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ABSTRACT

Intrinsic rewards in reinforcement learning provide a powerful algorithmic capa-
bility for agents to learn how to interact with their environment in a task-generic
way. However, increased incentives for motivation can come at the cost of in-
creased fragility to stochasticity. We introduce a method for computing an in-
trinsic reward for curiosity using metrics derived from sampling a latent variable
model used to estimate dynamics. Ultimately, an estimate of the conditional prob-
ability of observed states is used as our intrinsic reward for curiosity. In our
experiments, a video game agent uses our model to autonomously learn how to
play Atari games using our curiosity reward in combination with extrinsic rewards
from the game to achieve improved performance on games with sparse extrinsic
rewards. When stochasticity is introduced in the environment, our method still
demonstrates improved performance over the baseline.

1 INTRODUCTION

Methods encouraging agents to explore their environment by rewarding actions that yield unex-
pected results are commonly referred to as curiosity (Schmidhuber (1991; 1990a;b)). Using curiosity
as an exploration policy in reinforcement learning has many benefits. In scenarios in which extrinsic
rewards are sparse, combining extrinsic and intrinsic curiosity rewards gives a framework for agents
to discover how to gain extrinsic rewards (Jaegle et al., 2019). In addition, when agents explore, they
can build more robust policies for their environment even if extrinsic rewards are readily available
(Forestier & Oudeyer, 2015). These policies learned through exploration can give an agent a more
general understanding of the results of their actions so that the agent will have a greater ability to
adapt using their existing policy if their environment changes.

Despite these benefits, novelty-driven exploration methods can be distracted by randomness.
(Schmidhuber, 1990b; Storck et al., 1995) When stochastic elements are introduced in the envi-
ronment, agents may try to overfit to noise instead of learning a deterministic model of the effect of
their own actions on their world. In particular, Burda et al. (2018a) showed that when a TV with
white noise is added to an environment in which an agent is using the intrinsic curiosity module
(ICM) developed by Pathak et al. (2017), the agent stops exploring the environment and just moves
back and forth in front of the TV.

In this paper, we present a new method for agent curiosity which provides robust performance in
sparse reward environments and under stochasticity. We use a conditional variational autoencoder
(Sohn et al., 2015) to develop a model of our environment. We choose to develop a conditional vari-
ational autoencoder (CVAE) due to the success of this architecture in modeling dynamics shown in
the video prediction literature (Denton & Fergus, 2018; Xue et al., 2018). We incorporate additional
modeling techniques to regularize for stochastic dynamics in our perception model. We compute
our intrinsic reward for curiosity by sampling from the latent space of the CVAE and computing an
associated conditional probability which is a more robust metric than the commonly used pixel-level
reconstruction error.

The primary contributions of our work are the following.

1. Perception-driven approach to curiosity. We develop a perception model which inte-
grates model characteristics proven to work well for deep reinforcement learning with re-
cent architectures for estimating dynamics from pixels. This combination retains robust-
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ness guarantees from existing deep reinforcement learning models while improving the
ability to capture complex visual dynamics.

2. Bayesian metric for surprise. We use the entropy of the current state given the last state as
a measurement for computing surprise. This Bayesian approach will down-weight stochas-
tic elements of the environment when learning a model of dynamics. As a result, this
formulation is robust to noise.

For our experiments, autonomous agents use our model to learn how to play Atari games. We
measure the effectiveness of our surprise metric as a meaningful intrinsic reward by tracking the
total achieved extrinsic reward by agents using a combination of our intrinsic reward with extrinsic
rewards to learn. We show that the policy learned by a reinforcement learning algorithm using
our surprise metric outperforms the policies learned by alternate reward schemes. Furthermore,
we introduce stochasticity into the realization of actions in the environment, and we show that our
method still demonstrates successful performance beyond that of the baseline method.

2 RELATED WORK

Perception-Driven Curiosity. Several existing models incentivize curious agent behavior through
estimating and seeking visual novelty. Bellemare et al. (2016) and Ostrovski et al. (2017) generalize
count-based exploration traditionally used in tabular settings for continuous states. Burda et al.
(2018b) learns a predictive model on features given by a randomly initialized target network and
uses reconstruction error of the random features as intrinsic reward. Jaegle et al. (2019) provides a
full review of recent perception-driven methods to encourage curiosity. In this work, we combine
a CVAE, an architecture recently used to successfully estimate dynamics from image frames, with
methodological approaches from deep reinforcement learning to build a robust perception model in
which visual novelty is computed via an estimation of the conditional log-likelihood of observed
states.

Prediction-Based Exploration Bonuses. Schmidhuber (1991) proposed an approach to exploration
by building prediction models and formulating intrinsic reward as the error of the next state predic-
tion. Recently, this line of work has been shown to explore efficiently in a large number of simulated
environments by Pathak et al. (2017) and Burda et al. (2018a). Achiam & Sastry (2017) formalizes
the prediction error as Bayesian surprise given a heteroscedastic Gaussian predictive model. This
approach is closest to our own. However, in contrast to these reward methods which are built upon
simple predictive models, our formulation of Bayesian surprise is computed via importance sam-
pling from our latent variable model. This construction of surprise is significant due to the ability of
this variational inference approach to express complex multimodal distributions over images.

Information-Theoretic Measures for Exploration. Several methods rely on maximizing
information-theoretic measures of agent behavior. The method by Co-Reyes et al. (2018) maxi-
mizes the entropy of agent trajectories between successive states directly. Eysenbach et al. (2018)
propose to learn skills without supervision by maximizing the mutual information between a latent
skill embedding and the behaviour that the associated skill produces. Pong et al. (2019) introduce a
method for unsupervised goal-conditional reinforcement learning which maximizes the entropy of
the distribution of possible goals. Houthooft et al. (2016) uses the KL divergence between the previ-
ous and current dynamics models as intrinsic reward as a proxy for information gain. We indirectly
measure the entropy of agent trajectories by measuring surprise in terms of the entropy of next state
given the previous state, providing an alternative to these existing approaches.

Video Prediction with Latent Variable Models. Chung et al. (2015) introduced a stochastic model
for sequential data based on variational inference approaches by Kingma & Welling (2013) and
Rezende et al. (2014). This model was adopted for high-dimensional data such as video by Denton
& Fergus (2018); Babaeizadeh et al. (2018); Lee et al. (2018) and Rybkin et al. (2019). A similar
model based on Sohn et al. (2015) was used for next frame prediction in Xue et al. (2018). We
leverage the success of variational inference techniques for high-dimensional data to construct a
stochastic model of videos from which surprise can be efficiently estimated.
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Figure 1: We show how our model integrates with reinforcement learning algorithms to provide
intrinsic rewards in (a). The optimization procedure for our perception model as well as our method
for computing intrinsic reward are visualized in (b).

3 PERCEPTION MODEL

We construct a perception model for our agents using a conditional variational autoencoder (CVAE)
which generates an estimation of an embedded state, φ̂t+1, given the embedded state itself, φt+1.
This generative model is conditioned on the last embedded state, φt, and action, at. Intuitively,
this construction gives an agent a visual model of the environment conditioned on the dynamics
associated with their interactions with the environment. The state embeddings are encoded by a
neural network submodule in our architecture which computes feature vectors φt and φt+1 from
states st and st+1 respectively. In our experiments, the states we observe from our simulation
environment are image frames.

We derive our approach and the following properties of our model from the theoretical prop-
erties of conditional variational autoencoders presented by Sohn et al. (2015). We first define
p(φt+1|z, φt, at) as the generative distribution from which we draw the output φ̂t+1. The prior
distribution of the latent space is given by p(z|φt, at) which is relaxed in the CVAE formulation to
make the latent variable, z, statistically independent of the input variables. Thus, our prior for the
latent space distribution is given by p(z) ∼ N (0, I). Through training, our model learns a latent
representation. The distribution of this representation, q(z|φt+1, φt, at), approximates p(z|φt, at).
Using the previously defined distributions and the analysis by Sohn et al. (2015), we define the
empirical lower bound of the conditional log-likelihood and objective function, f , of our CVAE as

f(φt, at, φt+1) = −DKL (q(z|φt, at, φt+1)||p(z|φt, at)) +
1

N

N∑
i=1

log p(φt+1|zi, φt, at). (1)

We recall that the sum of log-probabilities is equal to the reconstruction loss of our model up to a
constant and multiplicative offset. Thus, we denote
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LMSE =
∥∥∥φt+1 − φ̂t+1

∥∥∥2
2
≈ − 1

N

N∑
i=1

log p(φt+1|zi, φt, at). (2)

We can write the KL-divergence term in Equation 1 as

LKL = DKL (q(z|φt, at, φt+1)||p(z|φt, at)) = DKL (q(z|φt, at, φt+1)||p(z)) . (3)

The final component of our perception model is a neural network predicting at from φt and φt+1

built off the inverse model presented by Pathak et al. (2017). This component regularizes for dy-
namics in the environment which do not contribute to agent actions. We note that this component
controls for environment stochasticity when learning the weights of our network. The error in action
prediction can be formulated in terms of maximum likelihood estimation of the parameters of our
network under a multinomial distribution. This error is used as the loss for our action-prediction
network and denoted LA.

We can now use the approximation of our CVAE objective function and the loss from our action-
prediction network to formulate the total loss for our perception model as

Ltotal = λ1LKL + λ2LMSE + λ3LA. (4)

We tune the hyper-parameters λ1, λ2, and λ3 to weight the contribution of each loss in our model.
The tuning procedure and hyperparameters used in our experiments are given in Appendix B.

The full architecture of our perception model is shown Figure 1.b.

4 BAYESIAN SURPRISE

We define Bayesian surprise as the amount an agent should be curious about an observation derived
from a conditional likelihood of the observation occurring given the current world model of the
agent. From our definition of curiosity, we want to reward actions more strongly which result in less
likely outcomes. Therefore, we use the negative of this conditional probability estimate as a reward
for agents. In our approach, this probabilistic reward takes the form rt = − log p(φt+1|φt, at).
Similar objectives were used in prior work which considered simple homoscedastic (Burda et al.
(2018a)) or heteroscedastic (Achiam & Sastry (2017)) Gaussian forward models. Due to our use of
a base CVAE architecture, our perception model can capture multimodal distributions over images.
(Sohn et al., 2015) To retain this improved expressiveness in our derived intrinsic reward, we use
importance sampling from the latent space of our CVAE to estimate conditional likelihoods for our
formulation of surprise as follows.

log p(φt+1|φt, at) = logE(z∼p(z|φt,at)) [p(φt+1|z, φt, at)] (5)

= logE(z∼q(z|φt+1,φt,at))

[
p(φt+1|z, φt, at)p(z|φt, at)

q(z|φt+1, φt, at)

]
(6)

= logE(z∼q(z|φt+1,φt,at))

[
p(φt+1|z, φt, at)p(z)
q(z|φt+1, φt, at)

]
(7)

≥ E(z∼q(z|φt+1,φt,at))

[
log

p(φt+1|z, φt, at)p(z)
q(z|φt+1, φt, at)

]
(8)

We use the reconstruction loss of our model to compute the conditional probability
log p(φt+1|z, φt, at).
We recall that the negative logarithm of our conditional probability is equal to Bayesian surprise, so
we explicitly define our reward as follows.

4



Under review as a conference paper at ICLR 2020

rt = −E(z∼q(z|φt+1,φt,at))

[
log

p(φt+1|z, φt, at)p(z)
q(z|φt+1, φt, at)

]
(9)

We use the Bayesian surprise computed by our perception model as intrinsic reward input to a
reinforcement learning algorithm. The interaction of this reward and our perception model with the
reinforcement learning procedure is visualized in Figure 1.a.

5 EXPERIMENTS

We evaluate the ability of our model to enable effective and robust exploration. We use Atari video
games as simulation environments since they provide reasonably complex visual environments with
large variations in both sparsity of extrinsic reward and stochasticity in scenes between different
games. As a result, Atari games have been frequently used as a testbed for curiosity approaches.
(Pathak et al., 2017; Burda et al., 2018a;b; Mnih et al., 2013) We use our intrinsic reward mea-
surement with the proximal policy optimization (PPO) reinforcement learning algorithm developed
by Schulman et al. (2017) due to the ability of PPO to perform well with relatively little hyper-
parameter tuning. In training, we combine our intrinsic reward with extrinsic rewards provided by
the game environments for task-specific success such as knocking blocks out of a wall in Break-
out. We compare the ability of agents using this reward combination to learn to play different Atari
games against the ability of agents using a leading alternate prediction-based exploration bonus by
Pathak et al. (2017) in combination with extrinsic rewards. We also compare our approach to agent
behavior derived from policies learned by purely extrinsic rewards.

Note that, though combination rewards are used to train PPO, each method is evaluated by compar-
ing extrinsic reward per episode alone since extrinsic rewards measure the successful accomplish-
ment of tasks in each game. The hyperparameters used in training as well as additional implemen-
tation details are given in Appendix B. Furthermore, Appendix A shows details and analysis of the
perception model performance throughout training via this active learning procedure.

5.1 CURIOSITY-AIDED GAME PLAY

We first test the impact of our curiosity-reward on learning to play Atari games with varying levels
of extrinsic reward sparseness. Gravitar, Beam Rider, Breakout, Space Invaders, and River Raid all
have reasonably dense extrinsic rewards. In contrast, Montezuma’s Revenge, Pitfall, and Private
Eye all have sparse extrinsic rewards and are thus known as a traditionally challenging games for
deep reinforcement learning algorithms to play successfully with only the information provided by
game scene observations.

Our results for training 3 seeds for each method over 10 million timesteps in each of these games
are plotted in Figure 2. Table 1 summarizes the results of the extrinsic rewards achieved at the end
of training. The best performance for each game is bold in the respective row.

For games with dense extrinsic rewards, the best performance is split somewhat equally between
each of the 3 reward strategies. Thus, we conclude that we perform comparably to ICM in the case

Table 1: Mean and standard deviation of extrinsic reward over last 1 million time steps in training
across 3 independent seeds for each model.

Reward Strategies
Atari Game Extrinsic ICM+Extrinsic Ours+Extrinsic
Gravitar 525.82 ± 200.77 601.09 ± 322.02 582.00 ± 269.63
Private Eye 61.92 ± 49.45 77.89 ± 36.28 85.70 ± 22.61
Space Invaders 811.57 ± 189.11 1086.29 ± 260.13 1041.50 ± 175.52
Beam Rider 3250.01 ± 843.39 3131.36 ± 945.44 2755.15 ± 721.71
Breakout 262.49 ± 22.16 249.89 ± 37.11 263.60 ± 45.28
River Raid 7952.27 ± 1167.93 6466.26 ± 2373.94 6428.72 ± 2283.45
Pitfall -1.20 ± 1.22 -3.04 ± 2.02 -1.63 ± 1.37
Montezuma’s Revenge 0.05 ± 0.36 0.00 ± 0.00 3.19 ± 8.31
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Figure 2: Extrinsic reward per episode achieved in training over 10 million time steps and 3 seeds
for the following Atari games: Beam Rider, Breakout, Gravitar, River Raid, Private Eye, Space
Invaders, Montezuma’s Revenge, and Pitfall.
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Figure 3: Extrinsic reward per episode achieved with sticky actions in training over 10 million time
steps and 2 seeds for the following Atari games: Gravitar, River Raid, Private Eye, and Pitfall.

where extrinsic rewards are readily available. However, we also conclude that the value of using
curiosity for the purpose of achieving improved performance in these cases is substantially less
significant than when rewards are sparse considering that we also show comparable performance to
using extrinsic reward only in these games.

We recall the games with sparse extrinsic rewards are Pitfall, Montezuma’s Revenge, and Private
Eye. Though PPO achieved the highest extrinsic reward on Pitfall, no successful game strategy
was found. The mean extrinsic reward for each method is always negative in Pitfall. Exploration
necessary to ultimately discover a successful strategy may require incurring temporary negative
extrinsic rewards, so comparing the average results before any working strategy is learned by any
method is premature.

On both Montezuma’s Revenge and Private Eye, our method outperforms the combination of ICM
and extrinsic rewards as well as extrinsic rewards only. We further observe that the variance of our
method at convergence in Private Eye is very low. These results demonstrate the improved ability
of our approach to use information from better models for perceiving complex scene dynamics in
order to learn in the absence of extrinsic rewards.

5.2 ROBUSTNESS TO STOCHASTICITY

There is a challenging balance with methods rewarding novelty to encourage exploration of the
unknown while avoiding confounding the model by focusing on randomness. We showed that our
method explores more effectively than our baseline in cases where extrinsic rewards are sparse.
However, we now need to demonstrate that that improved performance did not introduce brittleness
to environmental noise.

Following Burda et al. (2018b), we perform a sticky action experiment to demonstrate the robustness
of our model to stochasticity. With a 25% probability, the action an agent takes is repeated over 8
consecutive frames in the environment though the agent believes that their new action decisions are
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being executing across those frames. We observe that the performance of ICM and our model in the
presence of sticky actions in comparable with slightly better performance from our model.

Our results for training 3 seeds for each method over 10 million timesteps in each of these games
are plotted in Figure 2. Table 2 summarizes the results of the extrinsic rewards achieved at the end
of training. The best performance for each game is bold in the respective row.

Table 2: Mean and standard deviation of extrinsic reward while using sticky actions over last 1
million time steps in training across 2 independent seeds for each model.

Reward Strategies
Atari Game ICM+Extrinsic Ours+Extrinsic
Gravitar 216.00 ± 30.00 263.42 ± 90.79
Private Eye 92.18 ± 7.85 65.65 ± 24.56
River Raid 3656.87 ± 173.70 3692.37 ± 437.56
Pitfall -3.09 ± 1.38 -1.73 ± 2.05

6 DISCUSSION

In summary, we presented a novel method to compute curiosity through the use of a meaningfully
constructed model for perception. We used a conditional variational autoencoder (CVAE) to learn
scene dynamics from image and action sequences and computed an intrinsic reward for curiosity
via a conditional probability derived from importance sampling from the latent space of our CVAE.
In our experiments, we demonstrated that our approach allows agents to learn to accomplish tasks
more effectively in environments with sparse extrinsic rewards without compromising robustness to
stochasticity.

We show robustness to stochasticity in our action space which we support through the action-
prediction network used in our perception model. However, robustness to stochasticity in scenes
is a separate challenge which the method we use as our baseline, ICM, cannot handle well. (Burda
et al., 2018a) Stochasticity in scenes occurs when there are significant changes between sequential
image frames which are random with respect to agent actions. We hypothesize that this stochasticity
requires a different approach to handle.

A consideration in comparing models for curiosity and exploration in deep reinforcement learning
is that typically both the dynamics model and intrinsic reward metric are constructed and compared
as unit as we did in this paper. However, a conditional probability estimation could be derived the
dynamics model given by ICM just as reconstruction error could be used as intrinsic reward from
our CVAE. Alternately, other metrics measuring novelty and learning such as the KL divergence
between sequential latent distributions in our model have been proposed in a general manner by
Schmidhuber (2010).

An interesting direction for future work would be to explore the impact of intrinsic reward metrics for
curiosity on robustness to stochasticity in scenes independent across different choices of dynamics
model.
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A PERCEPTION MODEL ANALYSIS

We analyze the ability of an agent using our model to perceive the environment. We confirm that
our perception model generates image embeddings which can successfully construct realistic image
frames from our video games. We also show that increasing ability to perceive the environment is
associated with decreasing intrinsic rewards.

To set up this experiment, we built a visual decoder to reconstruct images from the embeddings
learned by the visual encoder shown in Figure 1.b. We trained our decoder on the game images
(st) and the image embeddings (φt). Then, we used our decoder to reconstruct images from our
predicted image embeddings (φ̂t). We chose to execute this experiment on Kung Fu Master since it
is one of the more visually complex Atari games.

Figure 4: Relationship between reconstruction er-
ror and intrinsic reward.

Figure 5 shows the reconstructed images from
our perception model next to the image frames
which are our states. We note that the observa-
tions provided by the OpenAI Gym Atari game
simulations are grayscale and rescaled to size
84x84. These images are what we input into
our visual encoder. The reconstructions of our
predicted embeddings are shown next to these
images along with measurements of reconstruc-
tion error between the embedded images and
intrinsic reward associated with that time step.
We observe that the high intrinsic rewards are
associated with poor reconstructions of the im-
age frames. Analogously, low intrinsic rewards
are associated with good reconstructions of the
image frames.

We note that all of the scenes presented in this
visualization are intentionally taken from rela-

tively early in training. At this time, the agent has learned to only partially perceive the environ-
ment. Thus, we can visualize reasonable reconstructed scenes, but we have enough reconstruction
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Table 3: Hyperparameters used in experiments.
CVAE Latent Dimension 64
KL Divergence Loss Weight 0.01
Reconstruction Error Loss Weight 0.39
Action-Prediction Network Loss Weight 0.5
Intrinsic Reward Weight 0.01
Extrinsic Reward Weight 0.99

error such that the perception component of our network will dominate the likelihood measurement
we use for surprise. When the perception model improves after additional training, the relationship
between intrinsic reward and image reconstruction error becomes less strong since intrinsic reward
is also conditioned on the likelihood of the next state prediction which is determined by transition
dynamics as well.

We more clearly observe the correlation between reconstruction error and intrinsic reward in Figure
4 for a subset of the training samples in our model. The linear trend becomes weaker and rewards are
not as tightly clustered for samples later in training which demonstrates that our model recognizes
distinct transition dynamics based on likelihood.

Through our analysis in Figure 5, we observe the success of our CVAE model in perceiving the game
environment in Kung Fu Master. In addition, we validate the success of our designed relationship
between intrinsic reward and ability to perceive the environment with this analysis in Figure 4.

B IMPLEMENTATION

To execute our experiments, we leveraged the implementation of the PPO algorithm provided by
Dhariwal et al. (2017). We used the Atari simulation environment for our video game simulations
available in OpenAI Gym and developed by Brockman et al. (2016). We also incorporated infras-
tructure code from Pathak et al. (2017) along with their inverse model implementation which we use
as an action-prediction network in our approach.

We trained each method for 10 million time steps on each environment. Each time step is associated
with processing one new frame from the environment. On a 2080 Ti NVIDIA GPU, training for
10 million time steps took approximately 7 hours. This training time is associated with processing
about 425 frames per second.

To tune hyperparameters for loss weights in our model, we used intrinsic reward only and swept
a range of values between zero and one in a grid search for each weight. Thus, we analyzed how
different weighting of the loss values induced agents to explore differently, and we choose the com-
bination which yielded the maximum resulting extrinsic reward realization through intrinsic reward
training only.

Once we had optimal loss weights, we then tuned for the intrinsic and extrinsic reward weight
combination. We swept a range of values between zero and one this weight combination as well,
and we again chose the values which yielded the highest extrinsic reward. We tried 3 different scales
of latent space dimension before choosing the one which caused our perception model to perform
the best.

The hyperparameters we used in our experiments are listed in Table 3. Note that the intrinsic reward
weight and extrinsic reward weight were the same for ICM and our method though we tuned for
the weights separately for each model. Also, note we took all the hyperparameters required in ICM
other than reward weighting from Pathak et al. (2017). Intrinsic and extrinsic reward weights were
not provided for using ICM with PPO.
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Input image
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Input image
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0.053
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0.076
0.117
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0.117
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0.219
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Figure 5: The first row shows the game scene images fed into our perception model as states. The
second row shows the reconstructed images produced by our perception model. The remaining rows
list intrinsic reward and embedded image reconstruction error respectively for each image pair.
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