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ABSTRACT

Despite the impressive success of graph convolutional networks (GCNs) on nu-
merous applications, training on large-scale sparse networks remains challenging.
Current algorithms require large memory space for storing GCN outputs as well
as all the intermediate embeddings. Besides, most of these algorithms involves ei-
ther random sampling or an approximation of the adjacency matrix, which might
unfortunately lose important structure information. In this paper, we propose
Chordal-GCN for semi-supervised node classification. The proposed model uti-
lizes the exact graph structure (i.e., without sampling or approximation), while
requires limited memory resources compared with the original GCN. Moreover, it
leverages the sparsity pattern as well as the clustering structure of the graph. The
proposed model first decomposes a large-scale sparse network into several small
dense subgraphs (called cliques), and constructs a clique tree. By traversing the
tree, GCN training is performed clique by clique, and connections between cliques
are exploited via the tree hierarchy. Furthermore, we implement Chordal-GCN on
large-scale datasets and demonstrate superior performance.

1 INTRODUCTION
sec:intro

Graph convolutional network (GCN) (Kipf & Welling, 2017) is a generalization of convolutional
neural networks (CNNs) (LeCun & Bengio, 1998) to the graph structure. For a given node, the
graph convolution operation aggregates the embeddings (features) of its neighbors, followed by a
non-linear transformation. By stacking multiple graph convolutional layers, one can learn node
representations by utilizing features of its distant neighborhood. The original GCN model, as well
as its numerous variations, has shown great success in a variety of applications, including semi-
supervised node classification (Kipf & Welling, 2017), inductive node embedding (Hamilton et al.,
2017), link prediction (van den Berg et al., 2017), and knowledge graphs (Schlichtkrull et al., 2018).

Despite the success of GCNs, training GCNs on large-scale graphs remains challenging due to the
memory issue: we need to store all the parameters and outputs of GCN. Thus, the memory space
scales linearly in the size of graph while quadratically in the feature dimension (Chiang et al., 2019;
Zou et al., 2019). This prevents applications of GCN on many real-world networks, where the graphs
usually contain millions or even billions of nodes.

Methods aimed at large-scale training have been proposed and can be roughly divided into two
categories: (1) sampling-based methods and (2) clustering-based methods. For sampling-based
methods, only a few neighbors for every node will be sampled in every GCN layer, and thus the
size of intermediate embeddings for every layer will be reduced for each mini-batch. Works in this
track include Hamilton et al. (2017); Chen et al. (2018a;b); Zou et al. (2019). However, ignorance
of some neighbors might lose important structure information, which is the main drawback of all
the sampling methods. Another direction of research notices the sparsity of real-world networks
and exploits the clustering structure of the graph. For example, Cluster-GCN (Chiang et al., 2019)
separates the graph into several clusters, and in every iteration of training, only one or a few clusters
are picked to calculate the stochastic gradient for the mini-batch. However, Cluster-GCN ignores all
the inter-cluster links, which are not negligible in many real-world networks. For example, Figure 1
shows the sparsity pattern of three citation networks. We first rearrange the vertices via an approx-
imate minimum degree (AMD) ordering algorithm (Amestoy et al., 1996), and then observe a nice
arrow pattern in the adjacency matrices. This indicates the existence of some highly-cited papers
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Figure 1: Adjacency matrices for the largest connected component (LCC) of cora (left), citeseer
(middle), and pubmed (right). The LCCs contain the majority of the graph, so deleting other nodes
does not affect the overall arrow pattern. For simplicity, we treat them as undirected graphs here.
Similar patterns are also observed in many other real-world networks (Dong et al., 2019).fig:data-pattern

(in the right bottom corner), which have impacts on multiple communities. In Cluster-GCN, these
highly-cited papers are randomly put into one community and the adjacency matrix is approximated
by a block-diagonal matrix; i.e., Cluster-GCN removes the fletching part of the arrow patterns in Fig-
ure 1. This approximation ruins the beautiful arrow pattern, and thus ignores the multi-community
influence of some seminal papers.

The above difficulties can be easily tackled by the Chordal-GCN, a novel clustering-based method
for the semi-supervised node classification task. Recall that Cluster-GCN ignores all the inter-
cluster links and trains each cluster separately; comparatively, in Chordal-GCN, we keep all the
links, train every cluster separately, and at the same time capture the connections between clusters
by an additional loss term. This partially separable training process can be achieved with the help
of chordal sparsity theory (Vandenberghe & Andersen, 2015): we first decompose a large-scale
sparse graph into several small dense subgraphs, and we construct a tree of which the nodes are
the subgraphs. Note that two subgraphs are adjacent in the tree if they share some vertices. In the
training process, we traverse the tree from leaf to root; and when training on a certain subgraph, we
minimize the usual GCN loss, plus an additional term called consistency loss. With the consistency
loss, messages in the children subgraphs can be passed to their parent, and thus the relationship
between subgraphs is leveraged via the hierarchy of the tree. Therefore, Chordal-GCN exploits the
sparsity pattern as well as the clustering structure of the graph without any approximation or random
sampling, while requires similar memory space to Cluster-GCN.

Our contribution is summarized as follows:

• We propose Chordal-GCN for semi-supervised node classification on large-scale sparse
networks. The proposed model fully exploits the exact graph structure, while requires
limited memory usage on large-scale graphs (much smaller than the original GCN).

• Chordal-GCN is able to train a large-scale graph in a partially separable manner; i.e., in
every iteration, the training is performed on a subgraph, and the connections between sub-
graphs are handled by a consistency loss.

• We analyze the memory and time complexity of Chordal-GCN and compare them with
other state-of-the-art GCN models. Also, we evaluate the performance of Chordal-GCN on
benchmark datasets and demonstrate superior performance in large-scale datasets.

2 BACKGROUND AND RELATED WORK

2.1 SEMI-SUPERVISED NODE CLASSIFICATION WITH GCNS sec:bg-gcn

Suppose G = (V,E) is an undirected graph with |V | = n and the n × n symmetric matrix A is
the adjacency matrix. Every node k is associated with a feature vector xk ∈ Rd, and all the feature
vectors are stored in the rows of X ∈ Rn×d. An L-layer graph convolutional network (GCN) (Kipf
& Welling, 2017) has the layer-wise propagation rule:

H(l+1) = σl(ĀH
(l)W (l)),
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Figure 2: (a) An example of non-chordal graph. The edge {d, e} is a chord in the path (a, e, c, d).
This graph is non-chordal because the cycle (a, b, d, c, a) is chordless. (b) An example of chordal
graph. The path (b, a, c, d) is chordless. (c) A chordal graph with 17 vertices. fig:gr-example

where W (l) ∈ Rdl×dl+1 is a weight matrix. The matrix Ā = D̃−1/2ÃD̃−1/2 is the normalized
adjacency matrix, where Ã = I + A and D̃ ∈ Rn×d is diagonal with D̃ii =

∑
j Ãij . The matrix

H(l) ∈ Rn×dl are the activations in the l-th layer (H(0) = X and d0 = d). The function σl is
the activation function for layer l. The output of an L-layer GCN is an n × p matrix H(L), of
which the k-th row is the predicted label for node k. Later in the paper, we will train GCN using
only a subgraph G(γ), so the notation y〈pred〉k (W ;Xγ,:, Āγγ) is used to indicate the predicted label
of node k, using the coefficient matrices W = (W (0), . . . ,W (L−1)), the submatrix Āγγ , and the
corresponding feature vectors Xγ,:.

Semi-supervised node classification is a popular application of GCN. When applying GCN for this
task, we minimize the loss function

L〈gcn〉(W ;X, Ā) =
∑
k∈V l

`1
(
y
〈true〉
k , y

〈pred〉
k (W ;X, Ā)

)
, (1)

eq:gcn-loss

to learn the weight matrices W = (W (0), . . . ,W (L−1)). In the formula, y〈true〉k is the given true
label for node k, and V l ⊆ V is the subset of vertices with given true labels. The function `1(·, ·) is
a loss function, and usually it is the cross entropy loss.

Much work has been done to apply GCN on large-scale datasets. For the sampling-based methods,
different rules for random selection have been proposed: uniform sampling as in Hamilton et al.
(2017), or importance sampling in Chen et al. (2018a). On the other hand, clustering-based methods
become more interesting in the recent literature. Besides Cluster-GCN (Chiang et al., 2019), clus-
tering structure can also be utilized implicitly as a low-rank approximation of the graph Laplacian.
This idea is exploited in LanczosNet (Liao et al., 2019) as well as the Lovász convolutional network
(Yadav et al., 2019).

2.2 PRELIMINARIES ON CHORDAL GRAPHS sec:bg-chordal

Chordal sparsity has been a classical topic in graph theory and found useful applications in various
fields, including database theory (Beeri et al., 1983), probabilistic networks (Pearl, 1988; Cowell
et al., 1999; Darwiche, 2009), linear algebra (Rose, 1970), combinatorial optimization (Golumbic,
2004; Gavril, 1972), semidefinite optimization (Andersen et al., 2010; 2013). In this paper, we will
use chordal sparsity theory to exploit the clustering structure. So now we show that a chordal graph
can be separated into cliques, and that these cliques form a clique tree with desirable properties.

Ordered undirected graph. Given an undirected graph G = (V,E) with |V | = n, we can order
the vertices from 1 to n, and then we refer to a vertex in V by its order i ∈ [n] = {1, 2, . . . , n}. In
addition, an index set γ ⊂ [n] represents a subset of vertices in V .

Cliques. A complete graph is a graph in which every pair of distinct vertices is adjacent. A clique
γ ⊆ V of a graph G is a subset of vertices that induces a maximal complete subgraph. The graph
induced by γ is denoted G(γ) = (γ,E(γ)) and has edge set E(γ) = {{v, w} ∈ E | v, w ∈ γ}.
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Figure 3: Left. The (symmetric) adjacency matrix of the graphG shown in Figure 2c. (For simplicity
we only show the lower triangular part.) A bullet in the (i, j)th entry means nodes i and j are
adjacent. The dashed lines separate the supernodes (clique residuals) in the clique tree. Right. The
corresponding postordered clique tree T c. Every node in T c is a clique in G, and the red index i in
every clique indicates the clique representative. The dashed box shows an example clique.fig:chordal-pattern

Chordal graph. A path between v0 and vk is a sequence of distinct vertices (v0, v1, v2, . . . , vk)
with {vi, vi+1} ∈ E for i = 0, 1, . . . , k − 1. For example, the graph in Figure 2a has a path
(a, e, c, d). A chord in a path of an undirected graph is an edge between non-consecutive vertices
on the path. For example, in Figure 2a, the edge {d, e} is a chord in the path (a, e, c, d), but in
Figure 2b, the path (b, a, c, d) is chordless. An undirected graph is chordal if every cycle of length
greater than three has a chord. Figure 2b and 2c show two examples of chordal graphs, while the
graph in Figure 2a is non-choral.

Postordered clique tree. Given a (connected) chordal graphG = (V,E), we can always construct
a clique tree T c: the nodes of T c are the cliques γ ⊆ V and two cliques are adjacent in T c if they
share some vertices in V . In addition, we can arbitrarily pick a clique as the root of the tree, and then
every non-rooted clique can be partitioned into clique separators and clique residuals. The clique
separator is the intersection of the clique with its parent clique in T c. The clique residual is also
called the (maximal) supernode, and by definition, all the supernodes form a partition of V .

More interestingly, we can always find an ordering of vertices V so that the clique tree T c satisfies
the following properties.

1. The higher neighborhood of every vertex is complete: j, k ∈ adj+(i) implies {j, k} ∈ E,
where the higher neighborhood of vertex i is defined as adj+(i) = {j | {i, j} ∈ E, j > i}.
This means that every clique and supernode in T c can be written as γi and νi, respectively,
where i ∈ V has the lowest order in the clique (and supernode). We denote by i the
representative of the supernode νi, by αi = γi\νi the corresponding clique separator, and
by V c the set of all representatives. The index set αi is empty if i is the root of T c.

2. The elements of each supernode are numbered consecutively: νi = {i, i + 1, . . . , i + ni}
with ni = |νi − 1|.

3. All the representatives i ∈ V c are topologically ordered: i < p(i) if i ∈ V c and p(i) is the
representative of the parent of γi in T c.

An ordering satisfying the above three properties is called topological postordering, and a clique
tree T c with certain topological postordering is referred to as a postordered clique tree. Figure 3
shows a supernode partition of the chordal graph in Figure 2c with a topological postordering. (This
example is adapted from the survey paper Vandenberghe & Andersen (2015).) In this example,

γ5 = {5, 6, 7, 8, 10}, ν5 = {5, 6, 7}, α5 = {8, 10}.
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Given a chordal sparsity graph G = (V,E), there exist efficient algorithms (in O(|E|)) to find
a topological postordering, and to generate a postordered clique tree T c together with the parent
function p(i) and all the index sets (i.e., γi, νi, and αi for all i ∈ V c) (Lewis et al., 1989; Pothen &
Sun, 1990). The whole process is called chordal decomposition (Vandenberghe & Andersen, 2015).

3 CHORDAL-GCN

Now we are ready to utilize the chordal decomposition technique in training large-scale sparse net-
works. We note that most real-world networks are indeed sparse, but not chordal. So we first
introduce some data preprocessing steps, followed by the detailed description of Chordal-GCN. We
also analyze the time and memory complexity of our model, and compare it with other GCN models.

3.1 PREPROCESSING sec:prep

Reordering and chordal extension. Chordal extension describes the idea of transforming a non-
chordal graph G = (V,E) into a chordal graph G′ = (V,E′) by adding edges, i.e., E ⊆ E′.
Unfortunately, to find the minimum fill-in is claimed to be an NP-complete problem (Rose et al.,
1976; Yannakakis, 1981), and is not always desirable due to algorithm complexity. However, given
an ordering of vertices, it is practical to find a minimal chordal extension (Ohtsuki, 1976; Rose,
1974). (It is called minimal if the removal of any added edge results in a non-chordal graph.) That
is to say, every minimal chordal extension is associated with certain vertex ordering. Thus, the
reordering of vertices is important, especially when we prefer a sparse extended graph. So in this
work, we use an approximate minimum degree (AMD) ordering algorithm (Amestoy et al., 1996) to
first reorder the vertices, and then find a minimal chordal extension.

Clique merging. Often, the resulting extension contains many small cliques and it would be more
efficient to merge some neighboring cliques, as reported in Ashcraft & Grimes (1989). In this work,
traversing the tree from leaf to root, we greedily merge clique γi with its parent γp(i) if |νi| ≤ τ and
|νp(i)| ≤ τ where τ is a pre-defined threshold. We denote the resulting graph as G′′ = (V,E′′).

Chordal decomposition. Given the graph G′′, we can now construct the postordered clique
tree T c (together with all the index sets (γi, νi, and αi), and the parent function p(i)). With a
little abuse of notation, we also use T c to indicate the postordered clique tree of G. In other words,
the preprocessing steps reorder and partition the vertex set V , which helps us identify the clique γi
and the corresponding induced subgraphG(γi). Although chordal extension and clique merging add
edges into the graph, it will not affect the training process of GCN because we will use the subgraph
G(γi), not G′′(γi).

Lastly, we emphasize that, although G(γi) no longer represents a complete subgraph, we still refer
to γi as clique to distinguish from clusters or communities: in the chordal decomposition, one node
k ∈ V is allowed to exist in multiple cliques while in community detection or graph clustering, one
node appears in only one cluster.

3.2 CHORDAL-GCN: META ALGORITHM

With the postordered clique tree T c in hand, we are able to train a large-scale sparse graph in a
partially separable manner, i.e., clique by clique. Suppose we traverse the tree T c in the topological
order, i.e., from leaf to root. At clique γi, the loss function consists of two parts. The first part is the
usual GCN loss defined in (1), but using only the induced subgraph G(γi) instead of the entire G:

L〈gcn〉(·;Xγi,:, Āγiγi) =
∑

k∈V l∩γi

`1
(
y
〈true〉
k , y

〈pred〉
k (·;Xγi,:, Āγiγi)

)
,

where Xγi,: takes the rows of X indexed by γi and Āγiγi is the submatrix of Ā with rows and
columns indexed by γi.

The second part of the loss is the consistency loss. When we arrive at clique γi, we have traversed
all its children in the tree T c. This means that some nodes in γi have already been visited; namely,
those clique separators of γi’s children in T c. For clarity, we denote by ch(i) the set of children
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Algorithm 1 Chordal-GCN.
1: Input. A normalized adjacency matrix Ā, a postordered clique tree T c, feature matrix X , and

true labels y〈pred〉k for k ∈ V l.
2: Output. The coefficient matrices W = (W (0), . . . ,W (L−1)).
3: Randomly initialize W [0].
4: for t = 0, 1, 2, . . . do
5: for i ∈ V c in topological order do
6: Compute the loss by (4), i.e.,

Li(W ) =
∑

k∈V l∩γi

`1
(
yk, y

〈pred〉
k (W ;Xγi,:, Āγiγi)

)
+
∑

j∈ch(i)

∑
k∈αj

`2
(
y
〈pred〉
k (W ;Xγi,:, Āγiγi), y

〈pred〉
k (W [t];Xγj ,:, Āγjγj )

)
.

(2)
eq:loss-ii

7: Perform a gradient descent step W [t+1] = W [t] − η∇Li(W [t]).
8: end for
9: end for algo:chordal-gcn

representatives of γi; i.e., j ∈ ch(i) if j is a representative (i.e., j ∈ V c) and γj is a child of γi in T c.
Then all the nodes in αj for j ∈ ch(i) have already been visited when we arrive at γi. Thereby,
for k ∈ αj and j ∈ ch(i), we hope that the predicted label y〈pred〉k (·;Xγi,:, Āγiγi) using the current
clique γi is consistent with the previous prediction y〈pred〉k (W̃ ;Xγj , Āγjγj ) using clique γj and the
most recent parameter W̃ . Hence, the consistency loss for training clique γi can be formulated as

L〈cons〉(·;Xγi,:, Āγiγi) =
∑

j∈ch(i)

∑
k∈αj

`2
(
y
〈pred〉
k (·;Xγi,:, Āγiγi), y

〈pred〉
k (W̃ ;Xγj ,:, Āγjγj )

)
, (3)

eq:loss-con

where `2(·, ·) is a loss function, for example, the KL divergence. Note that W̃ is not treated as the
variable of L〈cons〉; i.e., the term y

〈pred〉
k (W̃ ;Xγj ,:, Āγjγj ) is considered constant when we take the

gradient of L〈cons〉.
Therefore, when training the clique γi, we compute the total loss

Li(·) = L〈gcn〉(·;Xγi,:, Āγiγi) + L〈cons〉(·;Xγi,:, Āγiγi), (4)
eq:loss-i

and perform a gradient descent step W+ = W − η∇Li(W ) where η is the learning rate. The whole
algorithm is summarized in Algorithm 1. Note that the gradient descent step in line 7 of Algorithm 1
can be replaced with any other accelerated version, for example, Adam (Kingma & Ba, 2015).

3.2.1 CONNECTION TO THE ORIGINAL GCN

We note that Algorithm 1 is essentially the mini-batch gradient descent method applied to the loss

L〈cgcn〉(W ) =
∑
i∈V c

Li(W ) (5)
eq:cgcn-loss

with γi taken as the mini-batch. Clearly, it is equal to the original GCN loss (1) if we have only
one clique (i.e., V c = {1} and thus γ1 = V ). Also, when Ā is block diagonal, Chordal-GCN is
equivalent to Cluster-GCN because the consistent loss (3) vanishes.

However, in the general case, without any assumption on the graph structure or the GCN structure,
it is impossible to show the equivalence between Chordal-GCN and GCN. From another view of
point, the non-convex functions (1) and (5) don’t share any global minimizer. For example, consider
the chordal graph with two overlapping dense principal submatrices. We can easily choose the set
of true labels y〈true〉 such that (1) and (5) don’t have the same minimizer.

3.2.2 TIME AND MEMORY EFFICIENCY

Following Chiang et al. (2019), we report the time and memory complexity in Table 1. Although
our method has the same time complexity as Cluster-GCN in big-O notation, Chordal-GCN needs
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Table 1: Time and memory complexity of GCN training algorithms. L is the number of layers, n
is the number of nodes, ‖A‖0 is the number of nonzeros in the adjacency matrix A, and d is the
number of features. For simplicity we assume the number of features is fixed for all layers, i.e.,
dl = d for l = 1, 2, . . . , L. For SGD-based methods, b is the batch size and r is the number of
sampled neighbors per node. Also, c1 is the maximum cluster size in Cluster-GCN while c2 is the
maximum clique size in our method. For memory complexity, Ld2 is used to store the parameters
{W (l)}L−1l=0 and the other term is for storing embeddings {H(l)}Ll=1. For simplicity we omit the
memory for storing the graph or subgraphs since they are fixed and usually not the main bottleneck.

tb:complexity
Complexity GCN

(Kipf & Welling, 2017)
GraphSAGE

(Hamilton et al., 2017)
FastGCN

(Chen et al., 2018a)
VR-GCN

(Chen et al., 2018b)
Cluster-GCN

(Chiang et al., 2019) Chordal-GCN

Time O(L‖A‖0d+ Lnd2) O(rLnd2) O(Lrnd2) O(L‖A‖0d+ (L+ rL)nd2) O(L‖A‖0d+ Lnd2) O(L‖A‖0d+ Lnd2)
Memory O(Lnd+ Ld2) O(brLd+ Ld2) O(Lbrd+ Ld2) O(Lnd+ Ld2) O(Lc1d+ Ld2) O(Lc2d+ Ld2)

an extra forward propagation on the children cliques in order to compute the predicted labels
y
〈pred〉
k (W [t];Xγj ,:, Āγjγj ) in (2). The extra forward propagation step would be the only price paid

for single node being in multiple subgraphs. As we will see in the numerical experiments, this
additional cost is minimal and worthwhile, especially in citation networks with an arrow pattern.

In addition, the memory bottleneck for Chordal-GCN and Cluster-GCN depend on the maximum
cluster size and maximum clique size, respectively. Since these two numbers depend totally on the
hyperparameters, i.e., number of clusters in METIS algorithm and the merging threshold τ , it is
difficult to compare analytically. But both are much smaller than the memory usage of the original
GCN, which is desirable.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We evaluate our proposed model for the semi-supervised node classification task on four public
datasets: cora, citeseer, pubmed, and reddit. We compare Chordal-GCN with the following state-
of-the-art GCN training algorithms for comparison: GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), FastGCN (both uniform and importance sampling) (Chen et al., 2018a),
VR-GCN (Chen et al., 2018b), and Cluster-GCN (Chiang et al., 2019). For all the methods we use
the same GCN structure (i.e., L = 2), the same label rate, and Adam optimizer (Kingma & Ba,
2015) with learning rate 0.001, dropout rate as 20%, weight decay as zero. For the baselines, we
use the implementations provided by the authors, and follow the default parameter settings in these
models. Other implementation details are included in appendix A.

For all the methods and datasets, we conduct training for 10 times and take the mean of the evaluation
results. Also, we stop training when the validation accuracy does not increase a threshold (0.01) for
10 epoches, and choose the model with the highest validation accuracy as convergent point. We use
the following metrics to evaluate the performance of all methods.

• Accuracy: The micro F1 score of the test data at the convergent point.
• Memory usage: The maximum GPU memory occupied by tensors.
• Epoch time and number of epoches: Time to run an epoch and total number of epoches

before convergence. Note that in Chordal-GCN, an epoch is a traverse of the clique tree,
rather than one clique.

4.2 NUMERICAL RESULTS

We summarize all the results in Table 2. In the three citation networks (cora, citeseer, and pubmed),
Chordal-GCN achieves the highest accuracy among all baseline models. This desirable result is due
to the exploitation of the exact sparsity pattern and clustering structure.

In terms of memory space, Chordal-GCN is superior to the original GCN, just as expected. All the
sampling-based methods require limited memory space because they reduce the number of inter-
mediate node embeddings. More interestingly, Chordal-GCN uses less memory space than Cluster-
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Table 2: Comparsion of Chordal-GCN with original GCN, GraphSAGE, FastGCN with uni-
form/importance sampling, VR-GCN, and Cluster-GCN. We report the micro F1 score (%), memory
usage (MB), time per epoch (ms), and number of epoches. Only GCN and Chordal-GCN utilize the
exact graph, while other baseline methods lose some graph structure information.

tb:result

Dataset Method F1 (%) Mem. (MB) Epoch time (ms) # epoches

Cora
(2708)

GraphSAGE 78.4 565.12 44.26 11
FastGCN (uniform) 78.2 28.42 27.10 88
FastGCN (importance) 83.5 28.42 30.41 84
VR-GCN 81.6 4.60 14.90 64
Cluster-GCN 68.2 36.14 62.65 8

GCN 81.9 20.23 5.35 119
Chordal-GCN 84.3 5.69 90.90 49

Citeseer
(3327)

GraphSAGE 61.8 932.14 37.97 60
FastGCN (uniform) 70.2 98.93 111.00 53
FastGCN (importance) 72.2 98.93 104.90 61
VR-GCN 71.2 7.01 32.00 35
Cluster-GCN 62.8 60.35 82.09 5

GCN 70.5 52.16 6.42 95
Chordal-GCN 74.1 8.47 38.91 57

Pubmed
(19717)

GraphSAGE 76.8 475.84 43.57 47
FastGCN (uniform) 77.4 107.20 25.41 52
FastGCN (importance) 78.0 107.20 22.00 47
VR-GCN 78.4 14.49 25.21 33
Cluster-GCN 71.2 25.35 59.84 10

GCN 78.0 66.03 7.52 109
Chordal-GCN 80.2 15.37 55.94 83

Reddit
(232965)

GraphSAGE 93.1 1192.00 185.22 62
FastGCN (uniform) 92.9 1656.14 15.83 64
FastGCN (importance) 93.0 1722.05 21.60 31
VR-GCN 93.2 1054.21 5041.32 32
Cluster-GCN 96.1 231.32 2407.61 43

GCN 93.9 2992.12 261.81 190
Chordal-GCN 94.2 2501.23 987.12 410

GCN (except in reddit). This is because the Cluster-GCN implementation uses a few clusters in one
epoch, and thus the memory bottleneck depends on the sum of the selected clusters, rather than the
maximum cluster. The abnormal memory cost of Chordal-GCN in reddit dataset is attributed to our
clique merging heuristic. The maximal clique in reddit has size 220, 069, almost 95% of the vertices.
Splitting the graph into more cliques will help reduce the memory requirement, while increases the
epoch time: we train smaller but more cliques in one epoch.

Lastly, we emphasize that the comparison of epoch time can never be fair: one epoch in Chordal-
GCN means one traverse of the clique tree while in other methods one epoch is one mini-batch. This
explains the long epoch time of Chordal-GCN.

5 CONCLUSION

We propose Chordal-GCN for semi-supervised node classification on large-scale sparse networks.
The proposed model exploits the sparsity pattern and clustering structure of the graph, and utilizes
the exact graph structure (i.e., without sampling or approximation). Moreover, the memory usage
of Chordal-GCN is limited because the training is performed in a partially separable manner; i.e.,
clique by clique. Experiment results demonstrate that Chordal-GCN achieves the best test accuracy
with much smaller memory cost on benchmark datasets.
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A IMPLEMENTATION DETAILS
sec:app-a

Hardware and software. We use Tesla V100 GPU, Intel Xeon CPU E5-2698 (2.20GHz) with
500GB. We use PyTorch 1.2.0 in our implmentation and Tensorflow 1.13 to test the baselines.

Datasets. The cora, citeseer, and pubmed datasets are from https://github.com/tkipf/
gcn. The reddit data is from https://snap.stanford.edu/graphsage. We report the
data statistics in Table 3.

Table 3: Data statistics
tb:data

Dataset Nodes Edges Classes Features Label rate

Cora 2, 708 5, 429 7 1, 433 140 (5.1%)
Citeseer 3, 327 4, 732 6 3, 703 120 (3.6%)
Pubmed 19, 717 44, 338 3 500 60 (0.3%)
Reddit 232, 965 11, 606, 919 41 602 152, 410 (65.4%)
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Table 4: Parameters in Chordal-GCN
tb:param

Dataset Threshold
for merging (τ )

Number
of cliques

Maximum
clique size

Minimum
clique size

cora 100 19 446 125
citeseer 200 6 512 227
pubmed 2, 000 8 6, 105 2, 132
reddit 10, 000 126 220, 069 1, 001

Preprocessing. In Chordal-GCN, we use the AMD ordering (Amestoy et al., 1996) implemented
in the python package CVXOPT (Andersen et al., 2015). The minimal chordal extension and the
chordal decomposition are performed using the python package chompack (Andersen & Vanden-
berghe, 2015). We also use the clique merging heuristic described in section 3.1. The threshold τ is
different in different datasets, and mainly depends on the size of the graph. We report the parameters
in Table 4.

GCN structure. We implement our model with PyTorch. We use a two-layer GCN with fixed
parameter size 128.

To calculate the meory usage, we use tf.contrib.memory BytesInUse() for TensorFlow
and torch.cuda.memory allocated() for PyTorch.

B ADDITIONAL EXPERIMENTS

B.1 ABLATION STUDY

We evaluate the contribution of the consistency loss L〈cons〉 (3) here. We train Chordal-GCN with
and without L〈cons〉 on the cora, citeseer, and pubmed datasets, and plot the validation accuracy
versus the number of epoches. Figure 4 shows that the consistency loss L〈cons〉 correctly captures
the connection between cliques, and that improve the performance of Chordal-GCN. This explains
why our model performs consistently better than Cluster-GCN: Cluster-GCN ignores those inter-
cluster links and thus loses the connections between clusters. In the pubmed dataset, Chordal-GCN
without consistency loss is even overfitting: the validation accuracy decreases after several epoches.
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Figure 4: Validation accuracy of Chordal-GCN on the datasets: cora, citeseer, and pubmed. The
blue curve shows the validation accuracy with the consistent loss L〈cons〉 while the red curve shows
that without L〈cons〉. fig:ablation

B.2 TRAINING DEEP GCNS

In this section, we study the performance of deeper Chordal-GCN, and explore how time and mem-
ory cost scales with GCN depth. As shown in Figure 5, both memory and time cost scale linearly
with the number of layers. This result is consistent with theoretical analysis, and shows that Chordal-
GCN is applicable to training deeper GCNs.
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Figure 5: Memory (left) and time (right) versus number of GCN layers. Both curves scale linearly,
which is promising and consistent with theoretical analysis. fig:depth
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