summed.

The first two layers are initialized using a Gaussian distribution and the last layer is initialized
to zeroes. In that way, the residual network behaves as an identity network during initialization
allowing stable optimization. After applying a sequence of residual blocks, we use the last temporal
activation that should capture all context. We apply a final 1 × 1 convolution to this activation to
obtain (∆z

(l)
t , log σ

(l)
t). We then add ∆z

(l)
t to z

(l)
t−1 to a temporal skip connection to output µ(l)

t . This
way, the network learns to predict the change in latent variables for a given level. We have provided
visualizations of the network architecture in this website

C ABLATION STUDIES

Through an ablation study, we experimentally evaluate the importance of the following components
of our VideoFlow model: (1) the use of temporal skip connections, (2) the use Gated Activation Unit
(GATU) instead of ReLUs in the residual network and (3) the use of dilations in NNθ() in Section B

We start with a VideoFlow model with 256 channels in the coupling layer, 16 steps of flow and
remove the components mentioned above to create our baseline. We use four different combinations
of our components (described in Fig. 8) and keep the rest of the hyperparameters fixed across those
combinations. For each combination we plot the mean bits-per-pixel on the holdout BAIR-action
free dataset over 300K training steps for both affine and additive coupling in Figure 8. For both the
coupling layers, we observe that the VideoFlow model with all the components provide a significant
boost in bits-per-pixel over our baseline.

Figure 8: B: baseline, A: Temporal Skip Connection, C: Dilated Convolutions + GATU, D: Dilation
Convolutions + Temporal Skip Connection, E: Dilation Convolutions + Temporal Skip Connection +
GATU. We plot the holdout bits-per-pixel on the BAIR action-free dataset for different ablations of our
VideoFlow model.

We also note that other combinations—dilated convolutions + GATU (C) and dilated convolutions +
the temporal skip connection —improve over the baseline. Finally, we experienced that increasing

12

https://sites.google.com/corp/view/videoflow/home

Under review as a conference paper at ICLR 2020

the receptive field in NNθ() using dilated convolutions alone in the absence of the temporal skip
connection or the GATU makes training highly unstable.

D LIKELIHOOD VS QUALITY

Figure 9: We provide a comparison between training progression (measured in the mean bits-per-pixel objective
on the test-set) and the quality of generated videos.

We show correlation between training progression (measured in bits per pixel) and quality of the
generated videos in Figure 9. We display the videos generated by conditioning on frames from the
test set for three different values of bits-per-pixel on the test-set. As we approach lower bits-per-pixel,
our VideoFlow model learns to model the structure of the arm with high quality as well as its motion
resulting in high quality video.

E VIDEOFLOW - BAIR HYPERPARAMETERS

E.1 QUANTITATIVE - BITS-PER-PIXEL

To report bits-per-pixel we use the following set of hyperparameters. We use a learning rate schedule
of linear warmup for the first 10000 steps and apply a linear-decay schedule for the last 150000 steps.

Hyperparameter Value
Flow levels 3

Flow steps per level 24
Coupling Affine

Number of coupling layer channels 512
Optimier Adam

Batch size 40
Learning rate 3e-4

Number of 3-D residual blocks 5
Number of 3-D residual channels 256

Training steps 600K

E.2 QUALITATIVE EXPERIMENTS

For all qualitative experiments and quantitative comparisons with the baselines, we used the following
sets of hyperparameters.

13

Under review as a conference paper at ICLR 2020

Hyperparameter Value
Flow levels 3

Flow steps per level 24
Coupling Additive

Number of coupling layer channels 392
Optimier Adam

Batch size 40
Learning rate 3e-4

Number of 3-D residual blocks 5
Number of 3-D residual channels 256

Training steps 500K

F HYPERPARAMETER GRID FOR THE BASELINE VIDEO MODELS.

We train all our baseline models for 300K steps using the Adam optimizer. Our models were tuned
using the maximum VGG cosine similarity metric with the ground-truth across 100 decodes.

SAVP-VAE and SV2P: We use three values of latent loss multiplier 1e-3, 1e-4 and 1e-5. For the
SAVP-VAE model, we additionally apply linear decay on the learning rate for the last 100K steps.
SAVP-GAN: We tune the gan loss multiplier and the learning rate on a logscale from 1e-2 to 1e-4
and 1e-3 to 1e-5 respectively.

Figure 10: We compare P(X4 = Xt|X<4) and VGG cosine similarity between X4 and Xt for t = 4 . . . 13

G CORRELATION BETWEEN VGG PERCEPTUAL SIMILARITY AND
BITS-PER-PIXEL

We plot correlation between cosine similarity using a pretrained VGG network and bits-per-pixel
using our trained VideoFlow model. We compare P(X4 = Xt|X<4) as done in Section 5.5 and the
VGG cosine similarity between X4 and Xt for t = 4 . . . 13. We report our results for every video
in the test set in Figure 10. We notice a weak correlation between VGG perceptual metrics and
bits-per-pixel with a correlation factor of −0.51.

14

	Introduction
	Related Work
	Preliminaries: Flow-Based Generative Models
	Proposed Architecture
	Autoregressive latent dynamics model
	Invertible neural networks

	Experiments
	Video modelling with the Stochastic Movement Dataset
	Video Modeling with the BAIR Dataset
	Latent space interpolation
	Longer predictions
	Out-of-sequence detection

	Conclusion and Discussion
	Discretization and Uniform quantization
	Residual network architecture
	Ablation Studies
	Likelihood vs Quality
	VideoFlow - BAIR Hyperparameters
	Quantitative - Bits-per-pixel
	Qualitative Experiments

	Hyperparameter grid for the baseline video models.
	Correlation between VGG perceptual similarity and bits-per-pixel

