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ABSTRACT

Training conditional generative latent-variable models is challenging in scenarios
where the conditioning signal is very strong and the decoder is expressive enough
to generate a plausible output given only the condition; the generative model tends
to ignore the latent variable, suffering from posterior collapse. We find, and em-
pirically show, that one of the major reasons behind posterior collapse is rooted in
the way that generative models are conditioned, i.e., through concatenation of the
latent variable and the condition. To mitigate this problem, we propose to explic-
itly make the latent variables depend on the condition by unifying the condition-
ing and latent variable sampling, thus coupling them so as to prevent the model
from discarding the root of variations. To achieve this, we develop a conditional
Variational Autoencoder architecture that learns a distribution not only of the la-
tent variables, but also of the condition, the latter acting as prior on the former.
Our experiments on the challenging tasks of conditional human motion prediction
and image captioning demonstrate the effectiveness of our approach at avoiding
posterior collapse. Video results of our approach are anonymously provided1 in
http://bit.ly/iclr2020.

1 INTRODUCTION

Deep generative models offer promising results in generating diverse, realistic samples, such as
images, text, motion, and sound, from purely unlabeled data. One example of such successful
generative models are variational autoencoders (Kingma & Welling, 2013) (VAEs), the stochastic
variant of autoencoders, which, thanks to strong and expressive decoders, can generate high qual-
ity samples. Training such models, however, may often result in posterior collapse: the posterior
distribution q(z|x) of the latent variable z given the input x becomes equal to the prior distribution,
resulting in a latent variable carrying no information about the input. In other words, the model
learns to ignore the latent variable.

The most common approaches to tackling posterior collapse consist of weighing the KL divergence
between the posterior and prior during training by an annealing function (Bowman et al., 2015;
Yang et al., 2017; Kim et al., 2018; Gulrajani et al., 2016; Liu et al., 2019), weakening the de-
coder (Semeniuta et al., 2017; Zhao et al., 2017), or changing the training objective (Zhao et al.,
2017; Tolstikhin et al., 2017). All of them are based on the perspective that the solution to poste-
rior collapse can be found in a good local optimum in terms of evidence lower bound (Chen et al.,
2016; Alemi et al., 2017). However, they each suffer from drawbacks: Any annealing weight that
does not become, and remain equal to one at some point during training yields an improper statisti-
cal model; weakening the decoder tends to degrade the quality of the generated samples; changing
the objective does not optimize the true variational lower bound. As an alternative, some methods
modify the training strategy to more strongly encourage the inference network to approximate the
model’s true posterior (He et al., 2019; Li et al., 2019). Other methods add auxiliary tasks either with
non-autoregressive models (Lucas & Verbeek, 2018) or that exploit the latent variable (Goyal et al.,
2017; Lucas & Verbeek, 2018; Dieng et al., 2018). While this encourages the latent variable to carry
some information, it may not be directly useful for the main task. Alternatively, several techniques
incorporate constraints in VAEs. In this context, VQ-VAE (van den Oord et al., 2017) introduces a
discrete latent variable obtained by vector quantization of the latent one that, given a uniform prior

1Video results are anonymously shared with ICLR 2020 Program Chair’s approval.
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over the outcome, yields a fixed KL divergence equal to log K, with K the size of the codebook;
several recent works use the von Mises-Fisher distribution to obtain a fixed KL divergence, thus
mitigating the posterior collapse problem (Guu et al., 2018; Xu & Durrett, 2018; Davidson et al.,
2018); more recently, delta-VAE (Razavi et al., 2019) modifies the posterior such that it maintains a
minimum distance between the prior and the posterior.

Although successful at handling the posterior collapse in presence of expressive decoders, e.g.,
LSTM, GRUs, PixelCNN, all of these approaches were designed for standard VAEs, not conditional
VAEs (CVAEs). As such, they do not address the problem of mitigating the influence of a strong
conditioning signal in ignoring the latent variable, which is our focus here. In this context, we ob-
served that a strong condition provides enough information for an expressive decoder to reconstruct
the data, thus allowing the decoder to ignore the latent variable at no loss in reconstruction quality.

To address this problem, in this paper, we exploit the following observation: In standard CVAEs, the
random variable is sampled from the prior/posterior completely independently of the conditioning
one. This decouples the two sources of information, i.e., the condition and the random latent vari-
able, and opens the door for the model to discard the latter. Therefore, here, we propose to explicitly
make the random variable depend on the conditioning one. To this end, we develop a CVAE archi-
tecture that learns a distribution not only of the latent variable but also of the conditioning one. We
then use this distribution as a prior over the latent variable, making its sampling explicitly dependent
on the condition. As such, we name our method CPP-VAE, for Condition Posterior as Prior.

We empirically show the effectiveness of our approach for problems that are stochastic in nature.
In particular, we focus on scenarios where the training dataset is deterministic, i.e., one condition
per data sample, and the conditioning signal strong enough for an expressive decoder to generate a
plausible output from it. This, for example, occurs in human motion prediction, that is, forecasting
future 3D poses given a sequence of observed ones. In this context, existing methods typically fail
to model the stochastic nature of human motion, either because they learn a deterministic mapping
from the observations to the output, or because the stochastic latent variables they combine with
the observations can be ignored by the model. As an alternative application, we also evaluate our
approach on image captioning, i.e., generating diverse and plausible captions describing an image.
Our empirical results show that not only does our approach yield a much wider variety of plausible
samples than concatenation-based stochastic methods, but it also preserves the semantic information
of the condition, such as the type of action performed by the person in motion prediction or visual
image elements in captioning, without explicitly exploiting this information. We will make the
source code for our model and for our evaluation metrics publicly available upon acceptance.

2 BACKGROUND

In this section, we briefly review the basics of VAEs and conditional VAEs that will be necessary
to introduce our method in the next section. We then briefly introduce the posterior collapse phe-
nomenon in the context of conditional VAEs.

Variational Autoencoders. VAEs are a family of generative models that utilize neural networks to
learn the distribution of the data. To this end, VAEs first learn to generate a latent variable z given the
data x, i.e., approximate the posterior distribution qφ(z|x), where φ are the parameters of a neural
network, the encoder, whose goal is to model the variation of the data. From this latent random
variable z, VAEs then generate a sample x by learning pθ(x|z), where θ denotes the parameters of
another neural network, the decoder, whose goal is to maximize the log likelihood of the data.

These two networks, i.e., the encoder (qφ(z|x)) and the decoder (pθ(x|z)), are trained jointly, using
a prior over the latent variable. This prior is usually the standard Normal distribution, N (0, I).
Note that VAEs use a variational approximation of the posterior, i.e., qφ(z|x), rather than the true
posterior. This enables the model to maximize the variational lower bound of the log likelihood with
respect to the parameters φ and θ, given by

log pθ(x) ≥ Eqφ(z|x)
[

log pθ(x|z)
]
−KL

(
qφ(z|x)||p(z)

)
, (1)

where the second term encodes the KL divergence between the posterior and the prior distributions.
In practice, the posterior distribution is approximated by a GaussianN (µ,diag(σ2)), whose param-
eters are output by the encoder. Note, σ is a vector and we define σ2 as a vector whose elements
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are the squared elements of σ. To facilitate optimization, the reparameterization trick (Kingma &
Welling, 2013) is used. That is, the latent variable is computed as z = µ+σ� ε, where ε is a vector
sampled from the standard Normal distribution.

Conditional Variational Autoencoders. As an extension to VAEs, CVAEs use auxiliary informa-
tion, i.e., the conditioning variable or observation, to generate the data x. In the standard setting,
both the encoder and the decoder are conditioned on the conditioning variable c. That is, the encoder
is denoted as qφ(z|x, c) and the decoder as pθ(x|z, c). Then, the objective of the model becomes

log pθ(x|c) ≥ Eqφ(z|x,c)
[

log pθ(x|z, c)
]
−KL

(
qφ(z|x, c)||p(z|c)

)
. (2)

In practice, conditioning is typically done by concatenation; the input of the encoder is the concate-
nation of the data x and the condition c, i.e., qφ(z| [x, c]), and that of the decoder the concatenation
of the latent variable z and the condition c, i.e., pθ(x| [z, c]). Thus, the prior distribution is still
p(z), and the latent variable is sampled independently of the conditioning one. It is then left to the
decoder to combine the information from the latent and conditioning variables to generate a data
sample. The detailed computations of the VAE/CVAE lower bounds are provided in Appendix A.

Posterior Collapse. As mentioned before, training conditional generative latent-variable models
is challenging due to posterior collapse. This can be observed when the KL divergence term becomes
zero, which means that, regardless of the input, the approximate posterior distribution is equal to the
prior distribution. In other words, there is no semantic connection between the encoder and the de-
coder, and thus the latent variable drawn from the approximate posterior does not convey any useful
information to obtain an input-dependent reconstruction. In this case, the decoder generates samples
that approximate the mean of the whole training set, minimizing the reconstruction loss. We found
that one of the major reasons behind posterior collapse in the case of conditional VAEs with strong
conditioning signals and expressive decoders is rooted in the conventional way of conditioning, i.e.,
through concatenation of the latent variable and the condition. Concatenation allows the decoder
to decouple the latent variable from the deterministic condition, thus allowing the decoder to opti-
mize its reconstruction loss given only the condition. In the following, we introduce our approach
for unifying latent variable sampling and conditioning, so that the decoder cannot decouple the two
sources of information.

3 UNIFYING SAMPLING LATENT VARIABLE AND CONDITIONING

In this section, we introduce our approach as a general framework to mitigate posterior collapse and
thus generating diverse and plausible samples using a CVAE. In essence, our framework consists
of two autoencoders, one acting on the conditioning signal and the other on the samples we wish
to learn the distribution of. The latent representation of the condition then serves as conditioning
variable to generate the desired samples.

As discussed above, we are interested in problems that are stochastic in nature; given one condition,
multiple plausible and natural samples are likely. However our training data is insufficiently sam-
pled, in that for any given condition, the dataset contains only a single observed sample, in effect
making the data appear deterministic. Moreover, in these cases, the condition provides the core
signal to generate a good sample, even in a deterministic model. Therefore, it is highly likely that
a CVAE trained for this task learns to ignore the latent variable and rely only on the condition to
produce its output. Below, we address this by forcing the sampling of the random latent variable to
depend on the conditioning one. By making this dependency explicit, we prevent the network from
ignoring the latent variable in the presence of a strong condition, thus enabling it to generate diverse
outputs.

Note that conditioning the VAE encoder via standard strategies, e.g., concatenation, is perfectly fine,
since the two inputs to the encoder are deterministic and useful to compress the sample into the latent
space. However, conditioning the VAE decoder requires special care to avoid posterior collapse and
make sure that the latent space carries some information. This is what we focus on below.

Stochastically Conditioning the Decoder. To avoid posterior collapse, we propose to make the
sampling of the latent variable from the prior/posterior distribution explicitly depend on the condi-
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Figure 1: (a) Overview of our CPP-VAE framework. (b) Our extension to the reparameterization
trick for sampling a latent variable given the condition. A circle denotes a random node, a diamond
denotes a deterministic node, and f is the objective. In our design, ε ∼ N (0, I).

tion instead of treating these two variables as independent. To this end, we first learn the distribution
of the condition via a simple VAE, which we refer to as CS-VAE because this VAE acts on the con-
ditioning signal. The goal of CS-VAE is to reconstruct the condition given its latent representation.
We take the prior of CS-VAE as a standard Normal distribution N (0, I). Following (Kingma &
Welling, 2013), this allows us to approximate the CS-VAE posterior with another sample from a
Normal distribution ε ∼ N (0, I). That is, we write

zc = µc + σc � ε , (3)
where µc and σc are the parameters of the posterior distribution generated by the VAE encoder.

Following the same strategy for the VAE on the data, called CPP-VAE, translates to treating the
conditioning and the data latent variables independently, which we want to avoid. Therefore, as
illustrated in Fig. 1 (Right), we instead define the CPP-VAE posterior as not directly normally
distributed, but conditioned on the posterior of CS-VAE. To this end, we extend the standard repa-
rameterization as

z = µ+ σ � zc = µ+ σ � (µc + σc � ε) = (µ+ σ � µc)︸ ︷︷ ︸
CPP-VAE’s mean

+ (σ � σc)︸ ︷︷ ︸
CPP-VAE’s std.

�ε , (4)

where zc comes from Eq. 3. In fact, zc in Eq. 3 is a sample from the scaled and translated version
of N (0, I) given µc and σc, and z in Eq. 4 is a sample from the scaled and translated version of
N (µc,diag(σ2

c )) given µ and σ. Since we have access to the observations during both training and
testing, we always sample zc from the condition posterior. As z is sampled given zc, one expects the
latent variable z to carry information about the strong condition, and thus a sample generated from
z to correspond to a plausible sample given the condition. This extended reparameterization trick
allows us to avoid conditioning the CPP-VAE decoder by concatenating the latent variable with a
deterministic representation of the condition, thus mitigating posterior collapse. However, it changes
the variational family of the CPP-VAE posterior. In fact, the posterior is no longerN (µ,diag(σ2)),
but a Gaussian distribution with mean µ+σ�µc and covariance matrix diag((σ�σc)2). This will
be accounted for when designing the KL divergence loss discussed below.

Learning. To learn the parameters of our model, we rely on the availability of a dataset D =
{X1, X2, ..., XN} containing N training samples Xi. Each training sample is a pair of condition
and desired sample. For CS-VAE, that learns the distribution of the condition, we define the loss as
the KL divergence between its posterior and the standard Gaussian prior, that is,

LCS-VAEprior = KL
(
N (µc,diag(σ2

c ))
∥∥∥N (0, I)

)
= −1

2

∑
j

(
1 + log(σ2

cj )− µ
2
cj − σ

2
cj

)
. (5)

By contrast, for CPP-VAE, we define the loss as the KL divergence between the posterior of
CPP-VAE and the posterior of the CS-VAE, i.e., of the condition. To this end, we freeze the weights
of CS-VAE before computing the KL divergence, since we do not want to move the posterior of the
condition but that of the data. The KL divergence is then computed as the divergence between two
multivariate Normal distributions, encoded by their mean vectors and covariance matrices, as

LCPP-VAEprior = KL
(
N (µ+ σ � µc,diag((σ � σc)2))

∥∥∥N (µc,diag(σ2
c ))
)
. (6)
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Let Σ = diag(σ2), Σc = diag(σ2
c ), d be the dimensionality of the latent space and tr{·} the trace

of a square matrix, the loss in Eq. (6) can be written as2

LCPP-VAEprior = −1

2

[
log

1

|Σ|
− d+ tr{Σ}+ (µc − (µ+ Σµc))

TΣ−1c (µc − (µ+ Σµc))
]
. (7)

After computing the loss in Eq. 7, we unfreeze CS-VAE and update it with its previous gradient.
Trying to match the posterior of CPP-VAE to that of CS-VAE allows us to effectively use our ex-
tended reparameterization trick in Eq. 4. Furthermore, we use the standard reconstruction loss for
both CS-VAE and CPP-VAE, minimizing the negative log-likelihood (NLL) or the mean squared er-
ror (MSE) of the condition and the corresponding data, given the task. We refer to the reconstruction
losses as LCS-VAErec and LCS-VAErec for CS-VAE and CPP-VAE. Thus, our complete loss is

L = λ(LCS-VAEprior + LCPP-VAEprior ) + LCS-VAErec + LCPP-VAErec . (8)

In practice, since our VAE appears within a recurrent model, we weigh the KL divergence terms by
a function λ corresponding to the KL annealing weight of (Bowman et al., 2015). We start from
λ = 0, forcing the model to encode as much information in z as possible, and gradually increase it
to λ = 1 during training, following a logistic curve. We then continue training with λ = 1.

In short, our method can be interpreted as a simple yet effective framework (designed for CVAEs)
for altering the variational family of the posterior so as to prevent posterior collapse by making sure
that there is a positive mismatch between the two distributions in the KL loss of Eq. 7.

4 EXPERIMENTS

In this paper, we mainly focus on stochastic human motion prediction, where given partial obser-
vation, the task is to generate diverse and plausible continuations. Additionally, to show that our
CPP-VAE generalizes to other domains, we tackle the problem of stochastic image captioning,
where given an image representation, the task is to generate diverse yet related captions.

4.1 DIVERSE HUMAN MOTION PREDICTION

Dataset. To evaluate the effectiveness of our approach on the task of stochastic human motion
prediction, we use the Human3.6M dataset (Ionescu et al., 2014), the largest publicly-available mo-
tion capture (mocap) dataset. Human3.6M comprises more than 800 long indoor motion sequences
performed by 11 subjects, leading to 3.6M frames. Each frame contains a person annotated with
3D joint positions and rotation matrices for all 32 joints. In our experiments, for our approach and
the replicated VAE-based baselines, we represent each joint in 4D quaternion space. We follow
the standard preprocessing and evaluation settings used in (Martinez et al., 2017; Gui et al., 2018a;
Pavllo et al., 2018; Jain et al., 2016). We also evaluate our approach on a real-world dataset, Penn
Action (Zhang et al., 2013), which contains 2326 sequences of 15 different actions, where for each
person, 13 joints are annotated in 2D space. The results on Penn Action are provided in Appendix F.

Evaluation Metrics. To quantitatively evaluate our approach and other stochastic motion predic-
tion baselines (Yan et al., 2018; Barsoum et al., 2018; Walker et al., 2017; Aliakbarian et al., 2019),
we report the estimated upper bound on the reconstruction error as ELBO, along with the KL-
divergence on the held-out test set. Additionally, we also use quality (Aliakbarian et al., 2019) and
diversity (Yang et al., 2019; Aliakbarian et al., 2019; Yuan & Kitani, 2019) metrics (which should be
considered together), a context metric, and the training KL at convergence. To measure the diversity
of the motions generated by a stochastic model, we make use of the average distance between all
pairs of the K motions generated from the same observation. To measure quality, we train a binary
classifier to discriminate real (ground-truth) samples from fake (generated) ones. The accuracy of
this classifier on the test set is inversely proportional to the quality of the generated motions. Context
is measured by the performance of a good action classifier (Li et al., 2018) trained on ground-truth
motions. The classifier is then tested on each of the K motions generated from each observation.
For N observations and K continuations per observation, the accuracy is measured by computing

2See Appendix B for more details on the KL divergence between two multivariate Gaussians and the deriva-
tion of Eq. 7.
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Table 1: Comparison of CPP-VAE with the stochastic motion prediction baselines on Human3.6M.
ELBO (KL) Diversity Quality Context Training KL

Method (Reconstructed) (Sampled) (Sampled) (Sampled) (Reconstructed)

MT-VAE (Yan et al., 2018) 0.51 (0.06) 0.26 0.45 0.42 0.08
Pose-Knows (Walker et al., 2017) 2.08 (N/A) 1.70 0.13 0.08 N/A
HP-GAN (Barsoum et al., 2018) 0.61 (N/A) 0.48 0.47 0.35 N/A
Mix-and-Match (Aliakbarian et al., 2019) 0.55 (2.03) 3.52 0.42 0.37 1.98
CPP-VAE 0.41 (8.07) 3.12 0.48 0.54 6.93

MT-VAE (Yan et al., 2018) CPP-VAE (µ) CPP-VAE (µ+ µc � σc)

Figure 2: t-SNE plots of the posterior mean for 3750 test motions. With MT-VAE (Yan et al., 2018),
all classes are mixed, suggesting that the latent variable carries little information about the input. By
contrast, our condition-dependent sampling allows CPP-VAE to better preserve context. Note that
some actions, such as discussion and directions, are very hard to identify and are thus spread over
other actions. Others, such as walking, walking with dog, and walking together or sitting and sitting
down overlap due to their similarity.

the argmax over each prediction’s probability vector, and we report context as the mean class accu-
racy on the K ×N motions. For all metrics, we use K = 50 motions per test observation. We also
provide qualitative results in Appendix L. For all experiments related to motion prediction, we use
16 frames (i.e., 640ms) as observation to generate the next 60 frames (i.e., 2.4sec).

Evaluating Stochasticity. In Table 1, we compare our approach (with the architecture described
in Appendix H) with the state-of-the-art stochastic motion prediction models (Yan et al., 2018; Ali-
akbarian et al., 2019; Walker et al., 2017; Barsoum et al., 2018). Note that one should consider
the reported metrics jointly to truly evaluate a stochastic model. For instance, while MT-VAE (Yan
et al., 2018) and HP-GAN (Barsoum et al., 2018) generate high-quality motions, they are not di-
verse. Conversely, while Pose-Knows (Walker et al., 2017) generates diverse motions, they are of
low quality. On the other hand, our approach generates both high quality and diverse motions. This
is also the case of Mix-and-Match (Aliakbarian et al., 2019), which, however, preserves much less
context. In fact, none of the baseline can effectively convey the context of the observation to the
generated motions properly. As shown in Table 2, the upper bound for the context on Human3.6M
is 0.60 (i.e., the classifier (Li et al., 2018) performance given the ground-truth motions). Our ap-
proach yields a context of 0.54 when given only about 20% of the data. Altogether, our approach
yields diverse, high-quality and context-preserving predictions. This is further evidenced by the t-
SNE (Maaten & Hinton, 2008) plots of Fig. 2, where different samples of various actions are better
separated for our approach than for, e.g., MT-VAE (Yan et al., 2018). We refer the reader to the
human motion prediction related work section in Appendix C for a brief overview of the baselines.
We also encourage reading Appendix D for further discussion of the aforementioned baselines and
a deeper insight of their behavior under different evaluation metrics.

Evaluating Sampling Quality. To further evaluate the sampling quality, we evaluate stochastic
baselines using the standard mean angle error (MAE) metric in Euler space. To this end, we use the
best of theK = 50 generated motions for each observation (aka S-MSE (Yan et al., 2018)). A model
that generates more diverse motions has more chances of generating a motion close to the ground-
truth one. As shown in Table 3, this is the case with our approach and Mix-and-Match (Aliakbarian
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Table 2: Comparison of the generated motions with the ground-truth future motion in terms of
context. The gap between the performance of the state-of-the-art pose-based action classifier (Li
et al., 2018) with and without true future motions is 0.22. Using our predictions, this gap decreases
to 0.06, showing that our predictions reflect the class label.

Note Observation Future Motion Context

Lower bound (no additional info to the observation) ground-truth Zero velocity 0.38
Upper bound (ground-truth poses as future motion) ground-truth ground-truth 0.60
Ours (sampled motions as future motion) ground-truth Sampled from CPP-VAE 0.54

Table 3: Comparison with the state-of-the-art stochastic motion prediction models for 4 actions of
Human3.6M (all methods use the best of K = 50 sampled motions).

Walking Eating Smoking Discussion

Method 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

MT-VAE (Yan et al., 2018) 0.73 0.79 0.90 0.93 0.95 1.05 0.68 0.74 0.95 1.00 1.03 1.38 1.00 1.14 1.43 1.44 1.68 1.99 0.80 1.01 1.22 1.35 1.56 1.69
HP-GAN (Barsoum et al., 2018) 0.61 0.62 0.71 0.79 0.83 1.07 0.53 0.67 0.79 0.88 0.97 1.12 0.64 0.78 1.05 1.12 1.64 1.84 0.79 1.00 1.12 1.29 1.43 1.71
Pose-Knows (Walker et al., 2017) 0.56 0.66 0.98 1.05 1.28 1.60 0.44 0.60 0.71 0.84 1.05 1.54 0.59 0.83 1.25 1.36 1.67 2.03 0.73 1.10 1.33 1.34 1.45 1.85
Mix&Match (Aliakbarian et al., 2019) 0.33 0.48 0.56 0.58 0.64 0.68 0.23 0.34 0.41 0.50 0.61 0.91 0.23 0.42 0.79 0.77 0.82 1.25 0.25 0.60 0.83 0.89 1.12 1.30
CPP-VAE 0.22 0.36 0.47 0.52 0.58 0.69 0.19 0.28 0.40 0.51 0.58 0.90 0.23 0.43 0.77 0.75 0.78 1.23 0.21 0.52 0.81 0.84 1.04 1.28

Table 4: Comparison with the state-of-the-art deterministic models for 4 actions of Human3.6M.
Walking Eating Smoking Discussion

Method 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Zero Velocity 0.39 0.86 0.99 1.15 1.35 1.32 0.27 0.48 0.73 0.86 1.04 1.38 0.26 0.48 0.97 0.95 1.02 1.69 0.31 0.67 0.94 1.04 1.41 1.96
LSTM-3LR (Fragkiadaki et al., 2015) 1.18 1.50 1.67 1.76 1.81 2.20 1.36 1.79 2.29 2.42 2.49 2.82 2.05 2.34 3.10 3.18 3.24 3.42 2.25 2.33 2.45 2.46 2.48 2.93
SRNN (Jain et al., 2016) 1.08 1.34 1.60 1.80 1.90 2.13 1.35 1.71 2.12 2.21 2.28 2.58 1.90 2.30 2.90 3.10 3.21 3.23 1.67 2.03 2.20 2.31 2.39 2.43
DAE-LSTM (Ghosh et al., 2017) 1.00 1.11 1.39 1.48 1.55 1.39 1.31 1.49 1.86 1.89 1.76 2.01 0.92 1.03 1.15 1.25 1.38 1.77 1.11 1.20 1.38 1.42 1.53 1.73
GRU (Martinez et al., 2017) 0.28 0.49 0.72 0.81 0.93 1.03 0.23 0.39 0.62 0.76 0.95 1.08 0.33 0.61 1.05 1.15 1.25 1.50 0.31 0.68 1.01 1.09 1.43 1.69
AGED (Gui et al., 2018a) 0.22 0.36 0.55 0.67 0.78 0.91 0.17 0.28 0.51 0.64 0.86 0.93 0.27 0.43 0.82 0.84 1.06 1.21 0.27 0.56 0.76 0.83 1.25 1.30
DCT-GCN (Mao et al., 2019) 0.18 0.31 0.49 0.56 0.65 0.67 0.16 0.29 0.50 0.62 0.76 1.12 0.22 0.41 0.86 0.80 0.87 1.57 0.20 0.51 0.77 0.85 1.33 1.70
CPP-VAE (z = µc) 0.20 0.34 0.48 0.53 0.57 0.71 0.20 0.26 0.44 0.52 0.61 0.92 0.21 0.43 0.79 0.79 0.77 1.15 0.22 0.55 0.79 0.81 1.05 1.28

et al., 2019), which both yield higher diversity. However, our approach performs better thanks to its
context-preserving latent representation and its higher quality of the generated motions.

In Table 4, we compare our approach with the state-of-the-art deterministic motion prediction mod-
els (Martinez et al., 2017; Jain et al., 2016; Gui et al., 2018b; Fragkiadaki et al., 2015; Gui et al.,
2018a) using the MAE metric in Euler space. To have a fair comparison, we generate one motion
per observation by setting the latent variable to the distribution mode, i.e., z = µc. This allows
us to generate a plausible motion without having access to the ground-truth. To compare against
the deterministic baselines, we follow the standard setting, and thus use 50 frames (i.e., 2sec) as
observation to generate the next 25 frames (i.e., 1sec). Surprisingly, despite having a very simple
motion decoder architecture (one-layer GRU network) with a very simple reconstruction loss func-
tion (MSE), this motion-from-mode strategy yields results that are competitive with those of the
baselines that use sophisticated architectures and advanced loss functions. We argue that learning
a good, context-preserving latent representation of human motion is the contributing factor to the
success of our approach. This, however, could be used in conjunction with sophisticated motion
decoders and reconstruction losses, which we leave for future research.

In Appendix E, we study alternative designs to condition the VAE encoder and decoder.

4.2 DIVERSE IMAGE CAPTIONING

For the task of conditional text generation, we focus on stochastic image captioning. To demonstrate
the effectiveness of our approach, we report results on the MSCOCO (Lin et al., 2014) captioning
task with the original train/test splits of 83K and 41K images, respectively. The MSCOCO dataset
has five captions per image. However, we make it deterministic by removing four captions per
image, yielding a Deterministic-MSCOCO captioning dataset. Note that the goal of this experiment
is not to advance the state of the art in image captioning, but rather to explore the effectiveness of our
approach on a different task, where we have strong conditioning signal and an expressive decoder in
the presence of a deterministic dataset.
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Table 5: Quantitative evaluation of stochastic image captioning on the MSCOCO Captioning dataset.
Model ELBO (KL) Perplexity Quality Diversity Context Training KL

(Reconstructed) (Reconstructed) (Sampled) (Sampled) (Sampled) (Reconstructed)

Autoregressive 3.01 (N/A) 20.29 0.40 N/A 0.46 N/A
Conditional VAE 2.86 (0.00) 17.46 0.39 0.00 0.44 0.00
CPP-VAE 0.21 (3.28) 1.23 0.40 0.53 0.43 3.11

A brief review of the recent work on diverse text generation is given in Appendix J.

We compare CPP-VAE (with the architecture described in Appendix I) with a standard CVAE
and with its autoregressive, non-variational counterpart3. For quantitative evaluation, we report
the ELBO (the negative log-likelihood), along with the KL-divergence and the Perplexity of the
reconstructed captions on the held-out test set. We also quantitatively measure the diversity, the
quality, and the context of sampled captions. To measure the context, we rely on the BLEU1 score,
making sure that the sampled captions represent elements that appear in the image. For CVAE and
CPP-VAE, we compute the average BLEU1 score for K = 50 captions sampled per image and
report the mean over the images. To measure the diversity, we measure the BLEU4 score between
every pair of K = 50 sampled captions per image. The smaller the BLEU4 is, the more diverse
the captions are. The diversity metric is then 1-BLEU4, i.e., the higher the better. To measure the
quality, we use a metric similar to that in our human motion prediction experiments, obtained by
training a binary classifier to discriminate real (ground-truth) captions from fake (generated) ones.
The accuracy of this classifier on the test set is inversely proportional to the quality of the generated
captions. We expect a good stochastic model to have high quality and high diversity at the same
time, while capturing the context of the given image. We provide qualitative examples for all the
methods in Appendix M. As shown in Table 5, a CVAE learns to ignore the latent variable as it can
minimize the caption reconstruction loss given solely the image representation. By doing so, all the
generated captions at test time are identical, despite sampling multiple latent variables. This can be
further seen in the ELBO and Perplexity of the reconstructed captions. We expect a model that gets
as input the captions and the image to have a much lower reconstruction loss compared to the au-
toregressive baseline (which gets only the image as input). However, this is not the case with CVAE,
indicating that the connection between the encoder and the decoder, i.e., the latent variable, does not
carry essential information about the input caption. However, the quality of the generated sample is
reasonably good. This is also illustrated in the qualitative evaluations in Appendix M. CPP-VAE,
on the other hand, is able to effectively handle this situation by unifying the sampling of the la-
tent variable and the conditioning, leading to diverse but high quality captions, as reflected by the
ELBO of our approach in Table 5 and the qualitative results in Appendix M. Additional quantitative
evaluations and ablation studies for image captioning are provided in Appendix K.

5 CONCLUSION

In this paper, we have studied the problem of posterior collapse in conditional generative latent-
variable models, with a focus on scenarios where the conditioning signal is strong enough such that
an expressive decoder can generate plausible samples from it only. We have addressed this prob-
lem by forcing the sampling of the random latent variable to depend on the conditioning one. By
making this dependency explicit, we have prevented the network from ignoring the latent variable
in the presence of a strong condition, thus enabling it to generate diverse outputs. To demonstrate
the effectiveness of our approach, we have investigated two application domains: Stochastic hu-
man motion prediction and diverse image captioning. In both cases, our CPP-VAE model was able
to generate diverse and plausible samples, as well as to retain contextual information, leading to
semantically-meaningful predictions. In the future, we will apply our approach to other problems
that rely on strong conditions, such as image inpainting and super-resolution, for which only deter-
ministic datasets are available.

3Note that CPP-VAE is agnostic to the choice of data encoder/decoder architecture. Thus, one could use
more sophisticated architectures, which we leave for future research.
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A DETAILED TECHNICAL BACKGROUND ON EVIDENCE LOWER BOUND

To solve the maximum likelihood problem, we would like to have pθ(x|z) and pθ(z). Using Varia-
tional Inference, we aim to approximate the true posterior pθ(z|x) with another distribution qφ(z|x).
This distribution is computed via another neural network parameterized by φ (called variational
parameters), such that qφ(z|x) ' pθ(z|x). Using such an approximation, Variational Autoen-
coders (Kingma & Welling, 2013), or VAEs in short, are able to optimize the marginal likelihood in
a tractable way. The optimization objective of the VAEs is a variational lower bound, also known
as evidence lower bound, or ELBO in short. Recall that variational inference aims to find an ap-
proximation of the posterior that represents the true one. One way to do this is to minimize the
divergence between the approximate and the true posterior using Kullback-Leibler divergence, or
KL divergence in short. That is,

DKL
[
qφ(z|x)||pθ(z|x)

]
=

∑
z∼qφ(z|x)

qφ(z|x) log
qφ(z|x)

pθ(z|x)
(9)

This can be seen as an expectation,

DKL
[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ(z|x)

[
log

qφ(z|x)

pθ(z|x)

]
= Ez∼qφ(z|x)

[
log qφ(z|x)− log pθ(z|x)

]
(10)

The second term above, i.e., the true posterior, can according to Bayes’ theorem, be written as
pθ(z|x) = pθ(x|z)p(z)

pθ(x)
. The data distribution pθ(x) is independent of the latent variable z, and can

thus be pulled out of the expectation term,

DKL
[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ(z|x)

[
log qφ(z|x)− log pθ(x|z)− log p(z)

]
+ log pθ(x) (11)

By shifting the log pθ(x) term to the right hand side of the above equation, we can write,

DKL
[
qφ(z|x)||pθ(z|x)

]
− log pθ(x) = Ez∼qφ(z|x)

[
log qφ(z|x)− log pθ(x|z)− log p(z)

]
log pθ(x)−DKL

[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ(z|x)

[
log pθ(x|z)−

(
log qφ(z|x)− log p(z)

)]
= Ez∼qφ(z|x)

[
log pθ(x|z)

]
− Ez∼qφ(z|x)

[
log qφ(z|x)− log p(z)

]
(12)

The second expectation term in the above equation is, by definition, the KL divergence between the
approximate posterior qφ(z|x) and the prior log p(z) distributions. Thus, this can be written as

log pθ(x)−DKL

[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ(z|x)

[
log pθ(x|z)

]
−DKL

[
qφ(z|x)||p(z)

]
(13)
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In the above equation, log pθ(x) is the log-likelihood of the data which we would like to opti-
mize. DKL

[
qφ(z|x)||pθ(z|x)

]
is the KL divergence between the approximate and the true pos-

terior distributions, and while not computable, from definition we know that it is non-negative.
Ez∼qφ(z|x)

[
log pθ(x|z)

]
is the reconstruction loss, and DKL

[
qφ(z|x)||p(z)

]
is the KL divergence

between the approximate posterior distribution and a prior over the latent variable. The last term can
be seen as a regularizer of the latent representation. Therefore, the intractability and non-negativity
of DKL

[
qφ(z|x)||pθ(z|x)

]
only allows us to optimize the lower bound of the log-likelihood of the

data,

log pθ(x) ≥ Ez∼qφ(z|x)
[

log pθ(x|z)
]
−DKL

[
qφ(z|x)||p(z)

]
(14)

which we call variational or evidence lower bound (ELBO).

B KL DIVERGENCE BETWEEN TWO GAUSSIAN DISTRIBUTIONS

In our approach, the model encourages the posterior of CPP-VAE to be close to the one of the
CS-VAE. In general, the KL divergence between two distributions P1 and P2 is defined as

DKL(P1||P2) = EP1

[
log

P1

P2

]
(15)

In a general case, one can have a multivariate Gaussian distribution N (µ,Σ) in Rd where Σ =
diag(σ2) where σ and µ are predicted by the encoder network of the VAE. The density function of
such a distribution is

p(x) =
1

(2π)
d
2 det(Σ)

1
2

exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(16)

Thus, the KL divergence between two multivariate Gaussians is computed as

DKL(P1||P2)

=
1

2
EP1

[
− log det Σ1 − (x− µ1)TΣ−11 (x− µ1) + log det Σ2 + (x− µ2)TΣ−12 (x− µ2)

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− (x− µ1)TΣ−11 (x− µ1) + (x− µ2)TΣ−12 (x− µ2)

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− tr{Σ−11 (x− µ1)(x− µ1)T }+ tr{Σ−12 (x− µ2)(x− µ2)T }

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− tr{Σ−11 Σ1}+ tr{Σ−12 (xxT − 2xµT2 + µ2µ

T
2 )}
]

=
1

2
log

det Σ2

det Σ1
− 1

2
d+

1

2
tr{Σ−12 (Σ1 + µ1µ

T
1 − 2µ2µ

T
1 + µ2µ

T
2 )}

=
1

2

[
log

det Σ2

det Σ1
− d+ tr{Σ−12 Σ1}+ tr{µT1 Σ−12 µ1 − 2µT1 Σ−12 µ2 + µT2 Σ−12 µ2}

]

=
1

2

[
log
|Σ2|
|Σ1|

− d+ tr{Σ−12 Σ1}+ (µ2 − µ1)TΣ−12 (µ2 − µ1)

]
. (17)

where tr{·} is the trace operation. In Eq. 17, the covariance matrix Σ1 and mean µ1 corresponds to
distribution P1 and covariance matrix Σ2 and mean µ2 corresponds to distribution P2.

LKL = −1

2

[
log
|Σ2|
|Σ1|

− d+ tr{Σ−12 Σ1}+ (µ2 − µ1)TΣ−12 (µ2 − µ1)

]
. (18)

Given Eq. 18, we can then compute the KL divergence of the CPP-VAE and the posterior distribution
with mean µ+ σ � µc and covariance matrix diag((σ � σc)2). Let Σ = diag(σ2), Σc = diag(σ2

c ),
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d the dimensionality of the latent space, and tr{·} the trace of a square matrix. The loss in Eq. (6)
can then be written as4

LCPP-VAEprior = −1

2

[
log

|Σc|
|Σc||Σ|

− d+ tr{Σ−1c ΣcΣ}+ (µc − (µ+ Σµc))
TΣ−1c (µc − (µ+ Σµc))

]
.

(19)

Since Σ−1c Σc = I , |Σc| will be cancelled out in the log term, which yields

LCPP-VAEprior = −1

2

[
log

1

|Σ|
− d+ tr{Σ}+ (µc − (µ+ Σµc))

TΣ−1c (µc − (µ+ Σµc))
]
. (20)

C STOCHASTIC HUMAN MOTION PREDICTION RELATED WORK

Most motion prediction methods are based on deterministic models (Pavllo et al., 2018; 2019; Gui
et al., 2018a; Jain et al., 2016; Martinez et al., 2017; Gui et al., 2018b; Fragkiadaki et al., 2015;
Ghosh et al., 2017), casting motion prediction as a regression task where only one outcome is pos-
sible given the observation. While this may produce accurate predictions, it fails to reflect the
stochastic nature of human motion, where multiple futures can be highly likely for a single given
series of observations. Modeling stochasticity is the topic of this paper, and we therefore focus the
discussion below on the other methods that have attempted to do so.

The general trend to incorporate variations in the predicted motions consists of combining informa-
tion about the observed pose sequence with a random vector. In this context, two types of approaches
have been studied: The techniques that directly incorporate the random vector into the RNN decoder
and those that make use of an additional CVAE. In the first class of methods, (Lin & Amer, 2018)
samples a random vector zt ∼ N (0, I) at each time step and adds it to the pose input of the RNN
decoder. By relying on different random vectors at each time step, however, this strategy is prone
to generating discontinuous motions. To overcome this, (Kundu et al., 2018) makes use of a single
random vector to generate the entire sequence. This vector is both employed to alter the initialization
of the decoder and concatenated with a pose embedding at each iteration of the RNN. By relying
on concatenation, these two methods contain parameters that are specific to the random vector, and
thus give the model the flexibility to ignore this information. In (Barsoum et al., 2018), instead of
using concatenation, the random vector is added to the hidden state produced by the RNN encoder.
While addition prevents having parameters that are specific to the random vector, this vector is first
transformed by multiplication with a learnable parameter matrix, and thus can again be zeroed out
so as to remove the source of diversity, as observed in our experiments. The second category of
stochastic methods introduce an additional CVAE between the RNN encoder and decoder. This al-
lows them to learn a more meaningful transformation of the noise, combined with the conditioning
variables, before passing the resulting information to the RNN decoder. In this context, (Walker
et al., 2017) proposes to directly use the pose as conditioning variable. As will be shown in our
experiments, while this approach is able to maintain some degree of diversity, albeit less than ours,
it yields motions of lower quality because of its use of independent random vectors at each time step.
Instead of perturbing the pose, the recent work (Yan et al., 2018) uses the RNN decoder hidden state
as conditioning variable in the CVAE, concatenating it with the random vector. While this approach
generates high-quality motions, it suffers from the fact that the CVAE decoder gives the model the
flexibility to ignore the random vector, which therefore yields low-diversity outputs. Similar to (Yan
et al., 2018) Mix-and-Match (Aliakbarian et al., 2019) perturbs the hidden states, but replaces the
deterministic concatenation operation with a stochastic perturbation of the hidden state with the
noise. Through such a perturbation, the decoder is not able decouple the noise and the condition,
the phenomenon that happens in concatenation (Yan et al., 2018). However, since the perturbation
is not learned and is a non-parametric operation, the quality of generated motion is comparably low.

Generating diverse plausible motions given limited observations has many applications, especially
when the motions are generated in an action-agnostic manner, as done in our work. For instance, our
model can be used for human action forecasting (Rodriguez et al., 2018; Sadegh Aliakbarian et al.,
2017; Shi et al., 2018; Aliakbarian et al., 2018), where one seeks to anticipate the action as early as
possible, where one modality utilized is human motion/poses.

4See Appendix B for more details on the KL divergence between two multivariate Gaussians.

14



Under review as a conference paper at ICLR 2020

D FURTHER DISCUSSION ON THE PERFORMANCE OF STOCHASTIC
BASELINES

The MT-VAE model (Yan et al., 2018) tends to ignore the random variable z, thus ignoring the root
of variation. As a consequence, it achieves a low diversity, much lower than ours, but produces
samples of high quality, albeit almost identical (see the qualitative comparison of different baselines
in the appendix). To further confirm that the MT-VAE ignores the latent variable, we performed
an additional experiment where, at test time, we sampled each element of the random vector inde-
pendently from N (50, 50) instead of from the prior N (0, I). This led to neither loss of quality nor
increase of diversity of the generated motions. Experiments on HP-GAN model (Barsoum et al.,
2018) evidences the limited diversity of the sampled motions despite its use of random noise during
inference. Note that the authors of (Barsoum et al., 2018) mentioned in their paper that the random
noise was added to the hidden state. Only by studying their publicly available code5 did we under-
stand the precise way this combination was done. In fact, the addition relies on a parametric, linear
transformation of the noise vector. That is, the perturbed hidden state is obtained as

hperturbed = horiginal +W z→hz . (21)

Because the parameters W z→h are learned, the model has the flexibility to ignore z, which leads to
the low diversity of sampled motions. Note that the authors of (Barsoum et al., 2018) acknowledged
that, despite their best efforts, they noticed very little variation between predictions obtained with
different z values. Since the perturbation is ignored, however, the quality of the generated motions
is high. The other baseline, Pose-Knows (Walker et al., 2017), produces motions with higher di-
versity than the aforementioned two baselines, but of much lower quality. The main reason behind
this is that the random vectors that are concatenated to the poses at each time-step are sampled inde-
pendently of each other, which translates to discontinuities in the generated motions. This problem
might be mitigated by sampling the noise in a time-dependent, autoregressive manner, as in (Kumar
et al., 2019) for video generation. Doing so, however, goes beyond the scope of our analysis. The
Mix-and-Match approach (Aliakbarian et al., 2019) yields sampled motions with higher diversity
and reasonable quality. The architecture of Mix-and-Match is very close to that of MT-VAE, but
replaces the deterministic concatenation operation with a stochastic perturbation of the hidden state
with the noise. Through such a perturbation, the decoder is not able decouple the noise and the
condition, the phenomenon that happens in concatenation. However, since the perturbation is not
learned and is a non-parametric operation, the quality of the generated motion is lower than ours and
of other baselines (except for Pose-Knows). We see Mix-and-Match perturbation as a workaround to
the posterior collapse problem while sacrificing the quality and the context in the sampled motions.
We also provide a more complete related work on diverse human motion prediction in Appendix C.

E ABLATION STUDY ON DIFFERENT MEANS OF CONDITIONING

In addition to the experiments in the main paper, we also study various designs to condition the
VAE encoder and decoder. As discussed before, conditioning the VAE encoder can be safely done
via concatenating two deterministic sources of information, i.e., the representations of the past and
the future, since both sources are useful to compress the future motion into the latent space. In
Table 6, we use both a deterministic representation of the observation, ht, and a stochastic one,
zc, as a conditioning variable for the encoder. Similarly, we compare the use of either of these
variables via concatenation with that of our modified reparameterization trick (Eq. 4). This shows
that, to condition the decoder, reparameterization is highly effective at addressing posterior collapse.
Furthermore, for the encoder, a deterministic condition works better than a stochastic one. When
both the encoder and decoder are conditioned via deterministic conditioning variables, i.e., row 2 in
Table 6, the model learns to ignore the latent variable and rely solely on the condition, as evidenced
by the KL term tending to zero.

F EXPERIMENTAL RESULTS ON PENN ACTION DATASET

As a complementary experiment, we evaluate our approach on the Penn Action dataset, which con-
tains 2326 sequences of 15 different actions, where for each person, 13 joints are annotated in 2D

5https://github.com/ebarsoum/hpgan
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Table 6: Evaluation of various architecture designs for a CVAE. A smaller KL value, indicating
posterior collapse, leads to less diversity.

Encoder Conditioning Decoder Conditioning CPP-VAE’s Training KL

Concatenation (zc) Reparameterization (zc) 6.92
Concatenation (ht) Concatenation (ht) 0.04
Concatenation (zc) Concatenation (zc) 0.61
Concatenation (ht) Reparameterization (zc) 8.07

space. Most sequences have less than 50 frames and the task is to generate the next 35 frames given
the first 15. Results are provided in Table 7. Note that the upper bound for the Context metric is
0.74, i.e., the classification performance given the Penn Action ground-truth motions.

Table 7: Quantitative evaluation on the Penn Action dataset. Note, the diversity of 1.21 is reasonably
high for normalized 2D joint positions, i.e., values between 0 and 1, normalized with the width and
the height of the image.

ELBO (KL) Diversity Quality Context Training KL
Method (Reconstructed) (Sampled) (Sampled) (Sampled) (Reconstructed)

CPP-VAE 0.034 (6.07) 1.21 0.46 0.70 4.84
Autoregressive Counterpart 0.048 (N/A) 0.00 0.46 0.51 N/A

G PSEUDO-CODE FOR CPP-VAE

Here, we provide the forward pass pseudo-codes for both CS-VAE and CPP-VAE.

Algorithm 1 A forward pass of CS-VAE
1: procedure CS-VAE(condition) . Human motion up to time t or the source text
2: ht = EncodeCondition(xt) . Observed motion/source text encoder
3: µc, σc = CS-VAE.Encode(ht)
4: Sample ε ∼ N (0, I) . Sample from standard Gaussian
5: zc = µc + σc � ε . Reparameterization
6: ĥt = CS-VAE.Decode(zc)
7: x̂t = DecodeCondition(ĥt, seed)
8: return x̂t, µc, σc, ht, zc . ht and zc condition CPP-VAE encoder and decoder respectively

Algorithm 2 A forward pass of CPP-VAE
1: procedure CPP-VAE(xT , zc, ht) . Human motion from t to T or the target text
2: if isTraining then
3: hT = EncodeData(xT ) . Future motion/target sentence encoder
4: hTt = Concatenate(hT , ht)
5: µ, σ = CPP-VAE.Encode(hTt)
6: z = µ+ σ � zc . Our extended reparameterization
7: else
8: z = zc
9: ĥT = CPP-VAE.Decode(z)

10: x̂T = DecodeData(ĥT , seed)
11: return x̂T , µ, σ

H STOCHASTIC HUMAN MOTION PREDICTION ARCHITECTURE

Our motion prediction model follows the architecture depicted in Fig. 1 (a). Below, we describe
the architecture of each component in our model. Note that human poses, consisting of 32 joints in
case of the Human3.6M dataset, are represented in 4D quaternion space. Thus, each pose at each
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time-step is represented with a vector of size 1 × 128. All the tensor sizes described below ignores
the mini-batch dimension for simplicity.

Observed motion encoder, or the CS-VAE’s motion encoder, is a single layer GRU (Chung et al.,
2014) network with 1024 hidden units. If the observation sequence has the length Tobs, the observed
motion encoder maps Tobs×128 into a single hidden representation of size 1×1024, i.e., the hidden
state of the last time-step. This hidden state, ht, acts as the condition to the CPP-VAE’s encoder and
the direct input to the CS-VAE’s encoder.

CS-VAE, similar to any variational autoencoder, has an encoder and decoder. The CS-VAE’s en-
coder is a fully-connected network with ReLU non-linearities, mapping the hidden state of the mo-
tion encoder, i.e., ht, to an embedding of size 1 × 512. Then, to generate the mean and standard
deviation vectors, two fully connected branches are considered. These map the embedding of size
1×512 to a vector of means of size 1×128 and a vector of standard deviation of size 1×128, where
128 is the length of the latent variable. Note that we apply a ReLU non-linearity to the vector of stan-
dard deviations to make sure it is non-negative. We then use the reparameterization trick (Kingma
& Welling, 2013) to sample a latent variable of size 1 × 128. The CS-VAE’s decoder consists of
multiple fully-connected layers, mapping the latent variable to a variable of size 1× 1024, acting as
the initial hidden state of the observed motion decoder. Note that, we apply a Tanh non-linearity to
the generated hidden state to mimic the properties of a GRU hidden state.

Observed motion decoder, or the CS-VAE’s motion decoder, is similar to its motion encoder,
except for the fact that it reconstructs the motion autoregressively. Additionally, it is initialized with
the reconstructed hidden state, i.e., the output of CS-VAE’s decoder. The output of each GRU cell
at each time-step is then fed to a fully-connected layer, mapping the GRU output to a vector of size
1×128 which represents a human pose with 32 joints in 4D quaternion space. To decode the motions,
we use a teacher forcing technique (Williams & Zipser, 1989) during training. At each time-step,
the network chooses with probability Ptf whether to use its own output at the previous time-step
or the ground-truth pose as input. We initialize Ptf = 1, and decrease it linearly at each training
epoch such that, after a certain number of epochs, the model becomes completely autoregressive,
i.e., uses only its own output as input to the next time-step. Note, at test time, motions are generated
completely autoregressively, i.e., with Ptf = 0.

Note, the future motion encoder and decoder have exactly the same architectures as the observed
motion ones. The only difference is their input, where the future motion is represented by poses
from Tobs to Tend in a sequence. In the following, we describe the architecture of CPP-VAE for
motion prediction.

CPP-VAE is a conditional variational encoder. Its encoder’s input is a representation of future
motion, i.e., the last hidden state of the future motion encoder called hT , conditioned on ht. The
conditioning is done by concatenation, thus, the input to the encoder is a representation of size
1× 2048. The CPP-VAE’s encoder, similar to CS-VAE’s encoder, maps its input representation to
an embedding of size 1× 512. Then, to generate the mean and standard deviation vectors, two fully
connected branches are considered, mapping the embedding of size 1 × 512 to a vector of means
of size 1 × 128 and a vector of standard deviations of size 1 × 128, where 128 is the length of the
latent variable. Note that we apply a ReLU non-linearity to the vector of standard deviations to make
sure it is non-negative. To sample the latent variable, we use our extended reparameterization trick,
explained in Eq. 4. This unifies the conditioning and sampling of the latent variable. Then, similar
to CS-VAE, the latent variable is fed to the CPP-VAE’s decoder, which is a fully connected network
that maps the latent representation of size 1 × 128 to a reconstructed hidden state of size 1 × 1024
for future motion. Note that, we apply a Tanh non-linearity to the generated hidden state to mimic
the properties of a GRU hidden state.

I DIVERSE IMAGE CAPTIONING ARCHITECTURE

Our diverse image captioning model follows the architecture depicted in Fig. 1 (a). Below, we
describe the architecture of each component in our model. Note, all tensor sizes described below
ignore the mini-batch dimension for simplicity.

Image encoder is, here, ResNet152 (He et al., 2016) pretrained on ImageNet (Krizhevsky et al.,
2012). Given the encoder, the conditioning signal is a 1 × 2048 feature representation. Note that,
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to avoid an undesirable equilibrium in the reconstruction loss of the CS-VAE, we freeze ResNet152
during training.

CS-VAE is a standard variational autoencoder. The encoder of the CS-VAE maps the input rep-
resentation of size 1 × 2048 to an embedded representation of size 1 × 1024. Then, to generate
the mean and standard deviation vectors, two fully connected branches are considered, mapping the
embedding of size 1× 1024 to a vector of means of size 1× 256 and a vector of standard deviations
of size 1× 256, where 256 is the length of the latent variable. The decoder of the CS-VAE maps the
sampled latent variable of size 1 × 256 to a representation of size 1 × 2048. The generated repre-
sentation acts as a reconstructed image representation. During training, we learn the reconstruction
by computing the smoothed L1 loss6 between the generated representation and the image feature (of
the frozen ResNet152).

Caption encoder is a single layer GRU network with the hidden size of 1024. Each word in the
caption is represented through a randomly initialized embedding layer that maps each word to a
representation of size 1× 1024. The caption encoder gets a caption as input and generates a hidden
representation of size 1× 1024.

CPP-VAE is a conditional variational autoencoder. As the input to its encoder, we first concatenate
the image representation of size 1×2048 to the caption representation of size 1×1024. The encoder
then maps this representation to an embedded representation of size 1 × 1024. Then, to generate
the mean and standard deviation vectors, two fully connected branches are considered, mapping
the embedding of size 1 × 1024 to a vector of means of size 1 × 256 and a vector of standard
deviations of size 1 × 256, where 256 is the length of the latent variable. To sample the latent
variable, we make use of our extended reparameterization trick, explained in Eq. 4. This unifies
the conditioning and sampling of the latent variable. The CPP-VAE’s decoder then maps this latent
representation to a vector of size 1 × 1024 through a few fully-connected layers. We then apply a
batch normalization (Ioffe & Szegedy, 2015) on the representation which then acts as the first token
to the caption decoder.

Caption decoder is also a single layer GRU network with a hidden size of 1024. Its first token is
the representation generated by the CPP-VAE’s decoder, while the rest of tokens are represented by
the words in the corresponding caption. To decode the caption, we use a teacher forcing technique
during training. At each time-step, the network chooses with probability Ptf whether to use its
own output at the previous time-step or the ground-truth token as input. We initialize Ptf = 1, and
decrease it linearly at each training epoch such that, after a certain number of epochs, the model
becomes completely autoregressive, i.e., uses only its own output as input to the next time-step.
Note, at test time, motions are generated completely autoregressively, i.e., with Ptf = 0.

J DIVERSE TEXT GENERATION RELATED WORK

There are a number of studies which utilize generative models for language modeling. For in-
stance, (Fang et al., 2019) uses VAEs and LSTMs in an unconditional language modeling problem
where posterior collapse may occur if the VAE is not trained well. To handle the problem of poste-
rior collapse in language modeling, the authors of (Fang et al., 2019) try to directly match the ag-
gregated posterior to the prior. It is discussed that this can be considered an extension of variational
autoencoders with a regularization when maximizing mutual information, addressing the posterior
collapse issue. VAEs are also used for language modeling in (Li et al., 2019). It was observed that
for language modeling with VAEs it is hard to find a good balance between language modeling and
representation learning. To improve the training of VAEs in such scenarios, the authors of (Li et al.,
2019) first pretrain the inference network in an autoencoder fashion such that the inference network
learns a good representation of the data in a deterministic manner. Then, they train the whole VAE
while considering a weight for the KL term during training. However, the second step modifies the
way VAEs optimize the variational lower bound. The proposed technique also prevents the model
from being trained end-to-end.

Unlike these approaches, our method considers the case of conditional sequence (text) generation
where the conditioning signal (the image to be captioned in our case) is strong enough such that the
caption generator can rely solely on that.

6https://pytorch.org/docs/stable/nn.htmlsmoothl1loss
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A recent work (Cho et al., 2019) proposes to separate the diversification from generation when it
comes to sequence generation and language modeling. The diversification stage uses a mixture of
experts (MoE) to sample different binary masks on the source sequence for diverse content selection.
The generation stage uses a standard encoder-decoder model given each selected content from the
source sequence. While shown to be effective in generating diverse sequences, it relies heavily on
the selection part, where one need to select the information in the source that is more important to
generate the target sequence. Thus, the diversity of the generated target sequence depends on the
diversity of the selected parts of the source sequence. Similarly, the authors of (Shen et al., 2019)
utilize MoE for the task of diverse machine translation. While this task is considered to be diverse
text generation and shown to be highly successful in generating diverse translations of each source
sentence, it relies on the availablity of the a stochastic dataset, i.e., having access to multiple target
sequences for each source sentence during training.

While these approaches are successful in generating diverse sentences given the conditioned se-
quence, unlike our approach that works with deterministic datasets, they assume having access to a
stochastic dataset.

K ABLATION STUDY ON DIVERSE IMAGE CAPTIONING

In addition to the experiments in the main paper, in Table 8, we also evaluate our approach, as well
as the autoregressive baseline and the CVAE, in terms of BLEU score for BLEU1, BLEU2, BLEU3,
and BLEU4 of generated captions at test time. For the autoregressive baseline, the model generates
one caption per image, thus, it is straightforward to compute the BLEU scores. For the CVAE, we
consider the best BLEU score among all K = 50 sampled captions according the the best matching
ground-truth caption. For our model, we consider the caption from mode, i.e., the one sampled from
z = µc. Although the caption sampled from CPP-VAE is not chosen based on the best match with
the ground-truth caption (similar to CVAE), it shows promising quality in terms of BLEU scores.
For the sake of completeness and fairness, we also provide the results with best of K captions for
our approach as well.

Table 8: BLEU scores of different orders for sampled captions from our model as well as the base-
lines.

Model BLEU1 BLEU2 BLEU3 BLEU4

Autoregressive (deterministic) 0.46 0.39 0.21 0.16
Conditional VAE (best of K captions) 0.44 0.38 0.20 0.17
CPP-VAE (caption from mode) 0.44 0.37 0.20 0.14
CPP-VAE (best of K captions) 0.45 0.39 0.23 0.18

The results in Table 8 clearly shows the effectiveness of sampling from mode in our approach. In
this case, one could simply rely on the mode of the distribution to achieve a reasonably high quality
caption.

L HUMAN MOTION PREDICTION QUALITATIVE RESULTS

Here we provide a number of qualitative results on diverse human motion prediction on the Hu-
man3.6M dataset. As can be seen in Figures 3 to 8, the motions generated by our approach are
diverse and natural, and mostly within the context of the observed motion.

M DIVERSE IMAGE CAPTIONING QUALITATIVE RESULTS

In this section, we provide a number of qualitative examples of captions generated by our approach.
Illustrated in Figures 9 to 16, there are five different ground-truth captions per image. However,
as mentioned in the paper, during training we only utilize one (i.e., training with a deterministic
dataset). While captions generated by our approach are diverse, they all describe the image ade-
quately. Note that it is a feature of our approach to generate a caption from the mode of its distribu-
tion, usually achieving a good descriptive caption. This is also evidenced by the quantitative results
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Figure 3: Qualitative evaluation of the diversity in human motion. The first row illustrates the
ground-truth motion. The first six poses of each row depict the observation (the condition) and the
rest are sampled from our model. Each row is a randomly sampled motion (not cherry picked).
As can be seen, all sampled motions are natural, with a smooth transition from the observed to the
generated ones. The diversity increases as we increase the sequence length.

Figure 4: Additional qualitative evaluation of the diversity in human motion.

in Table 8 where the BLEU scores for the caption from mode is relatively high compared to other
baselines. Note that for the conditional VAE, all sampled captions are identical, despite sampling
multiple latent variables. Therefore, we provide only one caption for this baseline.
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Figure 5: Additional qualitative evaluation of the diversity in human motion.

Figure 6: Additional qualitative evaluation of the diversity in human motion.
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Figure 7: Additional qualitative evaluation of the diversity in human motion.

Figure 8: Additional qualitative evaluation of the diversity in human motion.
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ground-truth Captions:
1. A big blue two level bus at a bus stop with people.
2. a blue and white double decker bus parked at a bus stop
3. A blue bus s parked on a curb where people are standing.
4. A blue double decker bus parked on the side of a road.
5. A bus pulls up to a station where people wait.

Caption from Autoregressive:
a blue bus is parked on the side of the road .
Caption from Conditional VAE:
a bus is parked on the side of the road .

Captions from CPP-VAE’s sampling:
1. a large bus is going down the street next to a huge crowd of people .
2. a double decker bus is driving down the street .
3. a blue and white bus on a street next to a building .
4. a bus is driving down the street with a car on the opposite side of the road .
5. a bus is driving down the street with a group of people on the side of it .
6. a street with a lot of people on it and a street sign on it .
7. a group of people standing on a street near a bus .
8. a street sign on a pole with a bus in the background .
9. a bus is parked on the side of the street .
Caption from CPP-VAE’s mode:
a double decker bus is driving down the street in pursuit of passengers .

Figure 9: Qualitative evaluation of the diversity in generated captions. While captions generated by
our approach are diverse, they all describe the image properly. The caption from mode also usually
achieves a good descriptive caption.

ground-truth Captions:
1. A group of sheep standing in a field.
2. Three sheep in a a grassy field with more sheep in the background.
3. A flock of sheep are on a green sloping field.
4. A group of sheep standing in a rocky field of grass.
5. sheep look towards the camera as the stand in a field

Caption from Autoregressive:
a group of sheep standing on top of a lush green field .
Caption from Conditional VAE:
a herd of sheep standing on a lush green hillside .

Captions from CPP-VAE’s sampling:
1. a herd of sheep grazing on a lush green hillside .
2. a group of sheep standing around in a field .
3. a herd of sheep standing on top of a grass covered field .
4. a group of sheep are standing in a grassy field .
5. a herd of sheep standing on top of a grass covered hillside .
6. a sheep standing on a hillside with other sheep in the background .
7. a group of sheep grazing in a field .
8. a group of sheep standing on a hill with a view of the grass .
9. a group of sheep standing next to each other .
Caption from CPP-VAE’s mode:
a herd of sheep grazing on a lush green hillside .

Figure 10: Additional qualitative evaluation of the diversity in generated captions.
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ground-truth Captions:
1. A little girl holds up a big blue umbrella.
2. a young girl stands with her arms wrapped around a large blue umbrella
3. A girl in a pink shirt holding a blue umbrella.
4. A little girl who is holding an umbrella.
5. A little girl with a big, blue umbrella

Caption from Autoregressive:
a woman holding an umbrella standing in the rain .
Caption from Conditional VAE:
a little girl standing in a field holding an umbrella .

Captions from CPP-VAE’s sampling:
1. a person holding a rainbow colored umbrella over their head .
2. a woman holding an umbrella in the rain .
3. a woman holding a colorful umbrella over her head .
4. a woman holding an umbrella in the rain .
5. a woman with a red umbrella is standing on the beach .
6. a woman in a red shirt is holding a blue umbrella .
7. a person holding an umbrella while walking down a street .
8. a woman holding an umbrella while walking on a sidewalk .
9. a little girl with a purple umbrella standing in the rain .
Caption from CPP-VAE’s mode:
a young woman holding an umbrella standing on a sidewalk .

Figure 11: Additional qualitative evaluation of the diversity in generated captions.

ground-truth Captions:
1. There is a bird that is on a branch sitting looking
2. A small red and gray bird on top of a branch.
3. A bird with an orange beak sitting on a tree branch.
4. A small yellow and red finch resting on a branch.
5. there is a small bird that is standing on the branch

Caption from Autoregressive:
a bird is perched on a tree branch .
Caption from Conditional VAE:
a bird is perched on a branch in a tree .

Captions from CPP-VAE’s sampling:
1. a bird sitting on top of a tree branch .
2. a bird is perched on top of a tree branch .
3. a bird is perched on a branch in the sun .
4. a bird is perched on a branch in the shade .
5. a large orange and black bird sitting on top of a metal pole .
6. a bird is standing on the side of a road .
7. a bird is standing on a branch in a tree .
8. a bird is standing on a rock in a patch of grass .
9. a little bird is standing on a branch in a tree .
Caption from CPP-VAE’s mode:
a bird sitting on top of a tree branch .

Figure 12: Additional qualitative evaluation of the diversity in generated captions.
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ground-truth Captions:
1. A clock and a lamp post on the street with a bridge in the background.
2. A clock sits next to a lamp post on a sidewalk.
3. a street with a lamp post and clock with a bridge behind them
4. An antique pole clock and street lamp adorn a little cobblestone
city plaza near an overpass.
5. a pole with a clock on top standing next to a light pole

Caption from Autoregressive:
a clock on a pole near a building .
Caption from Conditional VAE:
a clock on the sidewalk near a city street .

Captions from CPP-VAE’s sampling:
1. a clock tower with a clock on it
2. a clock tower with a clock on it ’s face .
3. a clock tower with a sky background .
4. a clock on a pole next to a street .
5. a clock on a wall with a plant growing out of it .
6. a clock tower is seen against a blue sky .
7. a clock tower sitting in a garden with a fountain .
8. a clock tower is seen in this picture .
9. a clock tower with a bird on it next to a building .
Caption from CPP-VAE’s mode:
a clock tower is reflected in a clear side of the city .

Figure 13: Additional qualitative evaluation of the diversity in generated captions.

ground-truth Captions:
1. Some people are sitting at a table and making sandwiches.
2. A group of people sitting around a table with food.
3. A group of people eating together at a table
4. Group of people sitting down at a table and eating together.
5. A family sits down to a hearty meal.

Caption from Autoregressive:
a group of people sitting around a table eating food .
Caption from Conditional VAE:
a group of people sitting around a table eating .

Captions from CPP-VAE’s sampling:
1. a man is holding a knife and fork over a plate of food .
2. a group of people sitting at a table with food .
3. a man and a woman standing next to each other .
4. a little girl sitting at a table with a plate of food .
5. a group of people sitting around a dinner table .
6. a man and a woman eating a donut and drinking a beverage .
7. a man is holding a plate with a sandwich and a knife .
8. a man and a woman are sitting at a table with a plate of food .
9. a group of people sitting around a table with food and beverages .
Caption from CPP-VAE’s mode:
a group of people sitting around a table eating food .

Figure 14: Additional qualitative evaluation of the diversity in generated captions.
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ground-truth Captions:
1. A woman skiing down a snow covered slope next to two brown dogs.
2. A woman with two dogs skiing cross country.
3. Two yellow dogs are in the snow as a woman is cross country skiing.
4. A woman is cross country skiing along with two dogs in the snow.
5. Two dogs are sitting in the snow with its owner

Caption from Autoregressive:
a man standing in the snow with his skis .
Caption from Conditional VAE:
a man is walking down a snowy hill with a dog .

Captions from CPP-VAE’s sampling:
1. a woman on a snow board grinds on a snowy hill .
2. a man in a red jacket and hat is skiing down a hill .
3. a group of dog is laying on a snow covered bank .
4. a man in a red jacket and black pants skiing down a hill
5. a woman on skis in the snow with a dog .
6. a dog with another dog is walking on the snow covered path .
7. a dog is lying down on a snow covered slope .
8. a man is standing in the snow with a snowboard attached to his feet .
9. a dog is walking on the snow with a leash attached to its mouth .
Caption from CPP-VAE’s mode:
a couple of dogs are standing on a snowy hill with a person in the background .

Figure 15: Additional qualitative evaluation of the diversity in generated captions.

ground-truth Captions:
1. A hotdog and fork sitting on a plastic plate
2. A hot dog covered in mustard and ketchup.
3. A hot dog with ketchup and mustard is on a styrofoam plate.
4. Cooked snack item in bread on plate with condiment.
5. A hot dog that is laying on a plate.

Caption from Autoregressive:
> a hotdog with toppings on a plate with a pickle .
Caption from Conditional VAE:
> a hotdog with mustard and ketchup on it .

Captions from CPP-VAE’s sampling:
1. a hot dog bun filled with mustard and ketchup .
2. a hot dog bun filled with fries and pickles .
3. a hotdog with mustard , ketchup and onion on a bun .
4. a plate of food with hot dog bun filled with cheese and vegetables .
5. a hotdog with mustard , ketchup , mustard , and onions on a bun .
6. a white plate topped with a sandwich and a salad .
7. a plate of food with a hot dog , tomatoes and sausage .
8. a plate with a sandwich and french fries on a table .
9. a plate with a sandwich and french fries .
Caption from CPP-VAE’s mode:
a hot dog bun filled with fries and pickles .

Figure 16: Additional qualitative evaluation of the diversity in generated captions.
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