
Under review as a conference paper at ICLR 2020

LEARNING THROUGH LIMITED SELF-SUPERVISION:
IMPROVING TIME-SERIES CLASSIFICATION WITHOUT
ADDITIONAL DATA VIA AUXILIARY TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervision, in which a target task is improved without external supervision,
has primarily been explored in settings that assume the availability of additional
data. However, in many cases, particularly in healthcare, one may not have access
to additional data (labeled or otherwise). In such settings, we hypothesize that
self-supervision based solely on the structure of the data at-hand can help. We ex-
plore a novel self-supervision framework for time-series data, in which multiple
auxiliary tasks (e.g., forecasting) are included to improve overall performance on
a sequence-level target task without additional training data. We call this approach
limited self-supervision, as we limit ourselves to only the data at-hand. We demon-
strate the utility of limited self-supervision on three sequence-level classification
tasks, two pertaining to real clinical data and one using synthetic data. Within this
framework, we introduce novel forms of self-supervision and demonstrate their
utility in improving performance on the target task. Our results indicate that lim-
ited self-supervision leads to a consistent improvement over a supervised baseline,
across a range of domains. In particular, for the task of identifying atrial fibril-
lation from small amounts of electrocardiogram data, we observe a nearly 13%
improvement in the area under the receiver operating characteristics curve (AUC-
ROC) relative to the baseline (AUC-ROC=0.55 vs. AUC-ROC=0.62). Limited
self-supervision applied to sequential data can aid in learning intermediate rep-
resentations, making it particularly applicable in settings where data collection is
difficult.

1 INTRODUCTION

Many problems involving sequential data, such as machine translation, sentiment analysis, and mor-
tality prediction, are naturally framed as sequence-level tasks (Harutyunyan et al., 2017; Hassan
et al., 2018; Radford et al., 2017). Sequence-level tasks map a sequence of observations x0:T to
a single label y. Learning this mapping is often made challenging due to a high-D (dimension)
low-N (number of samples) setting (Nasrabadi, 2007). Such problems are particularly prevalent in
healthcare tasks, which often involve limited quantities of labeled data captured at a high temporal
resolution (e.g., electrocardiogram waveforms).

In high-D low-N settings, researchers have had success with transfer learning techniques, by lever-
aging additional data to learn intermediate representations that are then used in the target task. When
additional data are unavailable, it may be possible to improve the intermediate learned representa-
tion of the data with respect to the target task by considering additional tasks intrinsic to the data.
In particular, we hypothesize that the structure of sequential data provides a rich source of innate
supervision. For example, signal reconstruction or forecasting could improve the intermediate rep-
resentation by capturing the underlying data-generating process. Such approaches are examples of
self-supervision, where labels are derived from the input (as opposed to external sources).

In this paper, we show that leveraging the sequential structure of the data at-hand can lead to im-
proved performance on sequence-level tasks (i.e., the target task). More specifically, by consid-
ering self-supervised auxiliary tasks (e.g., signal reconstruction), in addition to the sequence-level
task, one can learn useful intermediate representations of the data. Past work investigating self-

1

Under review as a conference paper at ICLR 2020

supervision for sequential data has focused on full-signal reconstruction (Dai & Le, 2015), and to
a lesser extent forecasting (Ramachandran et al., 2016). Building on past work, we examine the
utility of self-supervision on sequential data when additional data are unavailable, and we propose
new types of self-supervision tasks. We refer to this approach as ‘limited self-supervision.’ We
limit the self-supervision to the data at-hand, and focus on self-supervised auxiliary tasks relevant
to sequential data ordered by time (i.e., time-series data).

Our main contributions are as follows:

• We demonstrate the efficacy of the proposed limited self-supervision framework for im-
proving performance across datasets/tasks with no additional data.

• We compare the utility of several different existing forms of self-supervision in our limited-
data setting, identify consistent trends across supervision types, and demonstrate the utility
of combining multiple different forms of self-supervision.

• We propose a new form of self-supervision, piecewise-linear autoencoding, that trades off
fine-grained signal modeling and long-term dependency propagation. We demonstrate that
this is the best form of limited self-supervision across all tasks.

Our work suggests that there is a wide range of time-series and sequence classification tasks where
limited self-supervision could improve performance. It also shows the value of including multiple,
simultaneous streams of auxiliary self-supervision. Our findings present a methodological contribu-
tion, in the form of a useful new type of self-supervision, piecewise-linear autoencoding. Further,
our empirical findings on when and how auxiliary tasks help can inform future work in developing
self-supervision techniques.

2 RELATED WORK

Previous work has found value in self-supervised pretraining with large amounts of unlabeled data
(Ramachandran et al., 2016). In our work, we focus on time-series data instead of language data and
substitute the pretraining framework with a multitask learning framework, removing the require-
ment to train multiple individual models. However, in contrast to standard pretraining or multitask
learning setups, we do not assume the availability of additional data for training. We posit that even
in the absence of additional data, self-supervision can lead to improved performance on the target
task.

Multitask learning deals with training a single model to perform well on multiple tasks. By simulta-
neously training on multiple related tasks and sharing representations, multitask models can improve
generalization (Caruana, 1998). Multitask learning has been used successfully across a number of
different clinical tasks (Wiens et al., 2016; Ahmed et al., 2016; Razavian et al., 2016; Harutyunyan
et al., 2017). In particular, the success of multitask learning in deep learning demonstrates its value
for representation learning (Ruder, 2017). Within the context of supervised learning, Schwab et al.
considered a multitask framework for learning from sequential health data (Schwab et al., 2018).
Though they used self-supervision, they only considered a setting where large amounts of unlabeled
data were available.

Our work was inspired by the findings of Dai and Le (Dai & Le, 2015). Dai and Le compared
sequence-autoencoding and language modeling as auxiliary tasks for leveraging large pools of unla-
beled data for natural language tasks (e.g., sentiment analysis). Their approach led to state-of-the-art
performance on a range of problems. They found sequence-autoencoding led to larger improve-
ments than language modeling. Interestingly, they found jointly training on the main and auxiliary
task decreased performance relative to the baseline. In contrast, we focus on self-supervision for
time series and do not assume access to additional data. Moreover, we examine multiple streams of
simultaneous supervision and compare a broad range of auxiliary tasks.

3 LEARNING WITH SELF-SUPERVISED AUXILIARY TASKS

In this section, we present our proposed limited self-supervision framework. After describing our
notation, we present our baseline encoder-decoder architecture and describe four self-supervised
auxiliary tasks.

2

Under review as a conference paper at ICLR 2020

(a) (b)

Figure 1: a) Our full task architecture. The green encoder layer is shared across all tasks. The target
decoder is a fully connected layer mapping to the correct label size. The auxiliary tasks connect to
hidden states. Note the sequence-level tasks only connect to the final hidden state. b) Each auxiliary
task decoder DX is composed of a recurrent layer RX and an output layer OX . DAE) Autoencoder.
DF) Forecaster. DPS) Partial-Signal Autoencoder. DPL) Piecewise-Linear Autoencoder.

3.1 PROBLEM DEFINITION AND NOTATION

We define a sequence as a set of observations {xt}Tt=0 : xt ∈ Rd ordered by the index t. We denote
such a sequence as x0:T . Each observation xt is a d-dimensional vector. We focus on univariate,
evenly sampled time series.

We categorize time-series tasks across three dimensions: i) target vs. auxiliary tasks, ii) external
supervision vs. self-supervision, and iii) sequence-level vs. subsequence-level tasks. A target task
is the task of interest, whereas auxiliary tasks are only useful insofar as they improve performance
on the target task. External supervision occurs when the task labels are provided by an external
source (e.g., object recognition). Self-supervision occurs when no additional supervision is required
to generate the ground truth label (e.g., in autoencoding, the input itself serves as the supervision).
A sequence-level task is one where the supervision pertains to the entire sequence (i.e., sequence
classification). A subsequence-level task provides multiple instances of supervision across the sig-
nal. In our work, all of the target tasks are sequence-level tasks requiring external supervision. We
denote the label of the target task as y. Our auxiliary tasks are all self-supervised and may be either
sequence- or subsequence-level.

3.2 BASELINE ARCHITECTURE

In this work, we compare four different self-supervised auxiliary tasks. Throughout, we consider a
fixed encoder architecture, focusing on the improvements offered by the auxiliary tasks. Specifically,
we focus on recurrent neural networks with LSTM cells. These architectures have proven useful for
sequential tasks in many domains (Oord et al., 2016; Ramachandran et al., 2016), including health
data (Harutyunyan et al., 2017). We note, however, that nothing in our framework presupposes a
particular architecture, these techniques could work with any representation-learning gradient-based
approach.

Figure 1a depicts our baseline architecture and its relation to auxiliary tasks. The encoder is im-
plemented as a single-layer LSTM. The target decoder is a single fully connected layer mapping

3

Under review as a conference paper at ICLR 2020

from hidden state zT to the output. This simple output layer purposely places a heavy burden on the
encoder, since the representation learned by the encoder is shared by (and thus may improve from)
all tasks. We train the model by minimizing the multi-class cross-entropy between our predictions
ŷ (put through a softmax activation) and the one-hot distribution representing the correct label class
(Eqn. 1).

min
θD,θE

Ltarget = −
∑
i

y(i) log(D(zT ; θD)
(i)) (1)

zT = E(x0:T ; θE)

Where θE and θD are parameters for the encoder and decoder respectively and i indexes class labels.
We compare this baseline architecture trained with no auxiliary tasks to models trained with up to
four auxiliary tasks.

3.3 SELF-SUPERVISED AUXILIARY TASKS

We consider four self-supervised auxiliary tasks: i) autoencoding (i.e. reconstruction), ii) forecast-
ing, iii) partial-signal autoencoding, and iv) piecewise-linear autoencoding (shown in Figure 1b).
The auxiliary tasks take as input the output of the encoding network. Task X is implemented as a
decoder DX , composed of a recurrent layer RX and a fully connected output layer OX . While our
sequence-level target task requires only one prediction at the end of the sequence, some of our aux-
iliary tasks are subsequence-level, in which case the task takes as input the intermediate encoding
representation zt.

i) Autoencoding (AE). This is a standard method for unsupervised training in which we seek to
minimize the reconstruction error (Eqn. 2). This task requires that the hidden state encode com-
pressed version of the input, compression encourages learning latent structure and discourages learn-
ing noise. The decoder, parameterized by a single-layer autoregressive LSTM, outputs a sequence:
DAE(zT) = x̂0:T . Note zT = E(x0:T ; θE), and thus depends on θE .

min
θE ,θAE

LAE = ||x0:T −DAE(zT ; θAE)||22 (2)

ii) Forecasting. In this task, one aims to predict future values of the signal, requiring the hidden state
to encode the dynamics of the data-generating process, xt+1:t+h given past values x0:t, minimizing
(Eqn. 3). We use a single-layer LSTM similar to the AE decoder, though it is used at each time-step
to decode the next h observation values.

min
θE ,θF

LF =

T−h∑
t=1

||xt+1:t+h −DF (zt; θF)||22 (3)

zt = E(x0:t; θE)

iii) Partial-Signal Autoencoding (PS-AE). This auxiliary task is a variant of AE that differs in
three ways: 1) instead of decoding the full signal x0:T it decodes only the previous h steps of the
signal xt−h:t−1, 2) instead of one prediction being made at the end of the encoder, a prediction
is made at every encoding step from xh onwards, and 3) the input to the decoding layer includes
the current value, xt (Eqn. 4). It is implemented identically to the Forecast Decoder, the only
difference is that it predicts the previous h observation values. This task allows us to examine the
impact of signal reconstruction without requiring learning long-term dependencies, allowing for a
more meaningful comparison with Forecasting.

min
θE ,θPS

LPS =

T−h∑
t=1

||xt−h:t−1 −DPS(zt; θPS)||22 (4)

iv) Piecewise-Linear Autoencoding (PL-AE). A piecewise-linear approximation is capable of ef-
ficiently representing a wide class of signals, in particular, non-periodic signals. It is a promising
choice for an auxiliary task as it encourages a compact representation capturing the most important
details of the signal. A piecewise-linear representation consists of two length n + 1 vectors (where
n is the number of linear segments in the signal), a value vector v and a position vector p. The
positions are defined as proportions of the original signal length, between 0 and 1. The signal is de-
fined by linear interpolation between the series of points (v0, p0) . . . (vn, pn). To output this series

4

Under review as a conference paper at ICLR 2020

of points, we use a single-layer autoregressive LSTM where the hidden state is fed to two output
layers which map zPLt → (vt, pt). At each step t we feed the previous point value vt−1 and the
sum of previous positions

∑j=t−1
j=0 pj to the decoder. After we have generated the target number

of points, we normalize the position values, perform the interpolation, optimize on the interpolated
reconstruction loss (Eqn. 5).

min
θE ,θPL

LPL = ||x0:T −DPL(zT ; θPL)||22 (5)

Additional details on these tasks can be found in Appendix A.1.

3.4 TRAINING

We optimize our model to minimize the loss:
L = Ltarget + LAux (6)

Where
LAux = αAELAE + αFLF + αPSLPS + αPLLPL (7)

The weighting terms αX are defined as 0 if the auxiliary task X is not being used for training. If the
task is being used, then αX =

Ltarget

LX
, where the losses are calculated at the beginning of training

using the newly-initialized network on the training data. This ensures that all tasks have losses of
similar magnitude.

4 EXPERIMENTAL SETUP

To test our hypothesis, that auxiliary self-supervision improves performance on sequence-level tasks,
we consider at a variety of sequence-level tasks across different types of synthetic and real data.

4.1 TARGET TASKS & DATASETS

We consider the following three tasks (two of which are based on publicly available real datasets):

Piecewise-Linear Segment Prediction (PLA). We begin with simulated data, as it allows us to
estimate the ability of self-supervised auxiliary tasks to identify long-term dependencies in the data.
The dataset is composed of piecewise-linear signals, each of length 100. Point values are drawn from
a uniform distribution and lie between -1 and 1. The number of line segments also varies uniformly
between 1 and 6. The target task for this dataset is to estimate the number of distinct segments that
occurred in the signal. 1,000 training, validation, and test sequences were generated independently.

Patient Classification using Glucose Data (T1D). This task uses publicly available continuous
glucose monitor (CGM) data collected from people with type 1 diabetes (T1D) (Fox et al., 2018).
Each signal x0:T consists of 288 glucose measurements sampled every five minutes over the course
of a day. This dataset contains 1,863 days of data from 40 patients. In this task, we aim to classify
patients based on their data. Here, y ∈ {1, . . . , 40} represents the patient. Classifying patients is a
proxy for the important problem of identifying signal dynamics. We preprocess the data by removing
physiologically implausible glucose measurements, and linearly interpolating missing chunks of
data. We exclude signals in which more than 20% of the measurements are missing and those that
are missing a contiguous block longer than two hours. Data were collected by a series of multi-day
sessions separated by three-month intervals. As our test set, we consider the final recording session
from each patient. We select our validation set randomly from the remaining data.

Atrial Fibrillation Detection (AF). Our final task uses electrocardiogram (ECG) data from the
publicly available 2017 PhysioNet Challenge (Clifford et al., 2017), in which the goal was to auto-
matically diagnose atrial fibrillation (AF). This dataset contains four unevenly distributed classes:
normal sinus rhythm, AF, other arrhythmia, and noise. We use the training data provided for the
competition (the test data are not publicly available), resulting in 8,528 samples. 771 of those sig-
nals are labeled AF. We exclude signals with less than 30 seconds of data (967 signals total, 127 with
AF) and truncate all signals to exactly 30 seconds. We also downsample the data, reducing signal
size from 9,000 to 125. This speeds up training time and eases memory requirements. We use the
validation set provided for the challenge as the test set (removing those examples from the training
set), and randomly sample 10% of the training data for use as a validation.

5

Under review as a conference paper at ICLR 2020

0 1 2 3 4
Auxiliary Tasks

0.5

0.6

0.7

0.8

0.9

AU
C-

RO
C

Auxiliary Improvement: PLA

(a)

0 1 2 3 4
Auxiliary Tasks

0.50

0.55

0.60

0.65

0.70

AU
C-

RO
C

Auxiliary Improvement: T1D

(b)

0 1 2 3 4
Number of Auxiliary Tasks

0.500

0.525

0.550

0.575

0.600

0.625

0.650

AU
C-

RO
C

Auxiliary Improvement: AF

(c)

Figure 2: Performance across three target tasks by number of auxiliary tasks used (averaged over all
possible orderings). In general, we observe that the greater the number of auxiliary tasks, the greater
the performance for all three tasks. The marginal improvement from including additional auxiliary
tasks appears to taper off as the number of tasks increases.

4.2 IMPLEMENTATION DETAILS

We implement all models in PyTorch (Paszke et al., 2017), and optimize model parameters using
Adam (Kingma & Ba, 2014) with an initial learning rate of 1e − 3 (the default PyTorch value).
In practice we found altering the decoding horizon had little effect on performance, so we used
h = 6 for all experiments. All encoding/decoding layers have an identical number of hidden units,
set on a per-task basis using performance on the validation set to balance training time, memory
constraints, and target-task performance (evaluated using the early-stopping validation set). For the
PL-AE, we set n = 6 as a reasonable size to approximate many signal types. We mitigate the risk
of overfitting by using early stopping on a withheld validation set, training until we fail to improve
performance for over 50 epochs and reporting test performance for the best performing model on the
validation data. Some auxiliary tasks make predictions at multiple points in the signal. This helps
prevent the vanishing gradient problem, which can impede learning with large sequences. To avoid
conflating these sorts of improvements with those caused by learning better representations, we
use label propagation with our target task (sequence classification), linearly annealing contributions
to the loss function over the length of the signal (Dai & Le, 2015). The propagated losses are
combined using a weighted average, with the weights linearly annealed from 0 to 1 over the length
of the signal. Our code and synthetic data will be made publicly available to allow for replication
and extension. For the purposes of double-blind peer review, we have released the code and PLA
data on an anonymous Google Drive account1.

5 RESULTS

We begin by establishing that the proposed self-supervised auxiliary task framework improves target
task performance. We then look more carefully at the effects of different types of auxiliary tasks. We
conclude by looking at the relationship between auxiliary task and target task performance, which
sheds light on the mechanism by which auxiliary tasks improve performance.

To evaluate the results of these experiments, we measure the macro-averaged AUC-ROC on the
target task, and the mean absolute percent error (MAPE) for the auxiliary tasks. We repeat all
experiments using three random initializations and average the results.

The Benefit of Limited Self-Supervision. We begin by examining our main hypothesis, that limited
self-supervision improves sequence-level task performance without additional data. In Figure 2,
we plot target-task performance across our three tasks with a varying number of self-supervised
auxiliary tasks. We estimate performance for a given number of auxiliary tasks by averaging the
performance of all possible combinations. For all three sequence-level tasks, the inclusion of four

1https://bit.ly/2l2X4ax

6

https://bit.ly/2l2X4ax

Under review as a conference paper at ICLR 2020

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Averaged Improvement: PLA

(a)

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.002

0.004

0.006

0.008

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Average Improvement: T1D

(b)

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.005

0.010

0.015

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Averaged Improvement: AF

(c)

Figure 3: The average marginal contribution of each auxiliary task across target tasks. The PL-AE
task consistently offers the greatest marginal improvement, and the forecasting task consistently
provides the least.

Table 1: The performance of particular combinations of auxiliary tasks. All methods include the
dataset-specific target task. AE and Forecast refers to Autoencoding and Forecasting respectively,
the auxiliary tasks explored in (Dai & Le, 2015). PLAE and PSAE refer to Piecewise-Linear Au-
toencoder and Partial-Signal Autoencoder, our novel forms of self-supervision. We see that our
newly proposed forms of self-supervision outperform the other approaches on all datasets.

AUC-ROC * 100
Auxiliary Tasks PLA T1D AF
None 50.0± 0.4 67.1± 1.3 55.2± 4.0
AE 88.6± 0.3 66.7± 0.4 59.8± 1.2
Forecast 53.5± 5.2 66.3± 0.5 57.0± 2.0
AE+Forecast (Dai & Le, 2015) 89.5± 0.6 67.4± 1.0 61.0± 0.7
PLAE+PSAE (Ours) 89.6± 0.4 69.6± 0.5 60.0± 3.3
All (Ours) 90.7± 0.3 67.8± 0.7 62.4± 2.1

auxiliary tasks improves performance relative to no auxiliary tasks. Moreover, we observe that
performance tends to increase with the number of auxiliary tasks. The one exception is in the T1D
task, where improvement peaks at three auxiliary tasks.

Relative Contribution of Different Auxiliary Tasks. We now examine how different auxiliary
tasks contribute differently to performance. To measure the impact of individual auxiliary tasks,
we average performance across all models that include the auxiliary task versus all models that do
not. This allows us to observe an auxiliary task’s individual contribution, and its ability to usefully
combine with other streams of self-supervision. The averaged change in AUC-ROC indicates the
marginal improvement offered by the task (Figure 3). PL-AE outperforms all other auxiliary tasks,
including AE, on all three datasets. Since PL-AE limits the temporal granularity of the output, this
suggests that modeling fine temporal granularity does not help, and may even hurt performance. The
forecasting task underperforms all other auxiliary tasks. This finding is in line with the findings of
(Dai & Le, 2015). However, the explanation Dai and Le provide (that the AE encourages long-term
dependency modeling) is inconsistent with the performance of PS-AE, which also does not model
long-term dependencies. The fact that the PS-AE outperforms the forecasting task, but generally un-
derperforms AE, suggests that while modeling long-term dependencies may improve performance,
there is likely some other reason that AE works well. We also examine the performance of particular
combinations of self-supervised auxiliary tasks in Table 1. We see that our proposed auxiliary tasks
outperform and are complementary to standard auxiliary task combinations.

Why do Self-Supervised Auxiliary Tasks Help? To investigate the underlying mechanism by
which auxiliary tasks improve performance, we examine model performance as we vary the number
of auxiliary tasks and the amount of training data (results shown in Figure 4a). As the amount of
training data increases, the added value from the auxiliary tasks increases on average. This suggests
that auxiliary tasks are not simply acting as a form of regularization, since otherwise we would
expect to see larger improvements on smaller training sets.

7

Under review as a conference paper at ICLR 2020

100 500 1000
Training Data Size

0.0

0.1

0.2

0.3

0.4

Im
pr

ov
em

en
t i

n
AU

C-
RO

C

Effect of Training Data: PLA

Auxiliary
1
2
3
4

(a)

0.2 0.4 0.6 0.8
AE MAPE

0.60

0.65

0.70

AU
C-

RO
C

AE MAPE vs. AUROC

Data
500
1000
1500

(b)

Figure 4: A) The effect training data size has on auxiliary tasks. As the amount of data increases,
we tend to see an increase in the improvement afforded by the auxiliary tasks. B) The relationship
between auxiliary task performance (in MAPE, lower is better) and target task performance (in
AUC-ROC, higher is better) on the T1D data. Calculated over all training data sizes, there is a
somewhat weak relationship (Pearson R = -0.53, line not shown). However, when we condition on
the amount of training data, we find that different relationships emerge (Pearson R = 0.34 when
training size = 1,000 vs. -0.72 when training size = 1,500).

If the auxiliary tasks result in better representations (not just regularized representations), their im-
pact on performance should correlate with the auxiliary task performance. A decrease in auxiliary
task error should lead to a better intermediate representation and an increase in target task perfor-
mance (i.e., AE MAPE and AUC-ROC should be negatively correlated). Meanwhile, if the auxiliary
tasks work as regularizers, exhausting representation capacity, we would expect to see little effect or
a positive correlation (if the regularization effect is too strong, and auxiliary performance comes at
the cost of target performance).

We explore this, specifically for AE with the T1D data in Figure 4b. This relationship is highly
dependent on the amount of data. When training data are limited, there is a weak positive correlation
between auxiliary task error and target performance, suggesting a regularizing effect. However, with
the full amount of training data, we see a strong negative correlation. Auxiliary tasks give sizable
improvements at 1,000 and 1,500 training examples (averaged improvement of 0.016 and 0.010
respectively). This suggests that 1) auxiliary tasks act both to regularize and to enhance intermediate
representations, depending on the amount of data, and 2) there is an amount of training data where
they are effective in either role. These findings suggest that auxiliary self-supervised tasks may be
useful across a wide range of training set sizes.

6 CONCLUSIONS

In this paper, we introduced a limited self-supervised framework, in which we sought to improve
sequence-level task performance without additional data. By jointly training our target task with
auxiliary self-supervised tasks, we demonstrated small but consistent improvements across three
different sequence classification tasks. Our novel piecewise-linear autoencoding task emerged as the
most useful auxiliary task across all datasets. In contrast, forecasting, which presents an intuitively
appealing form of self-supervision, led to the smallest improvements.

Across a range of training set sizes, we showed that the value of auxiliary tasks lies in improving
intermediate representations learned by the network. When limited training data are available, these
tasks serve as a form of regularization. With more training data, performance on the auxiliary
tasks improves and so does performance on the target task, suggesting more useful intermediate
representations. In the context of time-series analysis, limited self-supervision is an effective form
of supervision and comes at little cost. Going forward, researchers seeking to improve performance
on sequence-level target tasks should consider incorporating self-supervised auxiliary tasks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Bilal Ahmed, Thomas Thesen, Karen Blackmon, Ruben Kuzniecky, Orrin Devinsky, Jennifer Dy,
and Carla Brodley. Multi-task learning with weak class labels: Leveraging iEEG to detect cortical
lesions in cryptogenic epilepsy. In Machine Learning for Healthcare Conference, pp. 115–133,
2016.

Rich Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer, 1998.

G. Clifford, Chengyu Liu, Benjamin Moody, L. Lehman, Ikaro Silva, Qiao Li, A. Johnson, and
R. Mark. AF classification from a short single lead ECG recording: The Physionet Computing in
Cardiology Challenge 2017. Computing in Cardiology, 44, 2017.

Andrew M. Dai and Quoc V. Le. Semi-supervised Sequence Learning. arXiv:1511.01432 [cs],
November 2015. URL http://arxiv.org/abs/1511.01432. arXiv: 1511.01432.

Ian Fox, Lynn Ang, Mamta Jaiswal, Rodica Pop-Busui, and Jenna Wiens. Deep Multi-Output Fore-
casting: Learning to Accurately Predict Blood Glucose Trajectories. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18,
pp. 1387–1395, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/
3219819.3220102. URL http://doi.acm.org/10.1145/3219819.3220102.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, and Aram Galstyan. Multitask Learning and
Benchmarking with Clinical Time Series Data. arXiv:1703.07771 [cs, stat], March 2017. URL
http://arxiv.org/abs/1703.07771. arXiv: 1703.07771.

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann,
Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, and Mu Li. Achieving Human Parity
on Automatic Chinese to English News Translation. arXiv preprint arXiv:1803.05567, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nasser M. Nasrabadi. Pattern recognition and machine learning. Journal of electronic imaging, 16
(4):049901, 2007.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks.
arXiv:1601.06759 [cs], January 2016. URL http://arxiv.org/abs/1601.06759.
arXiv: 1601.06759.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to Generate Reviews and Discovering
Sentiment. arXiv:1704.01444 [cs], April 2017. URL http://arxiv.org/abs/1704.
01444. arXiv: 1704.01444.

Prajit Ramachandran, Peter J. Liu, and Quoc V. Le. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683, 2016.

Narges Razavian, Jake Marcus, and David Sontag. Multi-task prediction of disease onsets from
longitudinal lab tests. arXiv preprint arXiv:1608.00647, 2016.

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv:1706.05098
[cs, stat], June 2017. URL http://arxiv.org/abs/1706.05098. arXiv: 1706.05098.

Patrick Schwab, Emanuela Keller, Carl Muroi, David J. Mack, Christian Strssle, and Walter Karlen.
Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care. arXiv:1802.05027 [cs,
stat], February 2018. URL http://arxiv.org/abs/1802.05027. arXiv: 1802.05027.

9

http://arxiv.org/abs/1511.01432
http://doi.acm.org/10.1145/3219819.3220102
http://arxiv.org/abs/1703.07771
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1802.05027

Under review as a conference paper at ICLR 2020

Souhaib Ben Taieb, Antti Sorjamaa, and Gianluca Bontempi. Multiple-output modeling for multi-
step-ahead time series forecasting. Neurocomputing, 73(10-12):1950–1957, 2010.

Jenna Wiens, John Guttag, and Eric Horvitz. Patient risk stratification with time-varying parameters:
a multitask learning approach. The Journal of Machine Learning Research, 17(1):2797–2819,
2016.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 AUXILIARY TASKS: ADDITIONAL MOTIVATION AND DETAILS

A.1.1 AUTOENCODING

Motivation. Autoencoding encourages the hidden state to retain all relevant information from the
original input. By reducing the size of the hidden state, our model must learn a compressed
representation of the signal. Compression encourages learning latent structure and discourages
learning noise.

Details. We use a single-layer autoregressive LSTM for the recurrent layer RAE , which is
initialized using the hidden and cell states from the encoder LSTM and sequentially decodes
hidden states zAEt . These hidden states are fed into a fully-connected output layer, OAE , that
maps zAEt → x̂t. The output x̂t is then fed into RAE , generating zAEt+1, continuing until x̂0:T is
fully generated. To provide a shorter path for gradient flow, we decode in reverse order, generating
x̂T :0 instead of x̂0:T (Goodfellow et al., 2016).

A.1.2 FORECASTING

Motivation. Forecasting encourages E to encode the dynamics of the data-generating process.
Without information about the underlying dynamics, future value prediction is either challenging
or trivial (if the signal does not change). Such dynamics may carry valuable information for a
range of sequence-level tasks, though the aspects of the dynamics most relevant to the target task
may differ from those that predict future values.

Details. We focus on a multi-output forecasting architecture, predicting several future values
simultaneously (Taieb et al., 2010). This is done using a recurrent decoder, similar to the autoen-
coder, but applied at each encoding step and expanded only h steps, where h is a hyperparameter.

A.1.3 PARTIAL-SIGNAL AUTOENCODING

Motivation. Previous work has found advantages to reconstruction over prediction (Dai & Le,
2015). Dai and Le hypothesize the observed superiority of sequence autoencoding over forecast-
ing may result from the short-term nature of the language modeling task (only predicting the next
word). To investigate the effect of short-term dependency auxiliary tasks, we use a multi-step fore-
casting system, where we can examine the effect of varying the prediction horizon. Analogously,
we use PS-AE to examine the effect of producing short-term reconstructions.

Details. PS-AE is implemented using a setup identical to our forecasting approach, except we
estimate the previous h values instead of the subsequent values (Figure ??).

A.1.4 PIECEWISE-LINEAR AUTOENCODING

Motivation. AE encourages fine-grained modeling of the signal over long periods, whereas PS-
AE encourages fine-grained modeling over a short period. While PS-AE can control the range of
temporal dependencies modeled using the decoding horizon h, it does not vary the granularity at
which the output is modeled. What level of signal granularity is required for reasonable target-task
performance? To explore this question, we introduce Piecewise-Linear (PL) Autoencoding.

Details. To generate a PL representation of a signal with n distinct pieces, we take the encoded
representation of the signal, zT , and feed it into a recurrent layer RPL. Figure ?? illustrates
our point-generation system. The sequential output of the decoder, zPLj , generates the jth point
value and position. Specifically, we use two fully-connected output layers, Oval and Opos, that
map zPLj → vj , pj respectively. Since we know p0 = 0, at the first step we generate only an
initial value. We continue the decoding process, feeding vj ,

∑j
k=0 pk to the decoder to gen-

erate zPLj+1, until we have generated n + 1 points. We then use linear interpolation to map
(v0,p0) . . . (vn,pn) → x̂0:T . We normalize the position vector and use the cumulative sum-
mation to determine segment positions.

11

	Introduction
	Related Work
	Learning with Self-Supervised Auxiliary Tasks
	Problem Definition and Notation
	Baseline Architecture
	Self-Supervised Auxiliary Tasks
	Training

	Experimental Setup
	Target Tasks & Datasets
	Implementation Details

	Results
	Conclusions
	Appendix
	Auxiliary Tasks: Additional Motivation and Details
	Autoencoding
	Forecasting
	Partial-Signal Autoencoding
	Piecewise-Linear Autoencoding

