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ABSTRACT

This paper is concerned with the defense of deep models against adversarial at-
tacks. We develop an adversarial detection method, which is inspired by the cer-
tificate defense approach, and captures the idea of separating class clusters in the
embedding space so as to increase the margin. The resulting defense is intu-
itive, effective, scalable, and can be integrated into any given neural classification
model. Our method demonstrates state-of-the-art (detection) performance under
all threat models.

1 INTRODUCTION

Defending machine learning models from adversarial attacks has become an increasingly pressing
issue as deep neural networks become associated with more critical aspects of society. Adversarial
attacks can effectively fool deep models and force them to misclassify, using a slight but maliciously-
designed distortion that is typically invisible to the human eye (Carlini & Wagner, 2017c; Athalye
et al., 2018). Despite numerous developments, defense mechanisms are still wanting.

Many interesting ideas have been proposed for constructing defense mechanisms for adversarial
examples. Among these are adversarial training (Metzen et al., 2017; Zuo et al., 2020; Yan et al.,
2018), ensemble methods (Strauss et al., 2017), and randomization (Dhillon et al., 2018; Xu et al.,
2017) to name a few. These works consider both detection and resiliency. However, many of these
defense ideas were found to be inadequate (Athalye et al., 2018; Carlini et al., 2019; Carlini &
Wagner, 2017b; He et al., 2017). For example, adversarial training critically depends on the specific
choice of adversarial attacks used to generate the adversarial training instances. As a result, often
this method cannot withstand attacks based on different strategies. (Engstrom et al., 2018).

A more formal approach to adversarial defense is the certification approach (Hein & An-
driushchenko, 2017), which is designed to provide a lower bound for the penetration distortion
required to fool a given network. Certified defense methods are referred to as being either “exact”
or “conservative”. In exact methods no distortion smaller than the certification bound can penetrate
the deep neural network (DNN) (Hein & Andriushchenko, 2017; Wong & Kolter, 2017; Wong et al.,
2018; Cohen et al., 2019). In “conservative” methods, the bound is merely a relative metric for
comparing DNN robustness to adversarial examples (Tsuzuku et al., 2018; Zhang et al., 2019; Ding
et al., 2018). Both exact methods and conservative ones have been criticized for being computation-
ally expensive and unscalable (Tjeng et al., 2018; Cohen et al., 2019).

It is interesting to view adversarial attacks through activation geometry in embedding layers. A
trained deep classification model tends to organize instances into clusters in the embedding space,
according to class labels. Classes with clusters in close proximity to one another, provide excellent
opportunities for attackers to fool the model. This geometry explains the tendency of untargeted
attacks to alter the label of a given image to a class adjacent in the embedding space as demonstrated
in Figure 1a. Thus, if we can modify the model to increase the margin between clusters, while
lowering (or not increasing) the activation sensitivity in the embedding space to input changes, we
can make the network more immune to attacks. This embedding sensitivity can be quantified through
a Lipschitz constant or directly via the Jacobian.

In this paper we develop an adversarial detection method, which is inspired by certificate defense
methods that captures the above separation in embedding space intuition. Ideally, we would like
to lower bound the distortion, ε, required by the adversary to force a DNN F to misclassify x + ε,
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where x is an input image. We propose an approximation to such a bound which, while not formal,
motivates a useful strategy for creating defense methods. The bound, ε & η/||JF (x)||, which is
similar to other known bounds, is given in terms of η, where η quantifies the “embedding margin”
of the network, and JF (x), the Jacobian of F with respect to x (see details in Section 2). The em-
bedding margin, for a given intermediate layer, is the minimal distance (under any p-norm) between
two instances belonging to two different classes. This approximate relation motivates a strategy
of penetration distortion maximization (PDM) whereby, we implicitly or explicitly maximize this
lower bound without attempting to calculate it.

To apply the PDM approach we propose two procedures to increase the embedding margin. These
two methods are complementary in the sense that we can benefit by applying them together. In
conjunction, we use the reverse cross-entropy method of Pang et al. (2018), which tends to smooth
the Jacobian. Our adversarial detection mechanism is constructed by training a resilient classifier
using the above three procedures; we then apply standard kernel density estimation (KDE) on the
embedding layer (Feinman et al., 2017). We present an extensive empirical study focusing on de-
tection of adversarial examples under all threat models, in which we consider the FGSM, BIM,
C&W and JSMA attacks. Our experimental procedure strictly adheres to the comprehensive evalu-
ation desiderata proposed by Carlini et al. (2019). The results we obtain indicate that the proposed
defense achieves state-of-the-art detection.

2 PENETRATION DISTORTION MAXIMIZATION

In this section, we explain the PDM strategy. Let F be a neural classifier and let x ∈ Rh×w be an
image assumed to have class label c = c(x). Let ε ∈ Rh×w be a vector representing an adversarial
distortion for image x such that the (successful) adversarial instance is xadv

M
= x + ε whose label

is different from c; namely, cadv
M
= F (xadv) 6= c. The attacker’s goal is to find the smallest

perturbation ε such that F misclassifies x,

minε ||ε||

s.t. F (x+ ε) 6= c(x) .

For a successful adversarial attack whose distortion is required to be small, in the spirit of (Ding
et al., 2018; Tsuzuku et al., 2018; Hein & Andriushchenko, 2017; Zhang et al., 2019), we approxi-
mate a prediction for xadv using the first-order Taylor approximation

F (xadv) = F (x+ ε)
|ε|�1
≈ F (x) + JF (x)ε, (1)

for vector-valued functions with JF (x) being the Jacobian of F . The same approximation applies
to the output of any intermediate layer `. Denoting by F`(x) the output of layer ` we thus have,

F`(xadv) ≈ F`(x) + J`(x)ε.

For layer `, we define its embedding margin,

η`
M
= argmin
x1,x2,c(x1)6=c(x2)

||F`(x1)− F`(x2)||.

Thus,
||J`(x)ε|| ≈ ||F`(x)− F`(xadv)|| ≥ η` (2)

The Frobenius norm used here is sub-multiplicative (proof can be found in Appendix A); namely,

||J`(x)||||ε|| ≥ ||J`(x)ε||. (3)

Combining (2) and (3) (and ignoring the approximation error) we lower bound the norm of the
distortion ε in terms of the embedding margin and the norm of the Jacobian,

||ε|| & η`
||J`(x)||

. (4)

While the attacker’s goal is to find a small distortion that “penetrates” another class, our goal as the
defender is to create a resilient model that forces a larger distortion. The lower bound (4) motivates
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(a) CIFAR-10: t-SNE of embedding Layer
(b) Adversarial confusion histogram

Figure 1: Histogram of origin and target classes from CW untargeted adversarial attack compared
to embedding layer t-SNE

our penetration distortion maximization (PDM) method whereby the goal is to explicitly maximize
the right side of (4) with respect to embedding layer of the model F . To successfully apply this
technique we must increase the embedding margin ηl (while not increasing the norm of the Jacobian)
and/or smooth the network to decrease the norm of the Jacobian ||J`(x)||. We note that similar and
stronger, formal bounds, in terms of the Lipschitz constant, have been introduced by Tsuzuku et al.
(2018), Zhang et al. (2019), Hein & Andriushchenko (2017) and Ding et al. (2018).

3 INCREASING RESILIENCY USING PDM

In this section we show how we use PDM, which is applied to the final layer that captures the full
embedding of the network (often referred to as the “pre-logits”). We note that technically we can
also apply PDM to any other layer in the model but defer such explorations to future work. The
proposed approach consists of three components, which are described in this section. Two novel
components are used to increase the margin, and the third is a known technique that is responsible
for reducing the norm of the Jacobian.

Our approach for increasing the embedding margin relies on the observation that at higher embed-
ding layers of a trained model, the embedding vectors (tensors) of instances tend to be structured
in clusters according to class labels. This can be seen, for example, in Figure 1a where we observe
the t-SNE visualization (Maaten & Hinton, 2008) of the embedding layer of a network trained for
CIFAR-10. Moreover, we observe that an adversarial example created by an untargeted attack of-
ten obtains a class label whose cluster is in close proximity with the cluster of the original class.
In Figure 1b we present a color matrix showing the adversarial label distribution obtained by the
C&W attack (Carlini & Wagner, 2017a). For example, the color for the Cat and Dog entry is bright
red indicating a frequent label change from cats (original) to dogs (adversarial), whose clusters are
the closest. By increasing the margin between these clusters without increasing the norm of this
layer’s Jacobian ,we make it harder for an adversary to alter the label using distortion of the same
magnitude.

Adopting ideas from cluster analysis, the increase in the embedding margin can be achieved by
either increasing the distance between clusters or reducing the variance of each cluster. Let µc =
1
Nc

∑Nc

i=1 z
c
i be the mean of each cluster, where Nc is the number of samples from class c, and let

M be the number of classes. We thus have,

Cluster Variance M
=

M∑
c=1

1

Nc

Nc∑
i=1

||zci − µc||2

Cluster Distance M
=

M∑
c=1

1

M

M∑
i=c

||µi − µc||2
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To increase the margin, we would like to maximize the cluster distance and minimize the cluster
variance, hence

Margin Maximization Objective = Cluster Variance− Cluster Distance.

A straightforward maximization of the cluster distance is problematic because the distance is poten-
tially unbounded. However, we can proxy the distance using the angular distance between clusters.
To this end, we use the cosine similarity. We now introduce two methods to optimize these compo-
nents. We use a Siamese training procedure to maximize the cluster distance. The cluster variance
is minimized by including a variance in the loss function.

3.1 SIAMESE TRAINING

To explicitly increase the embedding margin, we propose using Siamese training. We create a
Siamese network (Bromley et al., 1994) where each sub-network is our classifier. The Siamese
network has two input images denoted by xci , x

c̃
j and three outputs: two classification outputs and an

auxiliary output for the cosine similarity between each sub-network’s embedding. We introduce an
additional loss term to force embeddings from different classes samples to have a cosine similarity
of 0 or 1 otherwise. Formally,

SiameseLoss =
zci · zc̃j
||zci ||||zc̃j ||

!
=

{
1 if c = c̃
0 else

3.2 REDUCE VARIANCE LOSS

Inspired by Szegedy et al. (2016), we include an additional loss term that penalizes large variance
for each class’ cluster individually. We refer to this component as the “reduce variance loss” (RVL).
Formally,

σc
M
=

1

Nc

Nc∑
i=1

||zci − µc||2, RVL M
=

1

Nc

Nclasses∑
c=1

σc (5)

The variance is estimated per class on each mini-batch, averaged and minimized as part of the
learning process.

3.3 REVERSE CROSS ENTROPY

We use the reverse cross-entropy loss introduced by Pang et al. (2018) to minimize the norm of the
Jacobian. By labeling a sample with a “reverse” one-hot vector, we obtain

Rci =


0 , if i = c

1
(Nclasses−1) , else,

and using a reverse cross entropy loss

LRCE = −Rc logF (x).

Similar to label smoothing (Szegedy et al., 2016), this method smooths the classifier’s gradients and
prevents the network from becoming over-confident (Müller et al., 2019). Intuitively, the differen-
tiation between two samples has a tighter upper bound, given the reverse labels Rc, than a one-hot
labeling. We tested the gradientL2 norm value on different layers. Comparing to the baseline model,
the gradients were five to ten times smaller when using the RCE training process.

3.4 PDM TRAINING

A simultaneous application of the three components described above, which can robustify a clas-
sification model, is obtained by training the model using an appropriate loss function as well as a
specialized mini-batch construction procedure. A pseudo-code of the training procedure including
the loss function appears in Algorithm 1 under Appendix F. The code is self-explanatory for the
most part. We note that an epoch begins by creating a Siamese counterpart for each image-label pair
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in a given batch. With probability Q, the Siamese sample is selected from the same class, and its
cosine similarity label is set to 1. Otherwise (probability 1 − Q), the Siamese sample is selected
from a different class, and its cosine similarity label is set to 0. Also, notice that the Siamese and
RVL (Equation 5) components of the loss function are computed from the embedding vectors of
each mini-batch. The RCE component is calculated using the logits.

3.5 PDM VISUALIZATION

Using t-SNE to visualize the embedding space activation, Figure 2 illustrates the effect of each of the
components of our defense method. Figure 2c demonstrates how well the RVL reduces the variance,
while the Siamese training process made a more profound impact on the between class distance as
shown in Figure 2d.

While t-SNE is useful for visualization purposes, the aggressive dimensionality reduction may lead
to misleading conclusions. To obtain a quantitative evidence, we calculated the Davies–Bouldin
index (DBI) (Davies & Bouldin, 1979), which scores clustering quality according to the distance
between cluster centroids divided by the Euclidean distance between points within a cluster (lower
score means better clustering). The DBI of the combined method is indeed the lowest, 0.23 (see the
other DBIs in the figure).

4 EXPERIMENTS

Following (Pang et al., 2018; Meng & Chen, 2017; Madry et al., 2017; Song et al., 2017; Dhillon
et al., 2018; Samangouei et al., 2018) we evaluated our defense technique on the MNIST (LeCun
et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets.

We adopt the detection method presented by Feinman et al. (2017), using a univariate Gaussian-
based kernel density estimation (KDE), where the density was estimated using 1000 training sample
embeddings per class. An input image is deemed adversarial if the distance to the predicted class’
manifold exceeds a predefined threshold. As the decision is threshold-dependent, we report our
results as the area under the ROC curve (AUC). We use ResNet 56 (He et al., 2016) as our classifier,
and compare our results to two baselines: standard training of ResNet-56 (i.e., without any defense
mechanism) and ResNet-56 equipped with the RCE defense, the current state-of-the-art model. The
hyper-parameters used are listed in Appendix B.

In our study we used several attacks, which are described in Appendix E. For the bounded adversarial
attack algorithms, we used two versions of FGSM and BIM, one with a small perturbation ε = 0.05,
and another with a large perturbation ε = 0.1. For the unbounded attacks, we used JSMA and
two versions of C&W: a lean version with zero confidence, and an extensive version with a higher
confidence value, denoted by C&W-hc. We used the Cleverhans implementation (Papernot et al.,
2018) for the attacks and applied them in an untargeted manner. A detailed description of the
parameters used in the adversarial attacks appears in Appendix C. Description of the threat models
we consider in this paper appears in Appendix D.

4.1 PERFORMANCE ON NORMAL SAMPLES

We began by evaluating the performance of our model on normal samples shown Table 1. While the
RCE method of Pang et al. (2018) lowered the classifier’s accuracy on CIFAR-10, using the Siamese
training scheme and applying the reduce variance loss increased the accuracy for both CIFAR-10
and MNIST. These results indicate that these margin-increasing procedures may be of independent
value in training standard classifiers, regardless of the need for adversarial robustness.

CE RCE Siamese + RVL PDM (ours)
CIFAR-10 93.62 93.3 94.37 93.81

MNIST 99.33 99.32 99.37 99.52

Table 1: Performance on normal samples
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(a) Baseline ; DBI:0.98 (b) RCE ; DBI:0.31

(c) Reduce Variance ; DBI:0.28 (d) Siamese Training ; DBI:0.32

(e) Combined Methods ; DBI:0.23

(f) Legend

Figure 2: CIFAR-10 t-SNE visualization of the two margin increasing components of PDM . Com-
pared to the baseline, each method contributes to the increase of the margin where the combined
method displaying the best clustering according the the Davies–Bouldin Index.

4.2 GRAY-BOX MODEL

We follow a strict definition of a gray-box threat model as in (Pang et al., 2018), where the attacker
has full access to the trained model, but is unaware of the detection mechanism. See Appendix D
for precise definitions of the threat-models we consider in this paper. We evaluated the performance
under the gray-box threat model by creating equally-sized groups of adversarial and normal exam-
ples. We scored each example using our (KDE-based) detection mechanism. The results are shown
in Table 2. The PDM detection AUC results over MNIST are outstanding, showing that all the
unbounded attacks (such as C&W) were detected perfectly. On the CIFAR-10 dataset PDM perfor-
mance lagged behind in defending the two BIM attacks. However, it achieved excellent AUC results
for the other attacks, including a perfect score for the strong C&W high confidence attack. Figure 3
presents the resiliency of PDM and the baselines when attacked by FGSM and BIM. Consider, for
example, Figure 3(a) depicting the resiliency achieved against FGSM over the CIFAR-10 dataset.
The x-axis corresponds to the distortion step size (ε) used by the adversary, which alters each pixel
by ±ε. The y-axis measures the resiliency, namely how many perturbed instances were predicted
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correctly by the model. While the resiliency is monotonically decreasing as a function of the step
size, as expected, the resiliency exhibited by PDM (blue) is consistently higher than the baselines.
Similar behavior was observed for the BIM attack on this dataset. Over the MNIST dataset, PDM
was more resilient than most methods, but not all step sizes.

Further investigation of the mediocre results obtained for the BIM attack revealed that norm of the
embedding layer gradients increase significantly for embedding vectors located in-between clusters.
Since BIM makes a sequence of small gradient steps starting inside clusters, it is able to move
further away into the center of a different class where it can no longer be detected using KDE. This
observation was made by measuring the mean gradient norm after each BIM step. After several such
steps we observed that the mean norm increased by an order of magnitude. This phenomenon does
not occur when taking solely RCE-trained model.

MNIST CIFAR-10
Baseline RCE PDM Baseline RCE PDM

FGSM-0.05 0.981 0.983 0.988 0.958 0.898 0.967
FGSM-0.1 0.988 0.99 0.995 0.971 0.926 0.983
BIM-0.05 0.983 0.967 0.987 1 0.99 0.95
BIM-0.1 0.945 0.92 0.99 1 0.996 0.962

C&W 0.994 1 1 0.874 0.918 0.933
C&W-hc 0.88 0.98 1 0.637 0.94 1

JSMA 0.995 1 1 0.952 0.96 0.973

Table 2: Detection AUC under the gray-box threat model.

(a) FGSM-CIFAR-10 (b) BIM-CIFAR-10

(c) FGSM-MNIST (d) BIM-MNIST

Figure 3: Resiliency under the FGSM and BIM adversarial attacks. Our method displays signifi-
cantly higher resiliency
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4.3 WHITE-BOX MODEL

The white-box threat model (see Appendix D) is perhaps the most interesting from the defender’s
viewpoint because no limitations are made regarding the information known to the attacker (Carlini
et al., 2019). For the white-box threat model, we apply the C&W modified attack (hereafter referred
to as C&W-wb) (Carlini & Wagner, 2017a), which has been shown to penetrate density estimation-
based detection. To the best of our knowledge, this is the only known attack with this property.
Following the evaluation procedure used by Pang et al. (2018), we set the parameters of the C&W-
wb attack such that all attacks succeed in fooling the model, and detection is fully breached (i.e.,
their AUC score ≤ 0.5). Then, one measures the average (minimal) required distortion that was
able meet these criteria. Thus, a stronger defense should yield larger distortion. We note that the
distortion is quantified using the L2 norm, namely, d = 1

M

∑M
i=1

||xi−xadv
i ||2√
n

, where M is the
number of adversarial instances, and n is the number of pixels per image.

Baseline RCE PDM (ours)
MNIST 0.087 0.104 0.162

CIFAR10 0.008 0.019 0.026

Table 3: Distortion under the white-box threat model, scaled to [0,1]. Our defesne method requires
30% higher distortion on CIFAR-10 and 60% higher on MNIST

The white-box results are presented in Table 3. PDM, clearly outperforms the baselines by a wide
margin by forcing a 30% higher distortion than RCE on CIFAR-10, and 60% on MNIST.

4.4 BLACK-BOX MODEL

To evaluate our model in the black-box setting, we follow (Papernot et al., 2017; Carlini et al., 2019)
and create a proxy model, which is trained using input-output pairs probed from the defender’s
(target) model (i.e., the proxy model is trained via teacher-student distillation of the target model).
The proxy model is then used by the attacker to generate adversarial examples under the white-box
threat model (this black-box model variant is the most difficult, and was referred to by Pang et al. as
“A white, black-box attack”). In our case, where detection is based on KDE, we could only use the
C&W-wb because it is the only available attack known to penetrate KDE.

Following Pang et al. in this setting we used ResNet32 He et al. (2016) for the proxy model. Here
again, we measured detection AUC rates as in the gray-box setting. The results appear in Table 4
and show that PDM is consistently and significantly better than the baselines.

Baseline RCE PDM (ours)
MNIST 0.88 0.94 0.99
Cifar10 0.93 0.933 0.952

Table 4: Detection AUC under the black-box threat model

5 CONCLUDING REMARKS

We introduced a powerful approach for defense of deep models against adversarial attacks that builds
on procedures for margin maximization within a penetration distortion maximization framework and
the RCE loss technique. Our empirical evaluation demonstrated state-of-the-art results in defense
against all threat models (with mixed results for the BIM attack). In addition, we provide some
geometric intuition on attacks and defenses using t-SNE visualizations.

This work raises several interesting questions. First, it would be valuable to examine other meth-
ods for margin maximization and Jacobian reduction. For example, recently Elsayed et al. (2018)
proposed a sophisticated loss function that tends to maximize the embedding margin. Similarly, a
recent work by Zhang et al. (2019) proposed an iterative technique to reduce the norm of the Jaco-
bian. Finally, it would be very interesting to explore ways to increase the margin (and reduce the
Jacobian) on shallower embedding layers where lower-level features are formed.
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Appendix A

A FROBENIUS NORM SUB-MULTIPLICATIVITY

Given A ∈ RNxMxK and B ∈ RKxJxL, we claim that the Frobenius norm of the multiplication of
A and B is lesser than or equal to the multiplication of each tensor’s Frobenius norm. Proof:

‖AB‖2F =

N∑
n=1

M∑
m=1

J∑
j=1

L∑
l=1

∣∣∣∣∣
K∑
k=1

an,m,kbk,j,l

∣∣∣∣∣
2

6
N∑
n=1

M∑
m=1

J∑
j=1

L∑
l=1

K∑
k=1

|an,m,k|2
K∑
k=1

|bk,j,l|2 (Cauchy-Schwarz)

=

N∑
n=1

M∑
m=1

J∑
j=1

L∑
l=1

(

K∑
k,s=1

|an,m,k|2 |bk,j,l|2)

=

N∑
n=1

M∑
m=1

K∑
k=1

|an,m,k|2
J∑
j=1

L∑
l=1

K∑
s=1

|bs,j,l|2 (6)

= ‖A‖2F ‖B‖2F

B CLASSIFIER HYPER-PARAMETERS

Parameter Value
Optimizer SGD

ResNet Depth 56
Weight Regularization L2 (0.002)

Batch Size 128
Initial Learning Rate 0.1

Epochs-Cifar10 400
Epochs-MNIST 80

Activation Leaky-Relu (0.1)

C ADVERSARIAL ATTACK PARAMETERS

Attack Parameter Value
BIM Iterations 10

JSMA Max Iterations 100
CW Max Iterations 10

Binary Search Steps 9
Confidence 0

CW-hc Max Iterations 1000
Binary Search Steps 9

Confidence 10
CW-wb Max Iterations 5000/10000

Confidence 0/0
Binary Search Steps 3/3

Table 5: Adversarial attacks parameters
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D THREAT MODELS

Rigorous analyses of adversarial defense systems requires precise specification of what the adversary
knows and can do. Conducting this type of specification is called threat modeling (Kurakin et al.,
2016). In this paper we consider the three core models, which are differentiated by their knowledge
of the classifier (target network) and the defense mechanism being used.

• Black-box: In this weakest scenario, the adversary has no knowledge of our system. It
does not know the target network architecture, cannot access its gradients and does not
know the defense methods. The adversary can, however, sample the targeted network for
input-output pairs and has access to the dataset used to train the target network.

• Gray-box (a.k.a. oblivious): Here the adversary has full knowledge of the target network
and can access its gradients and parameters, including the data being used in the training
process. However it has no information on the defense mechanism.

• White-box: In this most challenging scenario, we assume that the adversary has full knowl-
edge of the entire system to be attacked, which includes the target network, the defense
method, their parameters and the data used for training.

To ensure a clear distinction between threat models, Carlini et al. (2019) has recently proposed a
comprehensive methodology for evaluating adversarial attacks and defenses, thus emphasizing the
difference between gray-box and white-box attacks. We believe that following the Carlini et al.
guideline is crucial for advancing this line of research and therefore we follow them strictly.

E ATTACK ALGORITHMS

Adversarial attack algorithms aim to fool DNNs such that a given image is misclassified with min-
imal perturbations. In untargeted attacks, the adversary aims to minimize the true class activation
so that another arbitrary class will be predicted. In this paper, we focus on targeted attacks where
the adversary aims to fool the classification in a controlled manner such that a specific class will be
predicted instead of the correct one. Thus, targeted attacks are considered far more dangerous. For
example, fooling an autonomous driving system to interpret a stop sign as a speed limit sign is far
more dangerous than interpreting it as a yield sign.

In this section, we discuss the various attack algorithms we use to evaluate our defense method. We
denote x,x′ as the input and adversarial images, respectively, ` as the target label, F as the target
model with loss function LF (x, `) and ε = ||x − x′|| as the pixel-wise perturbation between the
adversarial and normal images. The general formulation, therefore, becomes,

minimize
x′

||x− x′||2 s.t. F (x′) = ` (7)

FGSM

Goodfellow et al. (2014) introduced the fast gradient sign method (FGSM), which optimizes the
adversarial image by back-propagating the input through the attacked DNN, in accordance with the
desired target. Formally, letting ε be a fixed parameter, the adversarial example is,

x′ = x+ ε sign(∇LF (x, `) (8)

While not as effective as other attack algorithms, this method has the advantage of being one of the
fastest ones.

BIM

Kurakin et al. (2016) introduced the Basic Iterative Method (BIM) that performs the FGSM method
iteratively, clipping the perturbation if needed. Formally,

x′N+1 = x′N + ε sign(∇LF (x′N , l)),

where ε is a fixed parameter.

C&W
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Carlini & Wagner (2017c) introduced the C&W method, which operates by modifying the L-BFGS
method as follows,

minimize
x′

||x− x′||2 + cf(x′),

where c is a hyperparameter and the loss function, f , is chosen such that f(x′) <= 0 if x′ is
classified as the target class; namely,

f(x′) = max(Z(x′)` − Z(x′)t, κ)

where Z is the target DNN logits, t is the correct label and κ is a hyperparameter referring to the
confidence of the attack. The higher the confidence, the higher the activation for the target class is,
and therefore, the larger the perturbation.

Three different Euclidean norms are considered with this algorithm, L0, L2, L∞. Following Pang
et al. (2018), we conduct our evaluation using L2. This attack method is considered very ef-
fective and has had great success in overcoming various defense methods Carlini & Wagner
(2017c),Papernot et al. (2016b).

JSMA

Papernot et al. (2016a) introduced the Jacobian-based Saliency Map Attack (JSMA) which alters a
single pixel of x at each iteration to maximize the saliency map. This method is known to enforce
large perturbations but on fewer pixels than other methods.

F PDM TRAINING ALGORITHM

Algorithm 1 PDM Training

1: procedure PDM
2: for batch = 1, . . . ,#batches do
3: X,Y ← get batch()
4: initialize Xsiamese = [], Ysiamese = [], S = []
5: for b = 1, . . . , batch size do
6: q ∼ Bernoulli(Q)
7: if q == 1 then
8: y ← Y [b]
9: s← 1

10: else
11: y ← random class 6= y1
12: s← 0
13: x← random sample from class Y [b]
14: Append x, y, s to Xsiamese, Ysiamese, S

15: z1, z2 ← F`(X), F`Xsiamese) . sample’s embedding
16: p1, p2 ← F (X), F (Xsiamese)
17: SL = 1

batch size

∑
| z1z2
||z1||||z2|| − S| . model logits

18: RV L← 0
19: for c = 0, . . . ,classes do
20: µc =

1
Nc

∑Nc

i=1 z
c
i

21: σc =
1
Nc

∑Nc

i=1 ||zci − µc||2
22: RVL = RVL + σc
23: minimize -RY log (p1)-RYsiamese log (p2) + RVL + SL
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